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The logic of Bunched Implication

• A substructural logic with natural resource interpretation,
introduced by O’Hearn and Pym ’99.

• Additive connectives (>, ⊥, ∧, ∨,→) along with
multiplicative connectives (>∗, ∗, −∗).

• Various semantic models: cartesian doubly closed category,
preordered commutative monoid, etc.

• The additives are generally interpreted in the intuitionistic
way.
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Boolean BI

• Classical additives: Boolean BI (BBI).

• A typical model: partially defined commutative monoid.

• Most famous application of BBI: Separation Logic.
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The semantics

• Commutative monoid. ε and ◦.
• Additive connectives (>, ¬, ∧) are interpreted classically.
• Multiplicative connectives:

m |= >∗ ⇔ m = ε

m |= ϕ1 ∗ ϕ2 ⇔ ∃m1,m2. m = m1 ◦m2 s.t.
m1 |= ϕ1 and m2 |= ϕ2

m |= ϕ1−∗ϕ2 ⇔ ∀m1. m1 |= ϕ1.

implies m ◦m1 |= ϕ2
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Some Notations

• ϕ1−∗
∃ϕ2 = ¬(ϕ1−∗¬ϕ2). Then m |= ϕ1−∗

∃ϕ2 iff ∃m1. m1 |= ϕ1

and m1 ◦m |= ϕ2.

• We use ρ(ϕ) to denote the set on which ϕ holds.

• ρ(ϕ1 ∗ ϕ2) = ρ(ϕ1) ◦ ρ(ϕ2)
ρ(ϕ1−∗

∃ϕ2) = ρ(ϕ2) : ρ(ϕ1)
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The model checking problem

• To decide whether m |= ϕ in a given model.

• Some related problems have been resolved:
• The validity and model checking problems of separation

Logic are answered by Calcagno, Yang, O’hearn ’01.
• The validity of BI is decidable using Resource Tableaux.

(Galmiche, Méry, Pym ’02)
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Our Results

• Generally, the model checking problem is undecidable,
even in finitely generated free monoid, somehow the
simplest model.

• Generator propositions, analogue of “x 7→ −,−”in
Separation logic.

• In this setting, we show that for infinitely related monoid,
the model checking problem is undecidable, and for finitely
related monoid, decidable.
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Semigroup Presentation

• To describe monoids.

• A monoid M is characterized by its generator set X , and
generation relation R. (X ;R) is called a presentation of M.

• R = ∅ : Free monoid X∗.
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Semigroup Presentation (cont.)

• Finitely generated (f.g.) monoid and finitely related (f.r.)
monoid.

• In the following, we only consider commutative monoid.

• For a f.g. monoid M = (X ;R), every element m in M is a
congruence class in X∗, denoted as [m].

• A f.g. free monoid X∗ is isomorphic to Nk .

Theorem (Redei’s theorem)
Every finitely generated commutative monoid is finitely related.
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Partially defined monoid

• Partial monoid captures some essential property. Like in
separation logic, not every two heaps are composable.

• Simulate partial monoid by total monoid:
• m1 ◦m2 = π if m1 ◦m2 is undefined.
• π ◦m = π

• For simplicity, we only consider total monoid.
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The Hilbert 10th Problem

Negative Solution of H10 (Matiyasevich ’70)
Given a polynomial of several variables P(x1 . . . xk ) with integer
coefficients, it is undecidable whether there is a vector
(x1 . . . xk ) ∈ N

k that P(x1 . . . xk ) = 0.
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Undecidability

• Recursively defined propositions lead to undecidability.

• In Nk , for any given polynomial P(x1 . . . xm), define

ρ(p) = { (e1, . . . , em) | P(e1 . . . em) = 0 }

Check ε |= >−∗∃p ⇔ decide whether the equation
P(x1 . . . xm) = 0 has solutions.
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Generator propositions

• The resource model is often discrete.
• In separation logic, formulae are constructed from atomic

assertions like “x 7→ −,−”.

• Given a monoid M = (X ;R), define px such that
ρ(px) = { x | x ∈ X }. We call these px “generator
propositions”.
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Undecidability

• Even restricted to generator propositions, the model
checking problem in infinitely related monoid is
undecidable.

• In comparison, the model checking problem for
quantifier-free assertion language of separation logic is
decidable. The model is a partially defined infinitely related
monoid.
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Minsky Machine

• Deterministic computation model. A series of commands
and several counters.

