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Edge Coloring

Definition
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Deciding Edge Colorings

Theorem (Vizing's Theorem)
Edge coloring using at most A(G) + 1 colors exists in simple graphs. J
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Deciding Edge Colorings

Theorem (Vizing's Theorem) J

Edge coloring using at most A(G) + 1 colors exists in simple graphs.

Obvious lower bound is A(G).

Given G, deciding if A(G) colors suffice is NP-complete over
@ 3-regular graphs [Holyer81],
@ k-regular graphsfork > 3 [Leven, Galil 831].
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Deciding Edge Colorings

Theorem (Vizing's Theorem) J

Edge coloring using at most A(G) + 1 colors exists in simple graphs.

Obvious lower bound is A(G).

Given G, deciding if A(G) colors suffice is NP-complete over
@ 3-regular graphs [Holyer81],
@ k-regular graphsfork > 3 [Leven, Galil 831].

Optimization version for multi-graphs.
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Counting Edge Colorings

PROBLEM: #K-EDGECOLORING.
INPUT: A graphC.

OuTpuT: Number of edge colorings of G using at most k colors.
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Counting Edge Colorings

PROBLEM: #K-EDGECOLORING.
INPUT: A graphC.
OuTpuT: Number of edge colorings of G using at most k colors.

Theorem
#K-EDGECOLORING is #P-hard over r-regular planar graphsforallk > r > 3. J

No edge coloringsif k < r.
(There is no regular planar graph of degree larger than or equal to 6 by counting

the average degree of a triangulation. Our result is actually for multi-graphs when
r>75)
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Counting Edge Colorings as a Holant Problem

Put the local constraint function AD; on each node.

1 ifx,y,z € [k]aredistinct

AD; (Xaya Z) = {

0 otherwise.
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w(o) = H AD; (0 lg)) =1.

veV(G)
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Counting Edge Colorings as a Holant Problem

Put the local constraint function AD; on each node.

1 ifx,y,z € [k]aredistinct

ADB(vaa Z) = {

0 otherwise.

@ Aconfiguration is a proper coloring if and only if it satisfies all constraints, that s,

w(o) = H AD; (0 lg)) =1.

veV(G)

@ Tocompute #k-EDGECOLORING, we sum over all configurations:

Holant(G; AD;) = Z w(ao).
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Holant Problems

In this talk, we consider all local constraint functions

a ifx=y=z (all equal)
f(x,y,z) = < b otherwise
¢ ifx#£y#z#x (all distinct).

Denote fby (a, b, c). Then AD; = (0, 0,1).
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Holant Problems

In this talk, we consider all local constraint functions

a ifx=y=z (all equal)
f(x,y,z) = < b otherwise
¢ ifx#£y#z#x (all distinct).

Denote fby (a, b, c). Then AD; = (0, 0,1).

The Holant problem is to compute

Holant.(G;f) = Z H f o lgw)

0:E(G)—[k] veV(GC

aka: tensor network contraction, factor graphs, ...
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Main Theorem

Theorem

Forany domainsize k > 3andanya, b, c € C, the problem of computing

Holant, (—; (a, b, c)) is either #P-hard or in polynomial time, even when the input
is restricted to planar graphs.
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Main Theorem

Theorem

Forany domainsize k > 3andanya, b, c € C, the problem of computing

Holant, (—; (a, b, c)) is either #P-hard or in polynomial time, even when the input
is restricted to planar graphs.

o #Kk-EDGECOLORING in 3-regular graphs is the special case (a, b, ¢) = (0,0,1),

and itis #P-hard.
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Tractable Problems

Tractable problems are:
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Tractable Problems

Tractable problems are:
@ Trivial problems: (0,0, 0), (1,1,1).
@ Uptoaholographictransformation, it is one of the following:

» The support of each constraints contains at most kK many pair-wise disjoint
assignments, such as equalities.
» Solvable by Gaussian sums.
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@ Uptoaholographictransformation, it is one of the following:

» The support of each constraints contains at most kK many pair-wise disjoint
assignments, such as equalities.
» Solvable by Gaussian sums.

