
INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Coursework

Instructions

• Due date: 10 March, Monday, at 12pm

• The submission is through Gradescope https://www.gradescope.com/courses/946198.

• It’s best to typeset your answers, but it is fine to submit hand-written answers.

• For Q2, you do not need to submit the source code of the entire file. Copy-paste the snippets
of your implementation, and submit 1 PDF document together with the answer in Q1.

Questions

1. In this question, we are going to work out the convergence rate of running gradient descent
on the mean-squared error.

Suppose we have a data set {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and yi ∈ R for i = 1, . . . , n.
Recall that in linear regression, the goal is to find the minimum of

L(w) = ∥Xw − y∥22, (1)

where

X =


— x1 —
— x2 —

...
— xn —

 y =


y1
y2
...
yn

 . (2)

We assume the last dimension of xi is a constant 1, so we do not need to worry about the
bias term.

(a) Show that the gradient and the Hessian of L are

∇L(w) = 2X⊤Xw − 2X⊤y (3)

H = 2X⊤X. (4)

[2 marks]

1

https://www.gradescope.com/courses/946198


The loss function can be expanded into

L(w) = ∥Xw − y∥22 = (Xw − y)⊤(Xw − y) = w⊤X⊤Xw − 2y⊤Xw + y⊤y.

With the following

∂w⊤Aw

∂w
= 2Aw

∂x⊤w

∂w
= x

we get ∇L(w) = 2X⊤Xw − 2X⊤y and H = ∇w∇wL(w) = 2X⊤X.

(b) Recall that the optimal solution is the w∗ where ∇L(w∗) = 2X⊤Xw∗−2X⊤y = 0. Show
that

1

2
Hw∗ = X⊤y. (5)

[3 marks]

By the result from (a), we have

2X⊤Xw∗ − 2X⊤y = Hw∗ − 2X⊤y = 0.

Rearranging the terms, we get 1
2Hw∗ = X⊤y.

(c) To optimize L with gradient descent, we iteratively perform

wt = wt−1 − η∇L(wt−1). (6)

Use the results in (a) and (b) and show that

wt = wt−1 − ηH(wt−1 − w∗). (7)

[5 marks]

Plugging in the result from (a) and (b), we have

∇L(wt−1) = 2X⊤Xwt−1 − 2X⊤y = Hwt−1 −Hw∗ = H(wt−1 − w∗).

(d) If we subtract both sides of (7) with w∗, show that

wt − w∗ = (I − ηH)(wt−1 − w∗). (8)

Now unroll the result in (d) and show that

wt − w∗ = (I − ηH)t(w0 − w∗). (9)

[5 marks]

2



wt − w∗ = wt−1 − ηH(wt−1 − w∗)− w∗ = wt−1 − w∗ − ηH(wt−1 − w∗)

= (I − ηH)(wt−1 − w∗)

= (I − ηH)(I − ηH)(wt−2 − w∗) = (I − ηH)2(wt−2 − w∗)

. . .

= (I − ηH)t(w0 − w∗)

(e) We will need to take a small detour here. Recall that in Optimization 4, we’ve talked
about how solving

max
w

w⊤Aw

w⊤w
(10)

is equivalent to solving

max
w

w⊤Aw s.t. ∥w∥22 = 1. (11)

The solution is to form the Lagrangian

F (w) = w⊤Aw − λ(w⊤w − 1) (12)

and find the optimal solution by setting ∇F (w) = 0. The optimal solution satisfies
Aw = λw, implying that w is an eigenvector of A and λ is its corresponding eigenvalue.
Use this result and show that, for any matrix A whose largest eigenvalue is λmax,

w⊤Aw ≤ λmax∥w∥22, (13)

for all w.

[5 marks]

Since

max
w⊤Aw

w⊤w
= max

λ∥w∥22
∥w∥22

= maxλ,

we know that

w⊤Aw

w⊤w
≤ λmax

for any arbitrary w. This gives the desired result w⊤Aw ≤ λmax∥w∥22 for all w.
Note that this result does not require λmax > 0. If λmax ≤ 0, it simply implies
that the matrix A is negative semi-definite.

(f) Apply the results in (d) to (e) and show

∥wt − w∗∥22 = (w0 − w∗)⊤(I − ηH)2t(w0 − w∗) ≤ ν2t∥w0 − w∗∥22, (14)

3



where ν is the largest eigenvalue of I − ηH.

