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Classification with a linear classifier

o S={(x1,%1),...,(xn,yn)}: data set
°o X = [X’.l x,-d]T, i=1,...,n: input, feature vector, features

e y;: ground truth, /abel, gold reference, for x;.

® f(x) = w'x+ b: linear separator, linear predictor

ow=[w - Wdf: weights, weight vector
e b e R: bias
o {w,b}: parameters --- (@ =[bw']")
-1 ifz<0

® h(x) = sgn(f(x)), where sgn(z) = 41 ifz>0

NB: This is a non-standard definition of a sign function
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Geometry of linear classification
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X2

v 'x+b>0

Geometry of linear classification

X1

wixy +woxo +b=0

w'x+b=0 wherex = [Xl] , W= [Wl}
X2

W2

hyperplane, decision boundary,
splitting the space into decision regions

NB: w is a normal vector of the hyper-
plane. b is not the x> intercept.
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Geometry of linear classification (cont)

f(x)=wixi +woxp + b

f(x)
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Geometry of linear classification (cont)

f(x)=wixi +woxp + b

f(x)
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Linearly separable vs linearly non-separable
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Linearly separable vs linearly non-separable
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Linearly separable vs linearly non-separable

(a-1) (a-2) (b)

Linearly separable Linearly non-separable
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Binary classification with discriminative classifier

-1 fwx+b<0
hxy =4 0 Y
+1 ifw'x+b>0

® The hyperplane w'x + b = 0 separates the two classes.
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Binary classification with discriminative classifier

h(x) =
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Binary classification with discriminative classifier

-1 fwx+b<0
hxy =4 0 Y
+1 ifw'x+b>0

® The hyperplane w'x + b = 0 separates the two classes.
® The function h labels one class as —1 and the other class as +1.

® The task is called binary classification, because there are two classes.
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Binary classification with discriminative classifier

-1 fwx+b<0
hxy =4 0 Y
+1 ifw'x+b>0

The hyperplane w ' x + b = 0 separates the two classes.
The function h labels one class as —1 and the other class as +1.
The task is called binary classification, because there are two classes.

Why not finding the model parameters {w, b} directly based on a
misclassification loss?

N
min_ £(9i.yi),  where §i = h(x;)
i=1

)
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Zero-one loss

lor(y,y) = = lyzy (2)

0 otherwise

{1 ify+£y

® Think y as the prediction and y as the label.
e We suffer a loss of 1 if we predict the label wrong.

® In the binary case, o1(7,y) = Iyy<o.
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Discriminative training of a classifier

® Given S = {(x1,)1),.--,(xn,yn)}, find 8 such that the zero-one loss

LN
L= N gﬁm(h(xi),)/i) (3)

is minimised. NB: L is called a cost function.
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Discriminative training of a classifier
® Given S = {(x1,)1),.--,(xn,yn)}, find 8 such that the zero-one loss

1 N
= N E 601(h(x,-),y,') (3)
i=1

is minimised. NB: L is called a cost function.

® The act of finding the model parameter 0 is called training.
(We also say “fit the model on the training data” to mean the training)

® |n the binary case,

i(sgn(w T x;+b))<0 (4)

HMZ

NZEm(sgn w x,+b ), i) =
i=1
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Training based on the zero-one loss

® Slightly changing w and b does not change the loss.
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Training based on the zero-one loss

Slightly changing w and b does not change the loss.

The loss value only changes when the hyperplane flips the sign of a data point,
and it either increases by 1 or none at all.

The loss function (with respect to w and b) is like step functions, flat everywhere
with discontinuity when the value changes.

Finding the optimal w and b is inherently combinatorial and hard.
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What about using linear regression?
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What about using linear regression?

N
2
min 3 (Wx+b6)—y) . yie{-1,+1}

w,b “
i=1

® \We know we can find a solution in closed form.
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What about using linear regression?

N
2
min 3 (Wx+b6)—y) . yie{-1,+1}

w,b “
i=1

® \We know we can find a solution in closed form.