Some tractable cases are not so obvious, for example,
k = 3and Holant;(—; (-5, —2,4));
k = 4 and Holanty(—; (—3 — 4i,1,—1 + 2i)).
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Tractable Problems

Tractable problems are:
@ Trivial problems: (0,0, 0), (1,1,1).
@ Uptoaholographictransformation, it is one of the following:

» The support of each constraints contains at most kK many pair-wise disjoint
assignments, such as equalities.
» Solvable by Gaussian sums.

Some tractable cases are not so obvious, for example,
k = 3and Holant;(—; (-5, —2,4));

k = 4 and Holanty(—; (—3 — 4i,1,—1 + 2i)).

We have a simple procedure to verify.
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Proof of #3-EDGECOLORING on 3-regular graphs

The hardness of Holant; (—; ADs) is shown by the following reduction chain:
#P <rHolant;(—; (2,1,0,1,0))
<7 Holant;(—; (0,1,1,0,0))
<7 Holant;(—; AD3)

(a,b,c,d, e) denotes an arity-4 function f

ifw=x=y=z w z

S

fw=x#y=z
fiXy)=<c ifw=y#x=z
d fw=z#x=y

e otherwise.
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Polynomial Interpolation Step: Recursive Construction

Holant;(G; (2,1,0,1,0)) <7 Holant3(G;; (0,1,1,0,0))

5+1

Vertices are assigned (0,1, 1, 0, 0). Inputs are ordered anti-clockwise.
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Polynomial Interpolation Step: Recursive Construction

Holant;(G; (2,1,0,1,0)) <7 Holant3(G;; (0,1,1,0,0))

Vertices are assigned (0,1, 1,0, 0). Inputs are ordered anti-clockwise.
Let f; be the function corresponding to Ns. Then f; = M*f,, where

=

I
o oo —=o0o
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o - 0o0o
oo - 0o
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a

Sh

I
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Note thatf; = (0,1,1,0,0).
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~', where

1T —2 0 0 O 2 0 0 O O
1T 1 0 0 O 6 -1 0 0 O
pP=1j0 0 1 1 O and A=|0 0 1 0 O
0o 0 1 —1 0 6 0 0 —1 0
0O 0 O 0 1 0 0 0 0 1
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~', where

1 -2 0 0 0 2 0 0 0 0
11 0 0 0 0 -1 0 0 O
P=|0 0 1 1 0 and A=[0 0 1 0 O
0 0 1 —10 0 0 0 -1 0
0 0 0 0 1 0 0 0 0 1
Letx = 2%. Then
x 000 0 a2
01000 =1
f,s =PA*P'fo=P|0 0 1 0 O|P 'o=| 0
00010 1
0 00 0 1 0
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~', where

1 -2 0 0 0 2 0 0 0 0
11 0 0 0 0 -1 0 0 O
P=|0 0 1 1 0 and A=[0 0 1 0 O
0 0 1 —10 0 0 0 -1 0
0 0 0 0 1 0 0 0 0 1
Letx = 2%. Then
x 000 0 a2
0O 1000 =1
f(x) =frs =PA*P'fo=P|0 0 1 0 O|P 'fo=|0
00010 1
0 00 0 1 0

Note f(4) = (2,1,0,1,0).
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Polynomial Interpolation Step: The Interpolation

Holant;(—; (2,1,0,1,0)) <7 Holant3(—; (0,1,1,0,0))
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Polynomial Interpolation Step: The Interpolation

Holants(—; (2,1,0,1,0)) = Holants(—; f(4))
<7 Holantz(—; f(x))
<7 Holant;(—;(0,1,1,0,0))
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Polynomial Interpolation Step: The Interpolation

Holants(—; (2,1,0,1,0)) = Holants(—; f(4))
<7 Holantz(—; f(x))
<7 Holant;(—;(0,1,1,0,0))

If G has n vertices, then
p(G, x) = Holants(G; f(x)) € ZI[x]

has degree n.
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If G has n vertices, then
p(G, x) = Holants(G; f(x)) € ZI[x]

has degree n.

