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Edge Coloring

Definition
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Deciding Edge Colorings

Theorem (Vizing's Theorem)
Edge coloring using atmost∆(G) + 1 colors exists in simple graphs.

Obvious lower bound is∆(G).

GivenG, deciding if∆(G) colors suffice isNP-complete over
3-regular graphs [ Holyer 81 ],
k-regular graphs for k ⩾ 3 [ Leven, Galil 83 ].

Optimization version formulti-graphs.
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Counting Edge Colorings

Problem: #κ-EdgeColoring.
Input: A graphG.
Output: Number of edge colorings ofG using atmostκ colors.

Theorem
#κ-EdgeColoring is #P-hard over r-regular planar graphs for allκ ⩾ r ⩾ 3.

No edge colorings ifκ < r.

(There is no regular planar graph of degree larger than or equal to 6 by counting
the average degree of a triangulation. Our result is actually formulti-graphswhen
r > 5.)
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Counting Edge Colorings as aHolant Problem

Put the local constraint function AD3 on each node.

AD3(x, y, z) =

{
1 if x, y, z ∈ [κ] are distinct
0 otherwise.

AD3

AD3 AD3

AD3 AD3

AD3

A configuration is a proper coloring if and only if it satisfies all constraints, that is,

w(σ) =
∏

v∈V(G)

AD3
(
σ |E(v)

)
= 1.

To compute #κ-EdgeColoring, we sumover all configurations:

Holant(G;AD3) =
∑

σ:E(G)→[κ]

w(σ).

HengGuo (CS, UW-Madison) Edge Colorings China TheoryWeek 2014 5 / 25



Counting Edge Colorings as aHolant Problem

Put the local constraint function AD3 on each node.

AD3(x, y, z) =

{
1 if x, y, z ∈ [κ] are distinct
0 otherwise.

AD3

AD3 AD3

AD3 AD3

AD3

A configuration is a proper coloring if and only if it satisfies all constraints, that is,

w(σ) =
∏

v∈V(G)

AD3
(
σ |E(v)

)
= 1.

To compute #κ-EdgeColoring, we sumover all configurations:

Holant(G;AD3) =
∑

σ:E(G)→[κ]

w(σ).

HengGuo (CS, UW-Madison) Edge Colorings China TheoryWeek 2014 5 / 25



Counting Edge Colorings as aHolant Problem

Put the local constraint function AD3 on each node.

AD3(x, y, z) =

{
1 if x, y, z ∈ [κ] are distinct
0 otherwise.

AD3

AD3 AD3

AD3 AD3

AD3

A configuration is a proper coloring if and only if it satisfies all constraints, that is,

w(σ) =
∏

v∈V(G)

AD3
(
σ |E(v)

)
= 1.

To compute #κ-EdgeColoring, we sumover all configurations:

Holant(G;AD3) =
∑

σ:E(G)→[κ]

w(σ).

HengGuo (CS, UW-Madison) Edge Colorings China TheoryWeek 2014 5 / 25



Counting Edge Colorings as aHolant Problem

Put the local constraint function AD3 on each node.

AD3(x, y, z) =

{
1 if x, y, z ∈ [κ] are distinct
0 otherwise.

AD3

AD3 AD3

AD3 AD3

AD3

A configuration is a proper coloring if and only if it satisfies all constraints, that is,

w(σ) =
∏

v∈V(G)

AD3
(
σ |E(v)

)
= 1.

To compute #κ-EdgeColoring, we sumover all configurations:

Holant(G;AD3) =
∑

σ:E(G)→[κ]

w(σ).

HengGuo (CS, UW-Madison) Edge Colorings China TheoryWeek 2014 5 / 25



Holant Problems

In this talk, we consider all local constraint functions

f(x, y, z) =


a if x = y = z (all equal)
b otherwise
c if x ̸= y ̸= z ̸= x (all distinct).

Denote f by ⟨a, b, c⟩. Then AD3 = ⟨0, 0, 1⟩.

