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1. For this question, we will look at properties of a two-layer neural network with
rectified linear units (ReLUs).

(a) A multilayer perceptron typically uses the sigmoid function

σ(x) =
1

1 + exp(−x)
(1)

as the activation function. Show that the sigmoid function is not convex. [4 marks ]

(b) A rectified linear unit (ReLU) is an activation function of the form

ReLU(x) =


max(0, x1)
max(0, x2)

...
max(0, xd)

 . (2)

Show that ReLU is convex. [4 marks ]

(c) For n functions f1, . . . , fn, in which fi ∈ Rd → R, a non-negative weighted
sum of them is a function g, such that

g(x) = λ1f1(x) + λ2f2(x) + · · ·+ λnfn(x), (3)

for all x ∈ Rd, where λ1, . . . , λn ≥ 0. Show that for n convex functions
f1, . . . , fn, in which fi ∈ Rd → R for i = 1, . . . , n, their non-negative
weighted sum is convex. [4 marks ]

(d) Consider a two-layer neural network of the form

f(x) = w⊤ReLU(V x). (4)

This neural network is parameterized by w and V .

i. Show that regardless of what w is, this network is convex in w. [2 marks ]

ii. Show that when w is element-wise non-negative, i.e., w1, . . . , wd ≥ 0,
this network is convex in V . [6 marks ]

2. Consider the following 2D data set that containts two points x1 and x2 (labeled ).

x1

x2

(a) If the centroids do not change after further k-means updates, we say that
the centroids have reached a local optimum.

Suppose we initialize k-means with the two centroids c1 and c2 (labeled
in the figure below), one of which is exactly at the center of the two points
while the other is significantly further away from both points.

[QUESTION CONTINUES ON NEXT PAGE]
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[QUESTION CONTINUES FROM PREVIOUS PAGE]

x1

x2

c1
c2

Show that this initialization is a local optimum of k-means. [4 marks ]

(b) Suppose we initialize k-means with the two centroids c1 and c2 (labeled
in the figure below).

x1

x2

c1 c2

Where would the centroids be if we run k-means until it reaches a local
optimum? [4 marks ]

(c) Based on the above results, which local optimum has a better k-means
objective? Can we conclude that all local optima of the k-means objective
are the global optimum? [3 marks ]

(d) When training a Gaussian mixture model (GMM) with expectation maxi-
mization (EM), if the mean vectors do not change after further updates, we
say that EM have reached a local optimum.

Suppose we initialize a two-component GMM with two mean vectors µ1 and
µ2 (labeled in the following figure), one of which is exactly at the center of
the two points while the other is significantly further away from both points.

x1

x2

µ1

µ2

Show that this initialization is not a local optimum of EM. [4 marks ]

3. In this question, we will look at the connection between linear regression and the
Gaussian distribution.

Recall that a 1D Gaussian distribution N (µ, σ2) has a density function

p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
. (5)

In linear regression, we assume that y ∼ N (w⊤x, 1), where w is the weight vector.
For simplicity, there is no bias term.

[QUESTION CONTINUES ON NEXT PAGE]
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[QUESTION CONTINUES FROM PREVIOUS PAGE]

(a) Given an i.i.d. training set (x1, y1), . . . , (xn, yn), each of which follows yi ∼
N (w⊤xi, 1), show that the log-likelihood is

log
n∏

i=1

p(yi|xi) = −n

2
log(2π)− 1

2

n∑
i=1

(yi − w⊤xi)
2. (6)

[4 marks ]
(b) Given a training set (x1, y1), . . . , (xn, yn), discuss how maximizing the log-

likelihood is equivalent to solving the mean-square error. [2 marks ]

(c) Consider a data set (x1, y1), . . . , (xn, yn), where xi = x0. In other words,
all samples in the data set share the same input while having potentially
different output.

i. Show that

∇w log
n∏

i=1

p(yi|xi) =

(
n∑

i=1

yi − nw⊤x0

)
x0. (7)

[5 marks ]
ii. Show that the optimal solution in this case is any w that satiesfies

w⊤x0 =
1

n

n∑
i=1

yi. (8)

[4 marks ]