Let G, be the graph obtained by replacing every vertex in G with Ns. Then
Holants(Gys; (0,1,1,0,0)) = p(G, 2%).
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Polynomial Interpolation Step: The Interpolation

Holants(—; (2,1,0,1,0)) = Holants(—; f(4))
<7 Holantz(—; f(x))
<7 Holant;(—;(0,1,1,0,0))

If G has n vertices, then
p(G, x) = Holants(G; f(x)) € ZI[x]

has degree n.

Let G, be the graph obtained by replacing every vertex in G with Ns. Then
Holants(Gys; (0,1,1,0,0)) = p(G, 2%).

Using oracle for Holant; (—; (0, 1,1, 0, 0)), evaluate p(G, x) at n + 1distinct points
x=2%foro <s< n.

By polynomial interpolation, efficiently compute the coefficients of p(G, x).
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More on Polynomial Interpolations

@ We may not be able to interpolate all vectors, but a subspace of them.

@ #3-EDGECOLORING has a fixed domain size and a fixed function. For the

dichotomy, we need to deal with multivariate polynomial interpolations.

@ The key to the proof is to show certain linear systems are non-degenerate.
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Interpolation Lemma

Lemma

Suppose there is a recurrence construction implemented by &. Lets € C" be the
initial vectorand M € C"*" be the recurrence matrix. If sand M satisfy the
following conditions:

@ Misdiagonalizable with n linearly independent eigenvectors;

@ sisnotorthogonal to { of these linearly independent row eigenvectors of M
with eigenvalues A, . .., Ag;

@ )\, ..., Agsatisfy the lattice condition;
then
Holant, (—; F U{f}) <t Holant(—; JF)

for any signature f thatis orthogonal to the n — { of these linearly independent
eigenvectors of M to which s is also orthogonal.
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Lattice Condition

Definition
We say that Aj, Az, . .., A € C — {0} satisfy the lattice condition if
¢
vx € Z' —{o} with Zx; =0,
i=1
we have

[4

TTx #n

i=1
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Lattice Condition

Definition
We say that Aj, Az, . .., A € C — {0} satisfy the lattice condition if

¢
vx € Z' —{o} with Zx,- =0,
i=1

we have
¢

TTx #n

i=1

@ Forourapplication, A;'s are eigenvalues, that is, roots to the characteristic
polynomial of the recurrence matrix.
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Lattice Condition

Definition
We say that Aj, Az, . .., A € C — {0} satisfy the lattice condition if

¢
vx € Z' —{o} with Zx,- =0,
i=1

we have
¢

[T~ #0

i=1

@ Forourapplication, A;'s are eigenvalues, that is, roots to the characteristic
polynomial of the recurrence matrix.

@ Our characteristic polynomialis (x — k3)*p(x, k) =

(x — 3)* (xsf K2k — 1) — kK2 (K2 — 2k +3)% + (k —2) (k — 1) Kx + (K71)3K15)A
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Some Galois Theory

Lemma
Letq(x) € Qlx] bea polynomial of degreen > 2. If
@ the Galois groupofgoverQis S, orA, and
@ theroots of g do not all have the same complex norm,

then the roots of g satisfy the lattice condition.
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Some Galois Theory

Lemma
Letq(x) € Qlx] bea polynomial of degreen > 2. If
@ the Galois groupofgoverQis S, orA, and
@ theroots of g do not all have the same complex norm,

then the roots of g satisfy the lattice condition.

Lemma

Forany integer k > 3, if p(x, k) isirreducible in Q[x], then the roots of p(x, k) satisfy the

lattice condition.

Proof.

By discriminant, p(x, k) has 3 distinct real roots and 2 complex roots. Three distinct real
roots do not have the same norm. An irreducible polynomial of prime degree n with
exactly two nonreal roots has S, as its Galois group over Q.

O

vy
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Irreducible?

So we would like to show for any integer k > 3, p(x, ) is irreducible in Q[x].
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So we would like to show for any integer k > 3, p(x, ) is irreducible in Q[x].
Seems quite difficult to show.