® Any problems?
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Types of linear classifiers

Linear Discriminant Analysis (LDA)
Template-based matching with Euclidean distance
Fisher's linear discriminant

Logistic regression

Support Vector Machine (linear version)
Perceptron (original version)

Single-layer neural networks with no hidden nodes

Q: Which of the above are from a generative approach?
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A probabilistic approach

® The range of f(x) =w'x+ b : (—o0,+00)

® We want to squeeze the range into [0, 1] with a function g(s) so that it can be
treated as a probability.

g(f(x)) =g(w'x+b) — p(y=-+1]x)
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A probabilistic approach

The range of f(x) =w'x + b : (—o0, +00)

We want to squeeze the range into [0, 1] with a function g(s) so that it can be
treated as a probability.

g(f(x)) =g(w'x+b) — p(y=-+1]x)

A candidate for g(s) is the logistic (sigmoid) function:

(s) e’ 1
S) = =
g 1+es 1+tes

Logistic regression model:

1
1+ exp(—(w'x + b))

p(y=—1|x,0) =1 — p(y =+1|x)

: exp(—(w ' x + b))
1+ exp(—(w'x + b))

ply=+1/x,0) =
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Sigmoid function

-4 -2 0 2 4

® When s — oo, o(s) = 1.

® When s - —o0, o(s) — 0.
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Sigmoid function vs step function

1.04 — u(s)

— o(s)

0.8

0.6

0.4

0.2

0.01

-10.0 -75 =50 =25 0.0 25 5.0 7.5 10.0
wix+b

0 ifs<O

Step function: u(s) =
P () {1 ifs>0
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Interpretation of the logistic regression model

Data distributions p(x|y)

— Plxly=0)
— Plxly=1)
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Interpretation of the logistic regression model

Data distributions p(x|y) Posterior prob. p(y|x) log p(y=1|x)
p(y=01x)
o —— log(ply = 1|x)/ply = 0|x))
0.5
0.8 o
0.4
0.6 % -5
03 — ply=0x) 2
— ply=1[x) k]
0.4 _g"*]ﬂ
0.2
0.1 0.2 15
0.0 0.0 20
1 2 3 4 1 0 1 2 3 4 1 0 1 2
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Interpretation of the logistic regression model

Data distributions p(x|y) Posterior prob. p(y|x)

— ply=0[x)
— ply=1ix)

Model the log odds ratio with a line:

—=1|x
e S8

— 1og(ply = 1x)/ply = 01x))

Log-odds ratio
|
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Classification with the logistic regression model

For a test input x,

1. calculate the posterior probability with the model.

1

Py =11:6) = 4o (wTx + B))

2. make a prediction:

. +1 p(y=+1|x,0) > threshold,
;o { ( x,6) 9)

-1 p(y=+1|x,0) < threshold

NB: threshold = 0.5 normally — it gives a minimum misclassification rate.
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Decision surface - step function version

u(w'x + b)
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Decision

surface - step function version

u(w'x + b)

0.8

0.6

0.4

0.2

0.0
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Decision surface - sigmoid function version

o(w'x +b)
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Decision

surface - sigmoid function

o(w'x +b)

version

15

0.8

0.6

0.4

0.2

0.0
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A logistic regression model

1

ply=+1lx.0) = 1— exp(—(w'x + b))

B B 1 ~ exp(—(w'x+ b))
Ply=—1x.0) =1~ 1+exp(—(w'x+ b)) 1+exp(—(w'x+ b))
1
" exp(Wix+b)+1

Thus,

1
1+ exp(—y(wTx + b))

p(y|x,8) =

(10)

(11)
(12)

(13)
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How to train the logistic regression model?

n
® Use MSE? mltr: Z(p(y:—i—l]x,-, 0) — y,')2 NB: the label y; needs to be changed to {0,1}.
W7 .
i=1
® Apply the maximum likelihood estimation (MLE):

Given a data set {(x1,y1),...,(xn,yn)}
maximise the likelihood L of w and b.

max L (14)
w,b
N N 1
L=1 1%, 0) =31 15
o LLpbilx )= 2 1o8 ooy wra ) 1)

N

= Z —log (1 + EXP(_)/:'(WTXi + b))) (16)

i=1
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How to find the optimal solutions w and b?

The zero-one loss Z,N:l 1, (wTx+b)<o Is flat, and is hard to optimise.

The log likelihood of the logistic regression model
N

L= Z —log(1 + exp(—yi(w' x; + b)) is differentiable.
i=1

However,

oL . oL
ow; -

do not have closed-form solutions.
— employ gradient ascent.

We will come back to this in a lecture on optimisation.