TheHolant problem is to compute

Holantκ(G; f) =
∑

σ:E(G)→[κ]

∏
v∈V(G)

f
(
σ |E(v)

)
.

aka: tensor network contraction, factor graphs, …
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Main Theorem

Theorem
For any domain sizeκ ⩾ 3 and any a, b, c ∈ C, the problem of computing
Holantκ(−; ⟨a, b, c⟩) is either #P-hard or in polynomial time, evenwhen the input
is restricted to planar graphs.

#κ-EdgeColoring in 3-regular graphs is the special case ⟨a, b, c⟩ = ⟨0, 0, 1⟩,

and it is #P-hard.
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Tractable Problems

Tractable problems are:

1 Trivial problems: ⟨0, 0, 0⟩, ⟨1, 1, 1⟩.
2 Up to a holographic transformation, it is one of the following:

▶ The support of each constraints contains atmostκmany pair-wise disjoint
assignments, such as equalities.

▶ Solvable by Gaussian sums.

Some tractable cases are not so obvious, for example,
κ = 3 andHolant3(−; ⟨−5,−2, 4⟩);
κ = 4 andHolant4(−; ⟨−3− 4i, 1,−1+ 2i⟩).
We have a simple procedure to verify.
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Proof of #3-EdgeColoring on 3-regular graphs

The hardness of Holant3(−;AD3) is shown by the following reduction chain:

#P ⩽T Holant3(−; ⟨2, 1, 0, 1, 0⟩)
⩽T Holant3(−; ⟨0, 1, 1, 0, 0⟩)
⩽T Holant3(−;AD3)

⟨a, b, c, d, e⟩ denotes an arity-4 function f

f( w z
x y ) =



a ifw = x = y = z
b ifw = x ̸= y = z
c ifw = y ̸= x = z
d ifw = z ̸= x = y
e otherwise.

f

w z

x y
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⩽T Holant3(−;AD3)

Holant3(−; ⟨2, 1, 0, 1, 0⟩) is #P-hard by a reduction from a hard point on the

Tutte polynomial.

The second reduction is via polynomial interpolations.

The third reduction is via a gadget construction.
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Polynomial Interpolation Step: Recursive Construction

Holant3(G; ⟨2, 1, 0, 1, 0⟩) ⩽T Holant3(Gs; ⟨0, 1, 1, 0, 0⟩)

N1 N2

Ns

Ns+1

Vertices are assigned ⟨0, 1, 1, 0, 0⟩. Inputs are ordered anti-clockwise.

Let fs be the function corresponding toNs. Then fs = Msf0, where

M =


0 2 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 and f0 =


1
0
0
1
0

 .

Note that f1 = ⟨0, 1, 1, 0, 0⟩.
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decompositionM = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s. Then

f(x) =

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 P−1f0 =


x+2
3

x−1
3
0
1
0

 .

Note f(4) = ⟨2, 1, 0, 1, 0⟩.

HengGuo (CS, UW-Madison) Edge Colorings China TheoryWeek 2014 11 / 25



Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decompositionM = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s. Then

f(x) =

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 P−1f0 =


x+2
3

x−1
3
0
1
0

 .

Note f(4) = ⟨2, 1, 0, 1, 0⟩.

HengGuo (CS, UW-Madison) Edge Colorings China TheoryWeek 2014 11 / 25



Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decompositionM = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s. Then

f(x) = f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 P−1f0 =


x+2
3

x−1
3
0
1
0

 .

Note f(4) = ⟨2, 1, 0, 1, 0⟩.
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Polynomial Interpolation Step: The Interpolation

Holant3(−; ⟨2, 1, 0, 1, 0⟩) ⩽T Holant3(−; ⟨0, 1, 1, 0, 0⟩)

⩽T Holant3(−; f(x))
⩽T Holant3(−; ⟨0, 1, 1, 0, 0⟩)

IfG has n vertices, then

p(G, x) = Holant3(G; f(x)) ∈ Z[x]

has degree n.

LetGs be the graph obtained by replacing every vertex inGwithNs. Then
Holant3(G2s; ⟨0, 1, 1, 0, 0⟩) = p(G, 22s).