When there is a linear factor of p(x, k), the Galois argument fails.

There are 5 pairs of integer solutions to p(x, k),

(1,—2),(0,-1),(-1,0),(1,1), (3, 2).
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Irreducible?

So we would like to show for any integer k > 3, p(x, ) is irreducible in Q[x].

Seems quite difficult to show.

When there is a linear factor of p(x, k), the Galois argument fails.

There are 5 pairs of integer solutions to p(x, k),
(1,—2),(0,—1),(—1,0),(1,1),(3,2).

We show that these are the only integer solutions.
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Siegel's Theorem

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial

f(x,y) € Z[x, y] has only finitely many integer solutions.
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Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial

f(x,y) € Z[x, y] has only finitely many integer solutions.

@ Our polynomial has genus 3, satisfies the condition.

Heng Guo (CS, UW-Madison) Edge Colorings

China Theory Week 2014 18/25



Siegel's Theorem

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial

f(x,y) € Z[x, y] has only finitely many integer solutions.

@ Our polynomial has genus 3, satisfies the condition.

@ Bad news is that Siegel's theorem is not effective.

Heng Guo (CS, UW-Madison) Edge Colorings

China Theory Week 2014 18/25



Siegel's Theorem

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial

f(x,y) € Z[x, y] has only finitely many integer solutions.

@ Our polynomial has genus 3, satisfies the condition.
@ Bad news is that Siegel's theorem is not effective.

@ There are several effective versions, but the best bound we can find (applied

to our polynomial) is 1029990
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Siegel's Theorem

Theorem (Siegel's Theorem)

Any smooth algebraic curve of genus g > 0 defined by a polynomial

f(x,y) € Z[x, y] has only finitely many integer solutions.

@ Our polynomial has genus 3, satisfies the condition.
@ Bad news is that Siegel's theorem is not effective.

@ There are several effective versions, but the best bound we can find (applied

to our polynomial) is 1029990

@ Integer solutions could be enormous.
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x> —61y* =1
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x> —61y* =1

Smallest solution:
(1766319049, 226153980)
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x> —6ly" =1
Smallest solution:

(1766319049, 226153980)

x> —991y* =1
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x> —61y* =1

Smallest solution:
(1766319049, 226153980)

x> —991y* =1

Smallest solution:

(379516400906811930638014896080,
12055735790331359447442538767)
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x> —61y* =1

Smallest solution:
(1766319049, 226153980)

x> —991y* =1

Smallest solution:

(379516400906811930638014896080,
12055735790331359447442538767)

Next solution:

(288065397114519999215772221121510725946342952839946398732799,
9150698914859994783783151874415159820056535806397752666720)
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Puiseux Series

Lety = k + 1. This simplifies our polynomial:

px,y) =x — (2y+ 1) — (Y +2)x* + (y — 1)yx + y°.

Puiseux series converges to the actual roots for polynomials in two variables.

Puiseux series for p(x, y) are

nx)=x4+2x T+ 2x 2 —6x t —18x 7 +0(x ),

1 65 1471

Vax) = X7 — x4 X2 — —x V2 T - T2 x4 0(x ),
8 128 1024
1 65 1471

ys(x) = =7 — ox— ngz + —128x71/Z —x '+ —1024x’3/Z —x 24 0(x?).
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Runge's method

We want to pick polynomials g;(x, y) so that when we substitute y;(x) in gi(x, y), itis o(1).
Then as x goes large, gi(x, y) cannot be an integer.
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Runge's method

We want to pick polynomials g;(x, y) so that when we substitute y;(x) in gi(x, y), itis o(1).
Then as x goes large, gi(x, y) cannot be an integer.

) =x*+2x " F2x 2 —6xF —18x > 4+ O(x°).

Itis easy to see that g, (x,y) = y — x*is good.
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Runge's method

We want to pick polynomials g;(x, y) so that when we substitute y;(x) in gi(x, y), itis o(1).
Then as x goes large, gi(x, y) cannot be an integer.

) =x*+2x " F2x 2 —6xF —18x > 4+ O(x°).
Itis easy to see that g, (x,y) = y — x*is good.

