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Context

1. Often times we need to analyse data for which we do not have their labels.
2. How can we find any structure in a collection of unlabelled data?

3. Clustering is an established category of methods for organising objects into
groups whose members are similar in some way.
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Context: K-means Solution
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Context: K-means discussion

. Too crude? Assumes that a cluster can be represented with a single
point and a simple distance metric

. A simple unsupervised method that enables clustering of data
with no great computational complexity

. Hard boundaries!

. Q: How to generalise it to models that can cluster data of various types and
shapes!
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Context: Hard assignment vs. Soft assignment

Original Data

Hard assignment

Soft assignment

A4

\4

Gaussian Mixture Model
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Learning Outcomes

1. Understand the key motivations behind a Guassian Mixture Model (GMM).

2. Understand the formulation of a GMM and the need for the
Expectation Maximisation (EM) solver.

3. Analyse the solution to a GMM.

References:

1. Bishop, Pattern Recognition and Machine Learning,
Springer, 2008. (Section 9.1)

2. Rogers and Girolami, A First Course in Machine
Learning, CRC Press, 2016. (Section 6.3)

6/21



Mixture Models

1. Models that can cluster data of various types and shapes!
2. Simple to compute

3. Clustering with statistical mixture models, similar to k-means,
but offers richer representation of the datal
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Mixture Models - A generative process

1. Let's assume we want to generate the below data with two Gaussians!

2. For data x,,, Select one of the Gaussians (with probability 7, assuming
>« ™ = 1). Set the parameter z,;, =1

3. Sample data x,, from this Gaussian

p(Xnlznk = 1, p, 2i) = N (g, i)

&

” ” 8/21




Mixture Models - A generative process

1. We described out data with a generative process
2. In a clustering context all data points with z,, = 1 are in cluster k
3. But we need to learn/infer/calculate (pux, Xx) from the observed data

BUT this is a circular argument

1. Trivial to calculate the component parameters (g, 3y)
if we knew the assignment rule z,, = 1

2. Trivial to work out the assignment rule z,, = 1
if we knew the component parameters (g, 3y.)
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Mixture of Gaussians

p(z)
Complex probabilities can be approximated with a linear

superposition of K Gaussian densities.

p(x) = Zle TN (x|, i)

We define z = {z1, 29, - -+ , 2.} where z;, € {0,1} and >, z, = 1.

We know that p(x,z) = p(z)p(x|z) and p(x) = >, p(z)p(x|z).
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Mixture of Gaussians

p(z)
Complex probabilities can be approximated with a linear

superposition of K Gaussian densities.

p(x) = Zle TN (x|, i)

We define z = {z1, 29, - -+ , 2.} where z;, € {0,1} and >, z, = 1.

We know that p(x,z) = p(z)p(x|z) and p(x) = >, p(z)p(x|z).

® p(zp=1)=m: 0 <7 <1 and ZkK:ka = 1.
® p(z) = H§:1 L
* p(x|z) = [Temy NV (x|, i)™
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Mixture of Gaussians

Another key quantity is p(z|x)

p(z = Dp(x|zs = 1)
Sop(z = 1p(x|z =1)
TN (x|, i)
S TN (x|, )

Y(zk) = plz = 1|x) =

v(zx) is the responsibility that component k takes in explaining the observation x.
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A Maximum Likelihood solution to GMM? Not ideal!

Suppose we observe X . p = {X1,X2, - ,Xy}. Assuming that the data points
are drawn independently, the likelihood function of all N data points is

N K
p(X|m, 1, ) = [ D meN (xnl e, =)
n=1 k=1

and so the log-likelihood will be

N K
L =logp(X|m, p, ) =) log {Zm/\f(xnluk, 2k)}
n=1 k=1

We can estimate 7y, i, and X3 by differentiating L with respect to these variables
and using gradient-based optimisation.
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Expectation-Maximisation (EM) for GMMs

The EM method can be used to overcome challenges of using
Maximum Likelihood.

EM derives a lower bound B on the likelihood L, that is B < L.
Instead of maximising L directly, EM maximises B

Question: How to determine B7 Using Jensen's inequality

log Ep:){f(2)} = Epry{log f(2)}

The logarithm of the expected value of f(z) is always greater than or equal
to the expected value of log f(2)
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EM - Derivation for GMMs
® |et's define v, to be positive and satisfying Zszl Yok = 1.

® ~,.. is some probability distribution over K components for the n-th
data point.

L = z:llomecN Xn| ks Xi)

= Z log Z TN (X | ek Ek)%k

n=1 k=1 nk
K

_ ZIOgZ% N (Xp| a1, Ei)

Tnk

n=1

_ ZlOgE%k {ﬂ—k-/\/(xn’lllkazk)}

Vnk

n=1 15/21



Apply Jensen’s inequality

log Ep.){f(2)} = Ep(){log f(2)}

VYnk

n=1

N
n 72
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n=1 n
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Apply Jensen’s inequality

log Ep.){f(2)} = Ep(){log f(2)}

N
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EM - Derivation for GMMs

N K N K
B:ZZ’y klogm%—zz%klog/\/' Xo|r, i) — Zz%klog%k.

n=1 k=1 n=1 k=1 n=1 k=1

® EM is an iterative process, maximising the bound 13, until convergence.

® For each update, we take the partial derivative of the bound B wrt
parameters, set it to zero and solve.

® See Rogers and Girolami (2016) [pp.218-222] for full derivations

18/21



EM Solution for GMMs

E-step M-step
| N
Tk = >7 Z Tnk
N n=1
= TN (X | o, 2k y Zivzl TnkXn
nk = 2K k= TN
2 N (X 1, 25) ZnNzl Ink
¥, = 2521 Yo (X — 1) (X — )"

eryzl Tnk

Some intution ...
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Choosing the Number of components K for GMMs

A4

Y

A\
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GMM: Summary

® Hard boundaries are exchanged for flexible and probabilistic soft boundaries

® Immense flexibility: p(x,|---) can take the form of any probability density
including Bernoulli distribution (binary data)

® The choice of K remains ad-hoc

Next lecture:
® Delving [a bit] deeper into the EM method

21/21



