
INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Practice Exam

1. In this question, we will look at the hinge loss for binary classification. Recall that a linear
classifier has the form

f(x) =

{
+1 if w⊤x ≥ 0

−1 otherwise
(1)

The hinge loss for binary classification with linear classifier is defined as

Lhinge(x, y;w) = max(1− yw⊤x, 0), (2)

where x ∈ Rd and y ∈ {+1,−1}.

(a) Show that the hinge loss is an upper bound of the zero-one loss

L01(x, y;w) = 1yw⊤x<0. (3)

In other words, show that

L01(x, y;w) ≤ Lhinge(x, y;w) (4)

for all x ∈ Rd, y ∈ {+1,−1}, and w ∈ Rd.

First note that Lhinge ≥ 0 for all w, x, and y. When yw⊤x ≥ 0, L01 = 0 and
Lhinge ≥ 0 = L01. When yw⊤x < 0, L01 = 1 and Lhinge = 1− yw⊤x ≥ 1 = L01.

(b) In the following three steps, we will look at the convexity of hinge loss.

(i) Show that

max(a+ b, c+ d) ≤ max(a, c) + max(b, d) (5)

for any a, b, c, d ∈ R.

max(a+ b, c+ d) ≤ max(max(a, c) + b, c+ d)

≤ max(max(a, c) + b,max(a, c) + d)

≤ max(max(a, c) + max(b, d),max(a, c) + d)

≤ max(max(a, c) + max(b, d),max(a, c) + max(b, d))

= max(a, c) + max(b, d)
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(ii) Let

h(x) = max(f(x), g(x)) (6)

for any two convex functions f and g. Use (b) and show that h is convex in x.

For any 0 ≤ α ≤ 1,

h(αx+ (1− α)y) = max(f(αx+ (1− α)y), g(αx+ (1− α)y))

≤ max(αf(x) + (1− α)f(y), αg(x) + (1− α)g(y))

≤ max(αf(x), αg(x)) + max((1− α)f(y), (1− α)g(y))

= αmax(f(x), g(x)) + (1− α)max(f(y), g(y))

= αh(x) + (1− α)h(y)

By definition, h(x) is convex in x.

(iii) Use (c) and show that the hinge loss Lhinge is convex in w for any x ∈ Rd and
y ∈ {+1,−1}.

A constant function is convex, and 1−yw⊤x is an affine function of w, hence,
also convex in w. The hinge loss is a max of two convex functions, hence
convex.

(c) If we happen to find a linear classifier that achieves a hinge loss of 0 on a data set, what
does that tell us about the optimal value of log loss on that particular data set?

Suppose there are n data points in the data set. Since the hinge loss is an upper
bound of the zero-one loss, when the hinge loss is 0, we know that the zero-one
loss must also be 0, The data is hence separable, and there exists a w∗ such
that yiw

∗⊤xi ≥ 0 for all data points i = 1, . . . , n. Since yiw
∗⊤xi ≥ 0, we have

yi(aw
∗)⊤xi ≥ 0 for any a > 0. For log loss L(w) =

∑n
i=1 log(1 + exp(−yiw

⊤xi)),
we can plug in aw∗ and let a → ∞. The term exp(−yi(aw

∗)⊤xi) → 0 when
a → ∞, and the log loss goes to 0. In other words, when the data is separable, we
can achieve a log loss of 0.

2. In this question, we are going to implement a layer called layer normalization in a neural
network library. Formally, layer normalization is a function

f(x) =


x1−µ
σ

x2−µ
σ
...

xd−µ
σ

 (7)
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where

µ =
1

d

d∑
i=1

xi σ2 =
1

d

d∑
i=1

(xi − µ)2 (8)

(a) Show that

σ2 =
1

d

d∑
i=1

x2i − µ2. (9)

σ2 =
1

d

d∑
i=1

(xi − µ)2 =
1

d

d∑
i=1

(x2i − 2µxi + µ2)