1 65 1471

yax) = X7 — x4+ X2 —xTV2 T - 32 x2 4 o(x 2,
2" 8 128 1024
1 65 1471

Y3 (X) = _X3/2 —X §X1/2 + @Xivz — Xi-I + @Xﬁ3/z — Xi2 + O(X*S/Z).
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Runge's method

We want to pick polynomials g;(x, y) so that when we substitute y;(
Then as x goes large, gi(x, y) cannot be an integer.

) =xt+2x "+ 2x 2 —6x Tt —18x " 4+ 0(x~

Itis easy to see that g, (x,y) = y — x*is good.

Tgra_ 8 app o 1471
2" 8 128 1024
Ty 85 e a7 sy
8 128 1024
We pick gy (x,y) = L2500 = 2y g,

92 (%,2(x)) :—@(/\[)
92 (x,y3(x)) =© (1//x) .

Heng Guo (CS, UW-Madison) Edge Colorings

32

x)ingi(x,y),itiso(1).

6)-

X 24+ 0(x7%?),

—x 24+ 0(x*?).

China Theory Week 2014 21/25



Runge's method

We want to pick polynomials g;(x, y) so that when we substitute y;(
Then as x goes large, gi(x, y) cannot be an integer.

) =xt+2x "+ 2x 2 —6x Tt —18x " 4+ 0(x~

Itis easy to see that g, (x,y) = y — x*is good.

1 1471
Yo 8 —p 1471

2 8 128 1024
LRV V2 S B AV
8 128 1024
: _ Py XCHx Y 2

Wepick g, (x,y) = 2" =2 +y—x"+1.

92 (X, y2(x)) :—@( /\[)

g2 (%,3(x)) = O (1/Vx) .

But this g, (x,y) is not really a polynomial.

Heng Guo (CS, UW-Madison) Edge Colorings

32

x)ingi(x,y),itiso(1).

6)-

X 24+ 0(x7%?),

—x 24+ 0(x*?).

China Theory Week 2014 21/25



An Effective Siegel's Theorem for Our Polynomial

Let (a, b) be an integer solution to p(x,y) = Owitha # 0.

Let p be a prime factor of a.
By considering the order of any such p in b, we can show that a|b?.

Sog,(a,b) = %Z + b — a® + 1is always an integer.
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An Effective Siegel's Theorem for Our Polynomial

Let (a, b) be an integer solution to p(x,y) = Owitha # 0.

Let p be a prime factor of a.
By considering the order of any such p in b, we can show that a|b?.

Sog,(a,b) = %Z + b — a* + 1is always an integer.
For (say) y,(x), we truncate the Puiseux series to gety, (x) andy, (x) such that
p(x.y; (x)) < 0andp (x,y; (x)) > 0.
Then forx > 16,
—1 <42 (6,5, (%)) < g2 (x.32(x) < g2 (x,y7 (x)) <O.

Similarly for y; (x) and ys ().

Hence if x > 16, there is no integer solution.

Forx < —3, thereis only one real root which is not an integer.
Otherwise —2 < x < 16itis easy to verify.
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Back to Lattice Condition

Lemma

Forany integer k > 3, if p(x, k) is reducible in Q[x], then the roots of p(x, k) satisfy
the lattice condition.
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Back to Lattice Condition

Lemma
Forany integer k > 3, if p(x, k) is reducible in Q[x], then the roots of p(x, k) satisfy
the lattice condition.

Proof.

By previous Lemma, no linear factor over Z.

By Gauss’ Lemma, no linear factor over Q.

Then p(x, y) factors as a product of two irreducible polynomials of degrees 2 and 3.
We use some Galois theory to show the lattice condition. []
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Summary

@ #P-hardness of #k-EDGECOLORING in r-regular planar graphs (k > r > 3).
@ AHolantdichotomy with arbitrary domain size.

@ Interpolation is a powerful technique in proving counting dichotomies.

Interesting algebraic problems may rise.
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Thank You!

Papers and slides on my webpage:
www.cs.wisc.edu/~hguo/
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