Using oracle for Holant3(−; ⟨0, 1, 1, 0, 0⟩), evaluate p(G, x) at n+ 1 distinct points
x = 22s for 0 ⩽ s ⩽ n.

By polynomial interpolation, efficiently compute the coefficients of p(G, x).
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More on Polynomial Interpolations

Wemay not be able to interpolate all vectors, but a subspace of them.

#3-EdgeColoring has a fixed domain size and a fixed function. For the

dichotomy, we need to deal withmultivariate polynomial interpolations.

The key to the proof is to show certain linear systems are non-degenerate.
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Interpolation Lemma

Lemma
Suppose there is a recurrence construction implemented byF. Let s ∈ Cn be the
initial vector andM ∈ Cn×n be the recurrencematrix. If s andM satisfy the
following conditions:

1 M is diagonalizable with n linearly independent eigenvectors;
2 s is not orthogonal to ℓ of these linearly independent row eigenvectors ofM

with eigenvalues λ1, . . . , λℓ;
3 λ1, . . . , λℓ satisfy the lattice condition;

then
Holantκ(−;F ∪ {f}) ⩽T Holantκ(−;F)

for any signature f that is orthogonal to the n− ℓ of these linearly independent
eigenvectors ofM to which s is also orthogonal.
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Lattice Condition

Definition
We say that λ1, λ2, . . . , λℓ ∈ C− {0} satisfy the lattice condition if

∀x ∈ Zℓ − {0} with
ℓ∑

i=1

xi = 0,

we have
ℓ∏

i=1

λxi
i ̸= 1.

For our application, λi's are eigenvalues, that is, roots to the characteristic
polynomial of the recurrencematrix.

Our characteristic polynomial is (x− κ3)4p(x,κ) =

(x− κ3)4
(
x5 − κ6(2κ− 1)x3 − κ9(κ2 − 2κ+ 3)x2 + (κ− 2)(κ− 1)κ12x+ (κ− 1)3κ15) .
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SomeGalois Theory

Lemma
Let q(x) ∈ Q[x] be a polynomial of degree n ⩾ 2. If

1 the Galois group of q overQ is Sn or An and

2 the roots of q do not all have the same complex norm,

then the roots of q satisfy the lattice condition.

Lemma
For any integerκ ⩾ 3, if p(x, κ) is irreducible inQ[x], then the roots of p(x, κ) satisfy the
lattice condition.

Proof.
By discriminant, p(x,κ) has 3 distinct real roots and 2 complex roots. Three distinct real
roots do not have the same norm. An irreducible polynomial of prime degree nwith
exactly two nonreal roots has Sn as its Galois group overQ.
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Irreducible?

Sowewould like to show for any integerκ ⩾ 3, p(x, κ) is irreducible inQ[x].

Seems quite difficult to show.

When there is a linear factor of p(x, κ), the Galois argument fails.

There are 5 pairs of integer solutions to p(x, κ),

(1,−2), (0,−1), (−1, 0), (1, 1), (3, 2).

We show that these are the only integer solutions.
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Siegel's Theorem

Theorem (Siegel's Theorem)
Any smooth algebraic curve of genus g > 0 defined by a polynomial

f(x, y) ∈ Z[x, y] has only finitelymany integer solutions.

Our polynomial has genus 3, satisfies the condition.

Bad news is that Siegel's theorem is not effective.

There are several effective versions, but the best boundwe can find (applied

to our polynomial) is 1020000.

Integer solutions could be enormous.
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Diophantine Equations with Enormous Solutions

Pell's Equation (genus 0)
x2 − 61y2 = 1

Smallest solution:
(1766319049, 226153980)

x2 − 991y2 = 1

Smallest solution:

(379516400906811930638014896080,
12055735790331359447442538767)

Next solution:

(288065397114519999215772221121510725946342952839946398732799,
9150698914859994783783151874415159820056535806397752666720)
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Puiseux Series

Let y = κ+ 1. This simplifies our polynomial:

p(x, y) = x5 − (2y+ 1)x3 − (y2 + 2)x2 + (y− 1)yx+ y3.

