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Context
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1. Often times we need to analyse data for which we do not have their labels.
2. How can we find any structure in a collection of unlabelled data?
3. Clustering is an established category of methods for organising objects into

groups whose members are similar in some way.



Context: K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

µk =

∑
n rnkxn∑
n rnk



Context: K-means discussion
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1. Too crude? Assumes that a cluster can be represented with a single
point and a simple distance metric

2. A simple unsupervised method that enables clustering of data
with no great computational complexity

3. Hard boundaries!
4. Q: How to generalise it to models that can cluster data of various types and

shapes!



Context: Hard assignment vs. Soft assignment
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Original Data Hard assignment Soft assignment

Gaussian Mixture Model



Learning Outcomes
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1. Understand the key motivations behind a Guassian Mixture Model (GMM).
2. Understand the formulation of a GMM and the need for the

Expectation Maximisation (EM) solver.
3. Analyse the solution to a GMM.

References:
1. Bishop, Pattern Recognition and Machine Learning,

Springer, 2008. (Section 9.1)
2. Rogers and Girolami, A First Course in Machine

Learning, CRC Press, 2016. (Section 6.3)



Mixture Models
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1. Models that can cluster data of various types and shapes!
2. Simple to compute
3. Clustering with statistical mixture models, similar to k-means,

but offers richer representation of the data!



Mixture Models - A generative process
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1. Let’s assume we want to generate the below data with two Gaussians!
2. For data xn, Select one of the Gaussians (with probability πk, assuming∑

k πk = 1). Set the parameter znk = 1

3. Sample data xn from this Gaussian

p(xn|znk = 1,µk,Σk) = N (µk,Σk)



Mixture Models - A generative process

9 / 21

1. We described out data with a generative process
2. In a clustering context all data points with znk = 1 are in cluster k
3. But we need to learn/infer/calculate (µk,Σk) from the observed data

BUT this is a circular argument
1. Trivial to calculate the component parameters (µk,Σk)

if we knew the assignment rule znk = 1

2. Trivial to work out the assignment rule znk = 1
if we knew the component parameters (µk,Σk)



Mixture of Gaussians
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Complex probabilities can be approximated with a linear
superposition of K Gaussian densities.

p(x) =
∑K

k=1 πkN (x|µk,Σk)

x

p(x)

We define z = {z1, z2, · · · , zk} where zk ∈ {0, 1} and
∑

k zk = 1.

We know that p(x, z) = p(z)p(x|z) and p(x) =
∑

z p(z)p(x|z).



Mixture of Gaussians
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Complex probabilities can be approximated with a linear
superposition of K Gaussian densities.

p(x) =
∑K

k=1 πkN (x|µk,Σk)

x

p(x)

We define z = {z1, z2, · · · , zk} where zk ∈ {0, 1} and
∑

k zk = 1.

We know that p(x, z) = p(z)p(x|z) and p(x) =
∑

z p(z)p(x|z).

• p(zk = 1) = πk: 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1.
• p(z) =

∏K
k=1 π

zk
k

• p(x|z) =
∏K

k=1N (x|µk,Σk)
zk



Mixture of Gaussians

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)∑K
j=1 πkN (x|µj,Σj)
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Another key quantity is p(z|x)

γ(zk) is the responsibility that component k takes in explaining the observation x.



A Maximum Likelihood solution to GMM? Not ideal!
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Suppose we observe XN×D = {x1,x2, · · · ,xN}. Assuming that the data points
are drawn independently, the likelihood function of all N data points is

p(X|π,µ,Σ) =
N∏

n=1

K∑
k=1

πkN (xn|µk,Σk)

and so the log-likelihood will be

L = log p(X|π,µ,Σ) =
N∑

n=1

log

{
K∑
k=1

πkN (xn|µk,Σk)

}

We can estimate πk,µk, and Σk by differentiating L with respect to these variables
and using gradient-based optimisation.



Expectation-Maximisation (EM) for GMMs
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• The EM method can be used to overcome challenges of using
Maximum Likelihood.

• EM derives a lower bound B on the likelihood L, that is B ≤ L.
• Instead of maximising L directly, EM maximises B

• Question: How to determine B? Using Jensen’s inequality

logEp(z){f(z)} ≥ Ep(z){log f(z)}

• The logarithm of the expected value of f(z) is always greater than or equal
to the expected value of log f(z)



EM - Derivation for GMMs
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• Let’s define γnk to be positive and satisfying
∑K

k=1 γnk = 1.
• γnk is some probability distribution over K components for the n-th

data point.

L =
N∑

n=1

log
K∑
k=1

πkN (xn|µk,Σk)

=
N∑

n=1

log
K∑
k=1

πkN (xn|µk,Σk)
γnk
γnk

=
N∑

n=1

log
K∑
k=1

γnk
πkN (xn|µk,Σk)

γnk

=
N∑

n=1

logEγnk

{
πkN (xn|µk,Σk)

γnk

}



Apply Jensen’s inequality
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logEp(z){f(z)} ≥ Ep(z){log f(z)}

L =
N∑

n=1

logEγnk

{
πkN (xn|µk,Σk)

γnk

}

≥
N∑

n=1

Eγnk

{
log

πkN (xn|µk,Σk)

γnk

}
= B



Apply Jensen’s inequality
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logEp(z){f(z)} ≥ Ep(z){log f(z)}

L =
N∑

n=1

logEγnk

{
πkN (xn|µk,Σk)

γnk

}

≥
N∑

n=1

Eγnk

{
log

πkN (xn|µk,Σk)

γnk

}
= B

B =

N∑
n=1

K∑
k=1

γnk log πk +

N∑
n=1

K∑
k=1

γnk logN (xn|µk,Σk)−
N∑

n=1

K∑
k=1

γnk log γnk.



EM - Derivation for GMMs
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B =
N∑

n=1

K∑
k=1

γnk log πk +
N∑

n=1

K∑
k=1

γnk logN (xn|µk,Σk)−
N∑

n=1

K∑
k=1

γnk log γnk.

• EM is an iterative process, maximising the bound B, until convergence.
• For each update, we take the partial derivative of the bound B wrt

parameters, set it to zero and solve.
• See Rogers and Girolami (2016) [pp.218-222] for full derivations



EM Solution for GMMs
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E-step M-step

γnk =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

πk =
1

N

N∑
n=1

γnk

µk =

∑N
n=1 γnkxn∑N
n=1 γnk

Σk =

∑N
n=1 γnk(xn − µk)(xn − µk)

T∑N
n=1 γnk

Some intution ...



Choosing the Number of components K for GMMs
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K=2 K=6

K

L



GMM: Summary
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• Hard boundaries are exchanged for flexible and probabilistic soft boundaries
• Immense flexibility: p(xn| · · · ) can take the form of any probability density

including Bernoulli distribution (binary data)
• The choice of K remains ad-hoc

Next lecture:
• Delving [a bit] deeper into the EM method