(17)
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Effect of data distributions on decision regions

data
—— Logistic regression
Ridge classifer
L] ]
L] | ]
T T T
4 6 8 10 12 14 16
X1
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X2

Effect

of data distributions on decision regions

data

—— Logistic regression
Ridge classifer

8 10 12 14 16

X2

additional points at x;=10

16
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X2

Effect

of data distributions on decision regions

data

—— Logistic regression
Ridge classifer

8 10 12 14 16

X2

additional points at x;=10

—— Logistic regression
Ridge classifer
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X2

Effect of data distributions on decision regions (cont)

1 additional data points

® |
| )
® L
T
0 2 4 6 8
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X2

Effect of data distributions on decision

1 additional data points

—— Logistic regression
Ridge classifer
® [}
"
® L
T
0 2 4 6 8

regions (cont)
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X2

Effect of data distributions on decision regions (cont)

1 additional data points

—— Logistic regression
Ridge classifer

® |
| )
® L
T
0 2 4 6 8

X2

5 additional data points

[ e
a

a

e

a

| }

® &
T T

2 4 6
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Effect of data distributions on decision regions (cont)

1 additional data points 5 additional data points

X2

6
—— Logistic regression —— Logistic regression
5 Ridge classifer 5 Ridge classifer
44 44
34 °® " 34 °® ]
a
a
2 = < 24 =
a
"
14 ® L 14 ® L
01 01
~14 ~14
-2 T T T T T -2 T T T T T
0 2 4 6 8 0 2 4 6 8
X1 X1
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What if we use 0/1 labels instead of -1/+417

e yc{0,1} instead of {—1,+1}
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What if we use 0/1 labels instead of -1/+417
e yec{0,1} instead of {—1,+1}

ply=1]x)= l—i-exp(—(lex—Fb)) (18)

1
ply=0[x) =1—1 +exp(—(w'x + b))
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What if we use 0/1 labels instead of -1/+417
e yec{0,1} instead of {—1,+1}

ply=1]x)= l—i-exp(—(lex—Fb)) (18)
1

1+ exp(—(w'x+ b))

ply=0|x)=1-

1 Y 1 o
P Ix) = <1 + exp(—(w Tx + b))> (1 T 1tep(—(wix+ b))) 20
=s/(1—s)t (21)

1
1+exp(—(w'x+ b))

where s =
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What if we use 0/1 labels instead of -1/4+17 (cont)

Training with MLE,

N
L= |0gHP(Yi|Xi,9) (22)
i—1
IogHsy’ — )i (23)
= ZYi log s; + (1 — y;) log(1 — s;) (24)
B N
= —ZH(y,',S,') (25)

i=1
where H(p,q) = — >, p(x)log q(x) is a cross entropy between the two probability
distributions p and q. For a binary case, H(p,q) = —(plog q + (1 — p) log(1 — q)).
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Classification losses

Suppose we have a labelled data point (x, y).
® /ero-one loss
Ly (wTx+b)<0 (26)

® Log loss (logistic loss)

—log p(y|x) = log(1 + exp(—y(w " x + b)) (27)
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Notation caveat

The log loss notation — log p(y|x) can be misleading.

Is y the ground truth or is it a free variable?

What it really means is — log p(y =y*|x) given a pair (x, y*).

Or —log p(y =yi|xi) given a pair (x;,y;) in a data set.
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How to resolve a linearly non-separable case?

Feature transformation

= sgn(w ' x + b)

-1 fw'x+b<0
hx) =4 . W
+1 ifw' x+b>0

0

— if wlo(x
h(x):{ boifw o) <0 nwTé(x))

+1 ifwlo(x)>0

(28)
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Feature transformation (cont)

1
plylx,0) = 1+ exp(—y(wTx + b)) (30)
p(yx,0) = . (31)

1+ exp(—y(w'¢(x)))
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Feature transformation - examples

(x1,x) — (x1,x2,x2)

Decision surface

1.0

0.0
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Feature transformation - examples

2 2 2
(x1,2) = (x1,%2,x3) (x1,x2) — (x1,%, X7, %3)
Decision surface Decision surface
1.0 15 1.0
10
0.8 0.8
5
0.6 0.6
< 0
0.4 0.4
_5
0.2 0.2
—10
T T 0.0 =15 T T T T T 0.0
5 10 15 -15  -10 -5 0 5 10 15

30/ 46



X2

Feature transformation - examples

(x1,%) — (x1,%2,x3) (x1,%0) — (x1,%2,x2,x3)
1s Decision boundary 1s Decision boundary
101 104
5 5
0 < 0
_5 -5
-10 ~104
[ T S R [ C T S R
x1 x1
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20 A

10 4

—10 1

=20 A

Two-circle example

0q o®
R
P
° [ ] N ...

e ° 3
% o #8 o
0.0... O~3.'” \ l.
% oo
8 oo 0° o .°o°
°
—20 _10 0 10 20 30
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Two-circle example




What is it meant by linear classifiers?

® A linear classifier is linear in the parameters w, not in the features.

® A linear classifier can have arbitrary nonlinear features.
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Should we consider very complex transformation?

