INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Practice Exam

1. In this question, we will look at the hinge loss for binary classification. Recall that a linear
classifier has the form

(1)

Fz) = {—i—l ifw'z>0

—1 otherwise
The hinge loss for binary classification with linear classifier is defined as
Liinge(, yiw) = max(1 — yuTz,0), @)
where x € R? and y € {+1, —1}.
(a) Show that the hinge loss is an upper bound of the zero-one loss
Loi(z, y;w) = Ly pco- (3)
In other words, show that
Loi(z,y;w) < Luinge(z, y; w) (4)

for all z € R?, y € {4+1, -1}, and w € R%.

First note that Lyjnge > 0 for all w, z, and y. When yw'x >0, Loy = 0 and
Lpinge > 0 = Lo1. When wa:c <0, Loy = 1 and Lyjpge = 1 — waaz >1= Lo.

(b) In the following three steps, we will look at the convexity of hinge loss.
(i) Show that

max(a + b, ¢+ d) < max(a, c) + max(b, d) (5)

for any a,b,c,d € R.
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(i) Let
h(z) = max(f(z), g(x)) (6)

for any two convex functions f and g. Use (b) and show that h is convex in z.

For any 0 < a < 1,

h(az + (1 — a)y) = max(f(az + (1 — a)y), g(az + (1 — a)y))
<max(af(z) + (1 —a)f(y), ag(z) + (1 — a)g(y))

< max(af(z), ag(z)) + max((1 — @) f(y), (1 — @)g(y))

= amax(f(z),g(z)) + (1 — a) max(f(y), 9(y))

= ah(z) + (1 = a)h(y)

By definition, h(z) is convex in x.

(iii) Use (c) and show that the hinge loss Lpinge is convex in w for any z € R? and
y € {+1,-1}.

A constant function is convex, and 1 —yw 'z is an affine function of w, hence,
also convex in w. The hinge loss is a max of two convex functions, hence
convex.

(c) If we happen to find a linear classifier that achieves a hinge loss of 0 on a data set, what
does that tell us about the optimal value of log loss on that particular data set?

Suppose there are n data points in the data set. Since the hinge loss is an upper
bound of the zero-one loss, when the hinge loss is 0, we know that the zero-one
loss must also be 0, The data is hence separable, and there exists a w* such
that y;w* ' z; > 0 for all data points i = 1,...,n. Since yw*'z; > 0, we have
yi(aw*) Tx; > 0 for any a > 0. For log loss L(w) = > i, log(1 + exp(—yw ' z;)),
we can plug in aw* and let a — oo. The term exp(—y;(aw*) " z;) — 0 when
a — oo, and the log loss goes to 0. In other words, when the data is separable, we
can achieve a log loss of 0.

2. In this question, we are going to implement a layer called layer normalization in a neural
network library. Formally, layer normalization is a function
T1—H
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(a) Show that

(b) The forward function is as defined, and is straightforward to implement. The back-

ward function (as part of the backpropagation) is more involved. Given the forward
computation, the backward computation can be worked out using the total derivative

OL _N~OLOfi 0L 0w 0L 0o
or; —~ 0fi0x;  Oudx; Jo Oxj’

(10)

where f; is a shorthand for the i-th coordinate of f(z) and L is the loss function. Note
that 0L/9f; will be given during backpropagation. Our goal is the derive the rest of the
terms.

i. Show that

R (11)

ii. Show that

= —1;—, (12)



where 1. is 1 when c is true and 0 otherwise.
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3. Suppose we have a data set organized as a matrix X where each row vector is a sample point.



We know that the first principal component of X is a vector w; such that

w' XTXw
wy = argmax —————
w w'w

(16)

(a) Show that if wy is the optimal solution for max,, %, then aw; is also an optimal

solution for any a # 0.

Since

(aw)) "X T X (aw1)  a®w{ X" Xw;  w{ X Xw

(awr)"(awr)  aPwjwy  w]w

we conclude that aw; attains the same value as wi; hence optimal.

(b) Suppose we rotate the entire data set by a rotation matrix R, where RR" =1. Show that
if wy is the first principal component of X, then R wy is the first principal component
of the rotated data set X R.

Since

(RTw)"(XR)"(XR)(R"w) w'RRTXTXRR'w w'X"Xw
(RTw) " (RTw) B wlRRTw o wlw

for any w, the variance does not change after rotation. If wy is the optimal solution
when the data matrix is X, then, R'w, is the optimal solution when the data
matrix is X R.




