INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Optimization 2

Lecturer: Hao Tang

Definition 1. The minimum of a function f : R? — R is written as min, f(z), and has the
property that min, f(z) < f(y) for any y.

Definition 2. The value z* such that f(z*) = min, f(z) is called a minimizer.

Example 1. For the parabola f(z) = 22 + 42 — 1 = (x + 2)? — 5, the minimum is —5 and
the mimimizer is x = —2.

Definition 3. A function f : R4 — R is convex if for any 0 < a < 1, we have

flaz+ (1—a)y) < af(x)+ (1 —a)f(y) (1)

for any x and y.

Definition 4. A function f is concave if —f is convex.

Example 2. If f is convex, then

f@) > fy)+ Vi) (@ —y) (2)

for any = and y.

We can arrenge the following

flaz+ (1 —a)y) <af(z)+ (1 —-a)f(y) 3)
into

fly+alz—y) - fly)

«

fy) + < f(z). (4)

Remember that this holds for any 0 < o < 1. In particular, if we take the limit,

ﬂw+hmf@+a@—yn—ﬂw

a—0 (&%

=)+ V) (z-y) < fla). (5)



Definition 5. A matrix A is positive semidefinite if v Av > 0 for all v, and is written as
A > 0.

Example 3. A function is convex if its Hessian is positive semidefinite.

The proof relies on mean-value theorem. It’s not difficult, but is beyond the scope of this course.

Example 4. Show that the mean-squared error £(y,9) = (y — 9)? is convex in .

82
83)26 =22>0. (6)
Example 5. Show that the function
2 0
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is convex.

The Hessian of f is [g 2} For any v = [vl vg]T, we have

o vs] [é g] [zj — (401 6u3) [Zj — 4?4600 >0 (8)

The Hessian of f is positive semidefinite.

Example 6. Show that the Hessian of f(z) = ||z||3 is 21, and hence ||z|3 is convex in z.
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Example 7. Show that if f is convex, then g(z) = f(Axz 4 b) is also convex.

glar+ (1 —a)y) = f(a(Ax +b) + (1 — a)(Ay + b)) (10)
<af(Ar +b) + (1 —a)f(Ay +b) = ag(z) + (1 — a)g(y) (11)

Example 8. Show that if fi,..., fx are convex, then f = B1f1 + -+ + Brfr is also convex
when £1,..., 8 > 0.




flaz+ (1= a)y) =frfilar + (1 —a)y) + -+ Brfrlax + (1 — a)y) (12)
< pranfi(@) + Bl — o) fi(y) + -+ + Beafi() + Bre(1 — ) fi(y) (13)
=a(fufi(x) + -+ Befe(@) + (1 — ) (Bufi(y) + -+ + Brfu(y)) (14)
=af(z)+(1-a)f(y) (15)
Exercise 1. Given a data set of n samples {(z1,v1), ..., (n,yn)}, show that
L= (w'zi—y)*=|Xw-yl3 (16)
i=1
if we have
— T Y
X — y = (17)
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Exercise 2. Given a data set of n samples {(z1,%1),..., (®n,¥yn)}, show that the mean-

squared error
L=Xw—yl3 (18)

is convex.

Example 9. Show that if f is convex and V f(z*) = 0 for a point x*, then z* is the minimizer

of f.

Because f is convex, we have for any x and vy,

f@) = f) + Vi (@ —y). (19)

In particular, if we let y = x*,

fl@) 2 f(z) + V(") (z —2*) = f(z"). (20)

Example 10. Show that V(2" Az) = (AT + A)z.

We see that " Az is a real value. If we take the derivative of " Az, we get
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where a., is the k-th column of A and ay. is the k-th row of A.

Example 11. Show that w* = (X" X)~'X Ty is the minimizer for L = || Xw — y||3.

L=Xw-—y) Xw-—y)=uw'X"Xw-2y"Xw+y'y (23)

VL=(X"X+X"X)w—-2XTy=0 (24)

If w* = (XTX)" !XTy, then VL(w*) = 0. Because L is convex in w, w* is a minimizer of L.

Example 12. Show that ¢(s) = log(1 + exp(—s)) is convex in s.

ol —exp(—s) 1

ds  1-+exp(—s) 1+exp(—s) ! (25)
o0 -1 —exp(—s) 1 1
052 1+exp(—s)1+exp(—s) 14 exp(—s) <1 T exp(—8)> >0 (26)

Exercise 3. Given a data set of n samples {(x1,y1),-.., (Zn,yn)}, show that the log loss
L= Zlog (1 + exp(—yin:cZ-)> (27)
i=1

1S convex.

Definition 6. A function f : R — R is called stricly convex if for 0 < a < y, we have

flaz+ (1 —a)y) <af(x)+(1—-a)f(y) (28)

for any = # y.

Exercise 4. A function f : R¢ — R is stricly convex if

f@) > fy) + Vi (@ —y) (29)

for any = # y.

Definition 7. A matrix A is positive definite if v Av > 0 for any v # 0.




Exercise 5. A function f : R¢ — R is stricly convex if its Hessian is positive definite.

Example 13. Show that if f is strictly convex, then f has a unique minimizer.

Suppose z* is a minimizer of f, i.e., Vf(x*) = 0. The inequality

f@) > fy) + Vi) (@ —y). (30)

holds for any x # y. In particular, if we let y = x*,

f2) > f(@) + V") (z - 2%) = fa"). (31)