=
1

d

d∑
i=1

x2i − 2µ
1

d

d∑
i=1

xi +
1

d

d∑
i=1

µ2

=
1

d

d∑
i=1

x2i − 2µ2 + µ2 =
1

d

d∑
i=1

x2i − µ2

(b) The forward function is as defined, and is straightforward to implement. The back-
ward function (as part of the backpropagation) is more involved. Given the forward
computation, the backward computation can be worked out using the total derivative

∂L

∂xj
=

d∑
i=1

∂L

∂fi

∂fi
∂xj

+
∂L

∂µ

∂µ

∂xj
+

∂L

∂σ

∂σ

∂xj
, (10)

where fi is a shorthand for the i-th coordinate of f(x) and L is the loss function. Note
that ∂L/∂fi will be given during backpropagation. Our goal is the derive the rest of the
terms.

i. Show that

∂µ

∂xj
=

1

d
. (11)

∂µ

∂xj
=

1

d

d∑
i=1

∂

∂xj
xi =

1

d

d∑
i=1

1i=j =
1

d

ii. Show that

∂fi
∂xj

=
1

σ
1i=j , (12)
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where 1c is 1 when c is true and 0 otherwise.

∂fi
∂xj

=
∂

∂xj

xi − µ

σ
=
1i=j − 0

σ
=

1

σ
1i=j

iii. Show that

∂σ

∂xj
=

1

σd
xj (13)

∂σ

∂xj
=

1

2

(
1

d

d∑
i=1

x2i − µ2

)−1/2(
2

d
xj

)
=

1

2

1

σ

(
2

d
xj

)
=

1

σd
xj

iv. Show that

∂L

∂σ
=

d∑
i=1

∂L

∂fi

(
−xi − µ

σ2

)
. (14)

∂L

∂σ
=

d∑
i=1

∂L

∂fi

∂fi
∂σ

=
d∑

i=1

∂L

∂fi
(xi − µ)

−1

σ2
=

d∑
i=1

∂L

∂fi

(
−xi − µ

σ2

)

v. Show that

∂L

∂µ
=

d∑
i=1

∂L

∂fi

(
−1

σ

)
+

∂L

∂σ

(
−µ

σ

)
. (15)

∂L

∂µ
=

d∑
i=1

∂L

∂fi

∂fi
∂µ

+
∂L

∂σ

∂σ

∂µ
=

d∑
i=1

∂L

∂fi

(
0− 1

σ

)
+

∂L

∂σ

1

2

(
1

d

d∑
i=1

xdi − µ2

)−1/2

(−2µ)

=
d∑

i=1

∂L

∂fi

(
−1

σ

)
+

∂L

∂σ

1

2σ
(−2µ) =

d∑
i=1

∂L

∂fi

(
−1

σ

)
+

∂L

∂σ

(
−µ

σ

)

3. Suppose we have a data set organized as a matrix X where each row vector is a sample point.
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We know that the first principal component of X is a vector w1 such that

w1 = argmax
w

w⊤X⊤Xw

w⊤w
(16)

(a) Show that if w1 is the optimal solution for maxw
w⊤X⊤Xw

w⊤w
, then aw1 is also an optimal

solution for any a ̸= 0.

Since

(aw1)
⊤X⊤X(aw1)

(aw1)⊤(aw1)
=

a2w⊤
1 X

⊤Xw1

a2w⊤
1 w1

=
w⊤
1 X

⊤Xw1

w⊤
1 w1

we conclude that aw1 attains the same value as w1; hence optimal.

(b) Suppose we rotate the entire data set by a rotation matrix R, where RR⊤ = I. Show that
if w1 is the first principal component of X, then R⊤w1 is the first principal component
of the rotated data set XR.

Since

(R⊤w)⊤(XR)⊤(XR)(R⊤w)

(R⊤w)⊤(R⊤w)
=

w⊤RR⊤X⊤XRR⊤w

w⊤RR⊤w
=

w⊤X⊤Xw

w⊤w

for any w, the variance does not change after rotation. If w1 is the optimal solution
when the data matrix is X, then, R⊤w1 is the optimal solution when the data
matrix is XR.
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