[5 marks]

With (d), we have

∥wt − w∗∥22 = ∥(I − ηH)t(w0 − w∗)∥22
= (w0 − w∗)⊤[(I − ηH)t]⊤(I − ηH)t(w0 − w∗)

= (w0 − w∗)(I − ηH)2t(w0 − w∗),

where the last line uses the fact that I − ηH is symmetric. Now we use the result
in (e),

∥wt − w∗∥22 = (w0 − w∗)(I − ηH)2t(w0 − w∗) ≤ ν2t∥w0 − w∗∥22,

where the last line uses the fact that the largest eigenvalue of At is the λmax(A)t.
The last bit is easy to see, as Atw = At−1λw = λAt−1w = λAt−2λw = λ2At−2w =
· · · = λtw.

(g) Use the results in (a) and show that

L(w1) = L(w2) +∇L(w2)
⊤(w1 − w2) +

1

2
(w1 − w2)

⊤H(w1 − w2) (15)

for all w1 ∈ Rd and w2 ∈ Rd.1

[5 marks]

With (a), we have

L(w1)− L(w2) = w⊤
1 X

⊤Xw1 − w⊤
2 X

⊤Xw2 − 2y⊤X(w1 − w2)

= w⊤
1 X

⊤Xw1 − 2w⊤
1 X

⊤Xw2 + w⊤
2 X

⊤Xw2 + (2X⊤Xw2 − 2X⊤y)⊤(w1 − w2)

=
1

2
(w1 − w2)

⊤2X⊤X(w1 − w2) + (2X⊤Xw2 − 2X⊤y)⊤(w1 − w2)

= ∇L(w2)
⊤(w1 − w2) +

1

2
(w1 − w2)

⊤H(w1 − w2).

(h) If we choose w1 to be an arbitrary w ∈ Rd and w2 to be an optimal solution w∗ where
∇L(w∗) = 0, show that

L(w)− L(w∗) =
1

2
(w − w∗)⊤H(w − w∗). (16)

[5 marks]

1Since L is quadratic in w, the right hand side of (15) is exactly the second-order Taylor expansion of L. We did
not talk about Taylor expansion in class, so please do not use it to solve this question.

4



By letting w1 = w and w2 = w∗, we have

L(w) = L(w∗) +∇L(w∗)⊤(w − w∗) +
1

2
(w − w∗)⊤H(w − w∗)

= L(w∗) +
1

2
(w − w∗)⊤H(w − w∗),

for any w.

(i) Use (h) to get

L(wt)− L(w∗) =
1

2
(wt − w∗)⊤H(wt − w∗). (17)

Apply (e) again, plug in (f), and show that

L(wt)− L(w∗) ≤ λmax

2
ν2t∥w0 − w∗∥22, (18)

where λmax is the largest eigenvalue of H.

[5 marks]

If we chain the result in (e) and (f), we have

L(wt)− L(w∗) =
1

2
(w − w∗)⊤H(w − w∗)

≤ λmax

2
∥wt − w∗∥22 ≤

λmax

2
ν2t∥w0 − w∗∥22,

where λmax is the largest eigenvalue of H and ν is the largest eigenvalue of I−ηH.

(j) If we choose the step size to be η = 1
K for a constant K, then ν becomes the largest

eigenvalue of I− 1
KH, which is 1−λmin/K, where λmin is the smallest non-zero eigenvalue

of H. We arrive at

L(wt)− L(w∗) ≤ λmax

2

(
1− λmin

K

)2t

∥w0 − w∗∥22. (19)

When we choose K > λmin, show that

L(wt)− L(w∗) ≤ O(rt), (20)

for some 0 < r < 1.

[5 marks]

5



When K > λmin, then 0 < 1− λmin/K < 1. We have

L(wt)− L(w∗) ≤ O(rt), (21)

where r = (1− λmin/K)2.

(k) Given the result in (j), what type of convergence is running gradient descent on mean-
squared error? Sublinear, linear, or quadratic?

[5 marks]

By definition, the convergence rate is linear.

2. In this question, we are going to write a small neural network library.

Download https://homepages.inf.ed.ac.uk/htang2/mlg2024/coursework/nn.py. The
file nn.py provides an initial scaffolding.

A neural network is essentially a sequence of function compositions. To train a neural network
with stochastic gradient descent, we need to be able to compute the gradient of arbitrary
function compositions. The algorithm is called backpropagation, and the data structure is
called computation graphs.

Take a two-layer ReLU network for example, where the network has the form

f(x) = ReLU(xW1 + b1)W2 + b2, (22)

and ReLU(x) = max(0, x). To compute f(x), we hope to be able to write the following
snippet.

g = Graph()

output = g.add(g.matmul(g.relu(g.add(g.matmul(x, w1), b1)), w2), b2)

The result of running the snippet is the following graph.