® Not necessarily so.
® Complex models may overfit the training data and may not generalise very well.

® \We will come back to this in some lectures later.
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How to extend the model to multiclass classification?

® one-vs.-all (one-against-all)

® one-vs.-one
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Multiclass classification with logistic regression

Replace the sigmoid with the softmax function
letting x = [Ixy X2 - -+, Xq] and w = [wowy -+ wy]

® w/o transformation

exp(w,! x)
p(y!x, 0) = - T
> yrey exp(w,, x)
® w transformation
exp(w, ¢(x))
p(y|x,0) = -

>y exp(w,)(x))

(32)

(33)

NB: we can just use and compare “w, ¢(x)" for classification — the denominator

is a constant for y € ) and exp() is a monotonically increasing function.
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Softmax for binary classification

ply=-+1/x,6) =

ply=—-1|x,0) =

— the same as the sigmoid.

exp(w];x)

exp(w.];x) + exp(w_; x)
1 1

1+ exp(—(wy1 — wy1)Tx)  1+exp(—w!x)

exp(w_;x)

exp(w];x) + exp(w_, x)

ep(—(wir —w-1)'x) exp(-w'x)

1+exp(—(wir —wo1)Tx)  1+exp(—w)'x)

where w = w1 — w_j.

(34)

(35)

(36)

(37)
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Logistic regression model vs LDA

® | ogistic regression:
e | DA

log p(Ck | x,0) = wka + Wy + const (38)
exp (wka + Wko)

P(Ck ’X, 0) =
S wexp (wy) x + wirg)
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Summary

® | og loss in the binary case

ZN: log (1 + exp(—yin¢(Xi)))

i=1

® | og loss in the multiclass case

N
> —w,lo(xi) +log | D exp(w, d(x))
i=1

y'ey
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Summary (cont.)

binary classification multiclass classification

-1 ifwTe(x) <0 B T
h(x) = {+1 i wTo(x) > 0 h(x) = ar%/en;}ax w, ¢(x)

1 (1x.6) — exp(w, $(x))
Trep(—ywio(x) TS exn(w)o(x))

p(y|x,0) =
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Appendix — softmax

exp(a1)
> exp(ai)
a1 exp(az)
a ni
softmax _2 _ [ e exp(ai) (42)
an
exp(an)
| Do exp(ai)
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Appendix — softmax (cont)

softmax([1 2 3]")=1[0.09 024 0.67]"

softmax([100 200 300] ') = [10787 1074 1.0]"
Softmax always returns a probability distribution.

When the dynamic range of the input is large, the result of softmax becomes
“sharp.”
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Appendix — softmax (cont)

e Claim: % — 1 when 7 = 0.

® That means % — 0 when 7 — 0 for any a; that is not the max.
i=1 !

® \\e have
exp(am/7) exp(am/7)
ST exp(@/7) . op(an/T) + S oxp(a/7) (43)
- 1 (44)

1t me((a — am)/7)

when 7 — 0 because ay, is the largest and a; — a,,, < 0.
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Quizzes

1. Consider two column vectors such that a = (1,2,3)" and b = (-3,3,-1)".
e Finda+b.
e Find a—b.

Find [[al, [[b]|, and [la — b].

o Finda'b.

o Findab'.

o What is the geometric relationship between a and b?

2. Considering a classification problem of two classes, whose discriminant function
takes the form, y(x) = w'x + wyp.

e Show that the decision boundary is a straight line when D = 2.
e Show that the weight vector w is a normal vector to the decision boundary.

3. Derive a formula for the Euclidean distance between the origin (0,0) and a line
y = ax + b, where a and b are arbitrary constants.
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Quizzes (cont.)

4. Considering a linear classifier of binary classification in a two-dimensional vector
space, such that the points (—2, —3) and (4,1) are on the decision boundary, and
the point (2, —3) lies in the —1 class region.

o Find the parameters (w, b) of the classifier.
e Find the unit normal vector of w.
5. Consider the following logistic regression model:
1
1+ exp(—(wx + b))

Plot p(y =+1]|x) for each of the following cases, where you use a fixed plotting
range or show all the plots on a single graph for comparison, and report your
findings.
ew=1b=0
ew=1b=1
ew=-1b=1
e w=050b=1
ow=2b=1 45 /46
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Quizzes (cont.)

6. Consider the logistic sigmoid function.

1
7= T ()

o Based on the graph of o(x), make an educated guess about the shape of the
derivative ¢’(x) without performing any calculations and illustrate it by hand.

o Find the derivative of o(x).

e Plot the derivative on a graph.
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