Puiseux series converges to the actual roots for polynomials in two variables.

Puiseux series for p(x, y) are

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6),

y2(x) = x3/2 −
1
2
x+

1
8
x1/2 −

65
128

x−1/2 − x−1 −
1471
1024

x−3/2 − x−2 + O(x−5/2),

y3(x) = −x3/2 −
1
2
x−

1
8
x1/2 +

65
128

x−1/2 − x−1 +
1471
1024

x−3/2 − x−2 + O(x−5/2).
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Runge'smethod
Wewant to pick polynomials gi(x, y) so that whenwe substitute yi(x) in gi(x, y), it is o(1).
Then as x goes large, gi(x, y) cannot be an integer.

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6).

It is easy to see that g1(x, y) = y− x2 is good.

y2(x) = x3/2 −
1
2
x+

1
8
x1/2 −

65
128

x−1/2 − x−1 −
1471
1024

x−3/2 − x−2 + O(x−5/2),

y3(x) = −x3/2 −
1
2
x−

1
8
x1/2 +

65
128

x−1/2 − x−1 +
1471
1024

x−3/2 − x−2 + O(x−5/2).

Wepick

g2 (x, y2(x)) = −Θ () ,

g2 (x, y3(x)) = Θ () .

But this g2(x, y) is not really a polynomial.
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Then as x goes large, gi(x, y) cannot be an integer.

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6).

It is easy to see that g1(x, y) = y− x2 is good.

y2(x) = x3/2 −
1
2
x+

1
8
x1/2 −

65
128

x−1/2 − x−1 −
1471
1024

x−3/2 − x−2 + O(x−5/2),

y3(x) = −x3/2 −
1
2
x−

1
8
x1/2 +

65
128

x−1/2 − x−1 +
1471
1024

x−3/2 − x−2 + O(x−5/2).

Wepick g2(x, y) = y2+xy−x3+x
x = y2

x + y− x2 + 1.

g2 (x, y2(x)) = −Θ
(
1/
√
x
)
,

g2 (x, y3(x)) = Θ
(
1/
√
x
)
.

But this g2(x, y) is not really a polynomial.
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An Effective Siegel's Theorem for Our Polynomial

Let (a, b) be an integer solution to p(x, y) = 0with a ̸= 0.

Let p be a prime factor of a.
By considering the order of any such p in b, we can show that a|b2.

So g2(a, b) = b2
a + b− a2 + 1 is always an integer.

For (say) y2(x), we truncate the Puiseux series to get y+2 (x) and y
−
2 (x) such that

p
(
x, y−2 (x)

)
< 0 and p

(
x, y+2 (x)

)
> 0.

Then for x > 16,

−1 < g2
(
x, y−2 (x)

)
⩽ g2 (x, y2(x)) ⩽ g2

(
x, y+2 (x)

)
< 0.

Similarly for y1(x) and y3(x).
Hence if x > 16, there is no integer solution.
For x ⩽ −3, there is only one real root which is not an integer.
Otherwise−2 ⩽ x ⩽ 16 it is easy to verify.
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Back to Lattice Condition

Lemma
For any integerκ ⩾ 3, if p(x, κ) is reducible inQ[x], then the roots of p(x, κ) satisfy
the lattice condition.

Proof.
By previous Lemma, no linear factor overZ.
By Gauss’ Lemma, no linear factor overQ.
Then p(x, y) factors as a product of two irreducible polynomials of degrees 2 and 3.
We use someGalois theory to show the lattice condition.
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Summary

#P-hardness of #κ-EdgeColoring in r-regular planar graphs (κ ⩾ r ⩾ 3).

AHolant dichotomywith arbitrary domain size.

Interpolation is a powerful technique in proving counting dichotomies.

Interesting algebraic problemsmay rise.
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Thank You!
Papers and slides onmywebpage:

www.cs.wisc.edu/~hguo/
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