+

×

b2

W2

ReLU+

b1

×

W1

x

6

https://homepages.inf.ed.ac.uk/htang2/mlg2024/coursework/nn.py


The graph is called a computation graph, where every vertex is either a variable or an oper-
ation. When values are given to the variables, we can run the computation graph to get the
result of the computation. We hope to write the following snippet that prints the value of
the output.

g.run_eval(output)

print(g.value[output])

To represent a computation graph, the Graph class has a set of vertices with integer IDs. Sup-
pose we have a Graph instance g. A vertex with ID i has a single parent vertex g.parent[i],
a list of children vertices g.children[i], its associated value g.value[i], its associated
gradient g.grad[i], and finally the name of the vertex g.name[i].

(a) The computation needs to be done in a particular order, we need a concept called
topological ordering of vertices. Suppose there are n vertices in the graph. A topological
ordering of vertices is a sequence v1, . . . , vn in which for every pair vi and vj with i < j,
if there is an edge between the two, then vi needs to be a child of vj .

In simple terms, if we line up the vertices in topological order, the edges can only point
forward, not backward. For example, below is a topological order of the graph above.

x W1 × b1 + Relu W2 × b2 +

Have a look at add and _new_vertex. Suppose we have n vertices. If every time an
operation is called (e.g., c = g.add(a, b)), we create a new vertex (c in this case),
connect the children (a and b), and assign a new ID to it. Use induction and show that
the IDs of the vertices follow a topological order.

[10 marks]

When there is only 1 vertex, it is trivially in topological order. Suppose the graph
has more than 1 vertex and we can list them in topological order. A new vertex
having existing vertices as children can be placed at the end, i.e., having the largest
ID, while maintaining the toplogical ordering.

(b) Have a look at run_eval. Where is topological order used in run_eval? What happens
if the IDs of the vertices do not follow a topological order?

[5 marks]

The for loop is iterating through the vertices in topological order. It’s just that
topological order coincides with the IDs, which we prove in (a). If the loop does
not iterate vertices in topological order, then g.value[v] might not be defined
for some v when it needs to be used.

7



(c) Have a look at eval_add. The forward computation is straightforward, so let’s focus on
implementing the backward computation grad_add.

Given that c = g.add(a, b) which represents c = a + b, we can write down the chain
rule

∂f

∂a
=

∂f

∂c

∂c

∂a
=

∂f

∂c
· 1 =

∂f

∂c
. (23)

Note that a is the first child of c. We can the write the following line in grad_add for
an arbitrary vertex n (in this case, c).

self.grad[self.children[n][0]] = self.grad[n]

Derive ∂f
∂b and show the your final implementation of g.grad_add by completing the

gradient from n to the second child.

[10 marks]

The gradient to the second child is the same of the first, because

∂f

∂b
=

∂f

∂c

∂c

∂b
=

∂f

∂c
· 1 =

∂f

∂c
.

The implementation is as follows.

self.grad[self.children[n][1]] = self.grad[n]

(d) Have a look at eval_matmul. The forward computation is again straightforward, so let’s
focus on implementing the backward computation grad_matmul.

Given that y = g.matmul(w, A) which represents y = wA, we can write down the chain
rule

∂f

∂wi
=

∑
j

∂f

∂yj

∂yj
∂wi

=
∑
j

∂f

∂yj
aij . (24)

In the matrix form, we have

∂f

∂w
=

∂f

∂y
A⊤. (25)

Note that w here is the first child of y, so we can write the following line to implement
the chain rule for an arbitrary vertex n (in this case, y).

self.grad[self.children[n][0]] = self.grad[n] @ self.value[self.children[n][1]].T

Derive ∂f
∂aij

and its matrix form. Show the your final implementation of grad_matmul

by completing the gradient from n to the second child.

[10 marks]

8



Following the same argument,

∂f

∂aij
=

∑
k

∂f

∂yk

∂yk
∂aij

=
∑
k

∂f

∂yk
1k=jwi. =

∂f

∂yj
wi.

In terms of code, we have

self.grad[self.children[n][1]]

= np.outer(self.value[self.children[n][0]], self.grad[n])

(e) Have a look at run_grad. Where is topological order used in run_grad? What happens
if the IDs of the vertices do not follow a topological order?

[5 marks]

It’s the for loop again, but this time it needs to iterate in reversed topological
order. If the loop does not iterate vertices in (reversed) topological order, then
g.grad[v] might not be defined for some v when it needs to be used.

(f) Now that we have implemented backpropagation, we need a way to verify whether the
implementation is correct. A simple approach to estimating gradients is called the finite
difference method. The idea is that we can simulate derivative by making a tiny change
in the function input. For example,

∂f

∂wi
≈ f(w + eiϵ)− f(w)

ϵ
, (26)

where ei is a vector that has 1 on the i-th coordinate and 0 everywhere else, and ϵ is a
small number, say 10−3.

