
INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Optimization 2

Lecturer: Hao Tang

Definition 1. The minimum of a function f : Rd → R is written as minx f(x), and has the
property that minx f(x) ≤ f(y) for any y.

Definition 2. The value x∗ such that f(x∗) = minx f(x) is called a minimizer.

Example 1. For the parabola f(x) = x2 + 4x − 1 = (x + 2)2 − 5, the minimum is −5 and
the mimimizer is x = −2.

Definition 3. A function f : Rd → R is convex if for any 0 ≤ α ≤ 1, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (1)

for any x and y.

Definition 4. A function f is concave if −f is convex.

Example 2. If f is convex, then

f(x) ≥ f(y) +∇f(y)⊤(x− y) (2)

for any x and y.

We can arrenge the following

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (3)

into

f(y) +
f(y + α(x− y))− f(y)

α
≤ f(x). (4)

Remember that this holds for any 0 ≤ α ≤ 1. In particular, if we take the limit,

f(y) + lim
α→0

f(y + α(x− y))− f(y)

α
= f(y) +∇f(y)⊤(x− y) ≤ f(x). (5)
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Definition 5. A matrix A is positive semidefinite if v⊤Av ≥ 0 for all v, and is written as
A ⪰ 0.

Example 3. A function is convex if its Hessian is positive semidefinite.

The proof relies on mean-value theorem. It’s not difficult, but is beyond the scope of this course.

Example 4. Show that the mean-squared error ℓ(y, ŷ) = (y − ŷ)2 is convex in ŷ.

∂2

∂ŷ2
ℓ = 2 ≥ 0. (6)

Example 5. Show that the function

f(x) = x⊤
[
2 0
0 3

]
x (7)

is convex.

The Hessian of f is

[
4 0
0 6

]
. For any v =

[
v1 v2

]⊤
, we have

[
v1 v2

] [4 0
0 6

] [
v1
v2

]
=

[
4v1 6v2

] [v1
v2

]
= 4v21 + 6v22 ≥ 0 (8)

The Hessian of f is positive semidefinite.

Example 6. Show that the Hessian of f(x) = ∥x∥22 is 2I, and hence ∥x∥22 is convex in x.

∂2

∂xi∂xj
f = 0

∂2

∂x2i
f = 2 (9)

Example 7. Show that if f is convex, then g(x) = f(Ax+ b) is also convex.

g(αx+ (1− α)y) = f(α(Ax+ b) + (1− α)(Ay + b)) (10)

≤ αf(Ax+ b) + (1− α)f(Ay + b) = αg(x) + (1− α)g(y) (11)

Example 8. Show that if f1, . . . , fk are convex, then f = β1f1 + · · · + βkfk is also convex
when β1, . . . , βk ≥ 0.
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f(αx+ (1− α)y) = β1f1(αx+ (1− α)y) + · · ·+ βkfk(αx+ (1− α)y) (12)

≤ β1α1f1(x) + β1(1− α)f1(y) + · · ·+ βkαfk(x) + βk(1− α)fk(y) (13)

= α(β1f1(x) + · · ·+ βkfk(x)) + (1− α)(β1f1(y) + · · ·+ βkfk(y)) (14)

= αf(x) + (1− α)f(y) (15)

Exercise 1. Given a data set of n samples {(x1, y1), . . . , (xn, yn)}, show that

L =
n∑

i=1

(w⊤xi − yi)
2 = ∥Xw − y∥22 (16)

if we have

X =

— x1 —
...

— xn —

 y =

y1...
yn

 . (17)

Exercise 2. Given a data set of n samples {(x1, y1), . . . , (xn, yn)}, show that the mean-
squared error

L = ∥Xw − y∥22 (18)

is convex.

Example 9. Show that if f is convex and ∇f(x∗) = 0 for a point x∗, then x∗ is the minimizer
of f .

Because f is convex, we have for any x and y,

f(x) ≥ f(y) +∇f(y)⊤(x− y). (19)

In particular, if we let y = x∗,

f(x) ≥ f(x∗) +∇f(x∗)⊤(x− x∗) = f(x∗). (20)

Example 10. Show that ∇x(x
⊤Ax) = (A⊤ +A)x.

We see that x⊤Ax is a real value. If we take the derivative of x⊤Ax, we get

∂

∂xk

d∑
i=1

d∑
j=1

aijxixj =

d∑
i̸=j

aikxi +

d∑
j ̸=i

akjxj +

d∑
i=1

2aiixi (21)

=
d∑

i=1

aikxi +
d∑

j=1

akjxj = a⊤·kx+ ak·x (22)
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where a·k is the k-th column of A and ak· is the k-th row of A.

Example 11. Show that w∗ = (X⊤X)−1X⊤y is the minimizer for L = ∥Xw − y∥22.

L = (Xw − y)⊤(Xw − y) = w⊤X⊤Xw − 2y⊤Xw + y⊤y (23)

∇L = (X⊤X +X⊤X)w − 2X⊤y = 0 (24)

If w∗ = (X⊤X)−1X⊤y, then ∇L(w∗) = 0. Because L is convex in w, w∗ is a minimizer of L.

Example 12. Show that ℓ(s) = log(1 + exp(−s)) is convex in s.

∂ℓ

∂s
=

− exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)
− 1 (25)

∂2ℓ

∂s2
=

−1

1 + exp(−s)

− exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)

(
1− 1

1 + exp(−s)

)
≥ 0 (26)

Exercise 3. Given a data set of n samples {(x1, y1), . . . , (xn, yn)}, show that the log loss

L =
n∑

i=1

log
(
1 + exp(−yiw

⊤xi)
)

(27)

is convex.

Definition 6. A function f : Rd → R is called stricly convex if for 0 ≤ α ≤ y, we have

f(αx+ (1− α)y) < αf(x) + (1− α)f(y) (28)

for any x ̸= y.

Exercise 4. A function f : Rd → R is stricly convex if

f(x) > f(y) +∇f(y)⊤(x− y) (29)

for any x ̸= y.

Definition 7. A matrix A is positive definite if v⊤Av > 0 for any v ̸= 0.
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Exercise 5. A function f : Rd → R is stricly convex if its Hessian is positive definite.

Example 13. Show that if f is strictly convex, then f has a unique minimizer.

Suppose x∗ is a minimizer of f , i.e., ∇f(x∗) = 0. The inequality

f(x) > f(y) +∇f(y)⊤(x− y). (30)

holds for any x ̸= y. In particular, if we let y = x∗,

f(x) > f(x∗) +∇f(x∗)⊤(x− x∗) = f(x∗). (31)
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