• Two types of commands:
1. Increase a counter, then jump.
2. If a counter is zero, then do nothing and jump, else decrease

and jump.

• Snapshot (i,m, n): current command line i, the values of
the two counters m, n.
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Proof Outline

• Reduce the halting problem of Minsky Machine to the
model checking problem.

• Construct a monoid such that Minsky Machine halts iff a
special element satisfies a certain formula.
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Generator set

• The generator set contains four parts:
• Q = {qi} : the command lines;
• S = {si,λk } : positions in a command sequence;
• A1 = {a1,i} and A2 = {a2,j} : the status of the two counters;
• halt .

• λk is a sequence like 2, 3, 4′1.

• qi ◦ a1,m ◦ a2,n corresponds to the snapshot (i,m, n).
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Generation relation

• Every command corresponds to a generation relation
pattern.

• The both sides of a relation are of the form
sj,λk ◦ qi ◦ a1,m ◦ a2,n, except those containing halt .

• Execute jth command in λk in the snapshot (i, n,m), leads
to sj+1,λk multiplies appropriate element.
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Simulation

• Every element whose congruence class is non-trivial is of
the form sj,λk ◦ qi ◦ a1,n ◦ a2,m.

• The execution of Minsky machine can be viewed as
applying appropriate generation relation from
s1,λk ◦ q1 ◦ a1,0 ◦ a2,0.

• If and only if the Minsky machine halts, there exists a λk

such that sk ,λk ◦ halt ∈ [s1,λk ◦ q1 ◦ a1,0 ◦ a2,0].
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Reduction

• Define φas = (¬(¬>∗ ∗ ¬>∗)) ∧ (
∧

i ¬pqi ) ∧ (¬phalt).
Thus ρ(ϕas) = S ∪ A1 ∪ A2.

• Define φ = φas−∗
∃(phalt ∗ φas).

• Minsky machine halts. ⇔ q1 ◦ a1,0 ◦ a2,0 |= ϕ.
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Rational sets

Definition (Rational Sets)
Let M be a monoid (not necessarily be commutative). The class
of rational subsets of M is the least class E of subsets of M
satisfying the following conditions:

1. The empty set is in E ;

2. Each single element set is in E ;

3. If X ,Y ∈ E then X ∪ Y ∈ E ;

4. If X ,Y ∈ E then X ◦ Y ∈ E ;

5. If X ∈ E then X∗ ∈ E .
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Semi-linear sets

Definition (Semi-linear Sets)
A subset X = {a} ◦ B∗ with a ∈ M, B ⊆ M, and B finite, is called
linear. A finite union of linear sets is called semi-linear.

• Close representation of a semi-linear set :a1, . . . , ak and
B1, . . . ,Bk .



Introduction Undecidability Results Decidability Results Additional Remarks

Some facts

• For a f.g. commutative monoid M, A subset X ⊆ M is
rational iff it is semi-linear. (Eilenberg and Schutzenberger
’69)

• If X and Y are rational subsets of a commutative monoid
M, then their intersection X ∩ Y , difference Y\X (hence
X = M\X) and Y : X are rational. (E, S ’69)

Recall that ρ(ϕ1 ∗ ϕ2) = ρ(ϕ1) ◦ ρ(ϕ2), ρ(ϕ1−∗
∃ϕ2) = ρ(ϕ2) : ρ(ϕ1).

By induction, it follows that all ρ(ϕ) are rational sets, and hence
semi-linear sets.
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Compute semi-linear sets

• Indeed, all [m] are also semi-linear sets.

• Koppenhagen and Mayr have developed an algorithm to
compute the closed representation of a congruence class
within exponential space.
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Back to the model checking problem

• Consider the canonical surjective morphism α : X∗ 7→ M,
α−1(m) = [m]. We have:

m ∈ ρ(ϕ) ⇔ [m] ⊆ α−1(ρ(ϕ))
⇔ [m] ∩ α−1(ρ(ϕ)) , ∅.

• We already can compute the closed representation of [m].
In the following we show how to compute that of α−1(ρ(ϕ)).