Below is an implementation of the finite difference method to check the gradient to the
first child in grad_matmul.

eps = 1e-3

g1 = Graph()

w1 = g1.tensor(np.array([1, 2, 3]))

a1 = g1.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y1 = g1.matmul(w1, a1)

g1.run_eval(y1)

g2 = Graph()

w2 = g2.tensor(np.array([1 + eps, 2, 3]))

a2 = g2.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y2 = g2.matmul(w2, a2)

g2.run_eval(y2)

9



g3 = Graph()

w3 = g3.tensor(np.array([1, 2 + eps, 3]))

a3 = g3.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y3 = g3.matmul(w3, a3)

g3.run_eval(y3)

g4 = Graph()

w4 = g4.tensor(np.array([1, 2, 3 + eps]))

a4 = g4.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y4 = g4.matmul(w4, a4)

g4.run_eval(y4)

g1.run_grad(y1, np.array([1, 0]))

g5 = Graph()

w5 = g5.tensor(np.array([1, 2, 3]))

a5 = g5.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y5 = g5.matmul(w5, a5)

g5.run_grad(y5, np.array([0, 1]))

print((g2.value[y2] - g1.value[y1]) / eps)

print((g3.value[y3] - g1.value[y1]) / eps)

print((g4.value[y4] - g1.value[y1]) / eps)

print(g1.grad[w1])

print(g5.grad[w5])

Use the finite difference method to check your implementation of the gradient to the
second child in grad_matmul. Show your implementation of the finite difference method
and the respective output to confirm that the gradient is implemented correctly.

[10 marks]

The following code (albeit verbose) implements the finite difference method to
check the gradient.

eps = 1e-3

g1 = Graph()

w1 = g1.tensor(np.array([1, 2, 3]))

a1 = g1.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y1 = g1.matmul(w1, a1)

g1.run_eval(y1)

g1.run_grad(y1, np.array([1, 0]))

10



g2 = Graph()

w2 = g2.tensor(np.array([1, 2, 3]))

a2 = g2.tensor(np.array([[1, 2], [3, 4], [5, 6]]))

y2 = g2.matmul(w2, a2)

g2.run_eval(y2)

g2.run_grad(y2, np.array([0, 1]))

g3 = Graph()

w3 = g3.tensor(np.array([1, 2, 3]))

a3 = g3.tensor(np.array([[1 + eps, 2], [3, 4], [5, 6]]))

y3 = g3.matmul(w3, a3)

g3.run_eval(y3)

g4 = Graph()

w4 = g4.tensor(np.array([1, 2, 3]))

a4 = g4.tensor(np.array([[1, 2 + eps], [3, 4], [5, 6]]))

y4 = g4.matmul(w4, a4)

g4.run_eval(y4)

g5 = Graph()

w5 = g5.tensor(np.array([1, 2, 3]))

a5 = g5.tensor(np.array([[1, 2], [3 + eps, 4], [5, 6]]))

y5 = g5.matmul(w5, a5)

g5.run_eval(y5)

g6 = Graph()

w6 = g6.tensor(np.array([1, 2, 3]))

a6 = g6.tensor(np.array([[1, 2], [3, 4 + eps], [5, 6]]))

y6 = g6.matmul(w6, a6)

g6.run_eval(y6)

g7 = Graph()

w7 = g7.tensor(np.array([1, 2, 3]))

a7 = g7.tensor(np.array([[1, 2], [3, 4], [5 + eps, 6]]))

y7 = g7.matmul(w7, a7)

g7.run_eval(y7)

g8 = Graph()

w8 = g8.tensor(np.array([1, 2, 3]))

a8 = g8.tensor(np.array([[1, 2], [3, 4], [5, 6 + eps]]))

y8 = g8.matmul(w8, a8)

g8.run_eval(y8)

11



print((g3.value[y3] - g1.value[y1]) / eps)

print((g4.value[y4] - g1.value[y1]) / eps)

print((g5.value[y5] - g1.value[y1]) / eps)

print((g6.value[y6] - g1.value[y1]) / eps)

print((g7.value[y7] - g1.value[y1]) / eps)

print((g8.value[y8] - g1.value[y1]) / eps)

print(g1.grad[a1])

print(g2.grad[a2])

The output of the finite difference method is

[1. 0.]

[0. 1.]

[2. 0.]

[0. 2.]

[3. 0.]

[0. 3.]

which is exactly the same as the gradient from backpropagation

[[1 0]

[2 0]

[3 0]]

[[0 1]

[0 2]

[0 3]]

12