• In fact, we compute it inductively, and hence the following
lemma is needed.
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From connectives to set operations

Lemma
For a f.g. monoid M = (X ;R) and BI formulae ϕ, ϕ1, and ϕ2, the
following holds:

• α−1(ρ(px)) = [x]

• α−1(ρ(>)) = X∗

• α−1(ρ(¬ϕ)) = α−1(ρ(ϕ))

• α−1(ρ(ϕ1 ∧ ϕ2)) = α−1(ρ(ϕ1)) ∩ α
−1(ρ(ϕ2))

• α−1(ρ(>∗)) = [ε]

• α−1(ρ(ϕ1 ∗ ϕ2)) = α−1(ρ(ϕ1)) ◦ α
−1(ρ(ϕ2))

• α−1(ρ(ϕ1−∗
∃ϕ2)) = α−1(ρ(ϕ2)) : α

−1(ρ(ϕ1))
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Compute semi-linear sets

• Since α−1(ρ(px)) = [x], Koppenhagen-Mayr algorithm also
builds up our induction basis. What we left to do is to
compute the closed representations of X , X ∩ Y , X ◦ Y , and
X : Y .

• Since X∗ � Nk , we consider these semi-linear sets in Nk .
• For two semi-linear sets X =

⋃
i(ai + B∗i ) and

Y =
⋃

j(aj + B∗j ), it is easy to see:

X + Y =
⋃

i,j((ai + B∗i ) + (aj + B∗j ))
X ∩ Y =

⋃
i,j((ai + B∗i ) ∩ (aj + B∗j ))

Y − X =
⋃

i,j((aj + B∗j ) − (ai + B∗i ))
X =

⋂
i(ai + B∗i )

Hence we only need to deal with linear sets.
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The case of X + Y and X ∩ Y

X + Y For two linear sets a + B∗ and a′ + B′∗, it is easy to see their
summation is:

(a + a′) + (B ∪ B′)∗

X ∩ Y For two linear sets a + B∗, a′ + B′∗ ⊆ Nk . Assume
B = {b1, . . . , bn} and B′ = {b ′1, . . . , b

′
n′}, then every element

in X ∩Y corresponds to two vectors {xi}, {x′i }, which satisfies
the following system of linear Diophantine equations:

n∑
i=1

bixi −

n′∑
j=1

b ′j x
′
j = a′ − a
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Solving the system of linear Diophantine equations

• The solution of a system of linear Diophantine equations, in
fact, constitutes a semi-linear set.

• There are many algorithms to solve this problem.
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The case of Y − X

For two linear sets X = a + B∗ and Y = a′ + B′∗, assume
B = {b1, . . . , bn} and B′ = {b ′1, . . . , b

′
n′}. It is easy to see that

Y − X = {(a′ − a) +
n′∑

i=1

(t ′i b ′i ) −
n∑

j=1

(tjbj)|t ′i , tj ∈ N} ∩ N
k

Then it is similar to the X ∩ Y case. We can get the
representation after solving the system of linear Diophantine
equations:

(a′ − a) +
n′∑

i=1

(t ′i b ′i ) −
n∑

j=1

(tjbj) =
k∑

i=1

xiei

in which t ′i , ti, xi are variables.
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The case of X

• Assume X = a + B∗. Divide Nk into a series of semi-linear
sets {aj + B∗j + B∗}.

• X must lie in some of these sets. It is easy to express the
subtraction.
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Check m |= ϕ

Procedure:

1. Generate the representation of [m] and α−1(ρ(ϕ)).

2. Decide whether them overlap.



Introduction Undecidability Results Decidability Results Additional Remarks

Outline

Introduction

Undecidability Results

Decidability Results
Finitely Generated Monoid
Finitely Related Monoid

Additional Remarks



Introduction Undecidability Results Decidability Results Additional Remarks

Finitely Related Monoid

• For infinitely generated finitely related monoid, the model
checking problem can be reduced to the finitely generated
case.

• There are only finitely many generators that will be
involved in the process of model checking.

• Map all the generator of no interest to one of them. The
truth of the satisfaction relation will not change.

• The model checking problem for all finitely related monoid
is decidable.
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Automata theory

• We may add a new connective corresponds to X∗. Thus
every rational set has the the form of ρ(ϕ).

• Kleene theorem : In a free commutative monoid, a set is
rational iff it is recognizable by finite automata.

• It is shown that in the case of finitely generated
commutative monoid, a monoid is kleene iff it is rational.
(Rupert ’91)
⇒ The set ρ(ϕ) is recognizable by finite automata, iff the
monoid is rational, .
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Model checking BI and CBI

BI Preorder.
Chain condition.

CBI Similar to inverse monoid or cancellative monoid.
Weaker decidable condition.
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Thanks!
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