Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions

Yitong Yin
Nanjing University

Gibbs Distribution

$$G = (V, E)$$

$$b_{v}$$

$$e A_{o}$$

- $q \ge 2$ spin states
- b_v each $v \in V$, distribution $b_v : [q] \to [0,1]$
 - each $e \in E$, symmetric $A_e : [q]^2 \to [0,1]$

 \forall configuration $\sigma \in [q]^V$:

$$w(\sigma) = \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u, \sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

Gibbs distribution: $\mu(\sigma) = \frac{w(\sigma)}{Z}$ where $Z = \sum_{\sigma \in [q]^V} w(\sigma)$

Dynamic Sampling

dynamic sampling algorithm:

with cost that depends on

|update| ≜ # changed vertices and edges

Dynamic Sampling

dynamic sampling algorithm:

with cost $\tilde{O}(|\text{update}|)$

|update| ≜ # changed vertices and edges

Dynamic Sampling

empty graph (V, \emptyset)

dynamic sampling algorithm:

$$X^{(0)} \sim \bigoplus_{v} b_{v}$$

$$X \sim \mu$$

 $\tilde{O}(|\text{update}|)$ dynamic sampling $\Longrightarrow \tilde{O}(|E|)$ static sampling

A Moser-Tardos style algorithm

[Feng, Vishnoi, Y. '19]

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

current sample: $X \sim \mu$

```
\begin{aligned} R &\leftarrow \{v \in V \mid v \text{ is updated or incident to updated } e\}; \\ \text{while } R \neq \varnothing \text{ do} \\ \text{for every } v \in R, \text{ resample } X_v \sim b_v \text{ independently;} \\ \text{every internal } e &= \{u,v\} \subseteq R \text{ accepts ind. w.p. } A_e(X_u,X_v); \\ \text{every boundary } e &= \{u,v\} \text{ with } u \in R, v \not\in R \text{ accepts ind. w.p.} \\ \frac{A_e(X_u,X_v)}{A_e(X_u^{\text{old}},X_v)} \min A_e\left(X_u^{\text{old}},\cdot\right); \qquad \text{$/\!\!/} X_u^{\text{old}}: X_u \text{ before resampling} \\ R &\leftarrow \bigcup_{e \text{ rejects}} e; \end{aligned}
```

A Moser-Tardos style algorithm

[Feng, Vishnoi, Y. '19]

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

current sample: $X \sim \mu$

```
R \leftarrow \{v \in V \mid v \text{ is updated or incident to updated } e\}; while R \neq \emptyset do for every v \in R, resample X_v \sim b_v independently; every internal e = \{u, v\} \subseteq R accepts ind. w.p. A_e(X_u, X_v); every boundary e = \{u, v\} with u \in R, v \notin R accepts ind. w.p.  \propto \frac{A_e(X_u, X_v)}{A_e(X_u^{\text{old}}, X_v)}; \qquad \text{$/// X_u^{\text{old}}$: $X_u$ before resampling } R \leftarrow \bigcup_{e \text{ rejects}} e;
```

Rejection Sampling

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

Rejection sampling: $(X \mid R = \emptyset) \sim \mu$

for every $v \in R$, sample $X_v \sim b_v$ independently; every edge $e = \{u, v\} \in E$ accepts independently w.p. $A_e(X_u, X_v)$; $R \leftarrow \bigcup_{e \text{ rejects}} e$

A Moser-Tardos style algorithm

[Feng, Vishnoi, Y. '19]

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

current sample: $X \sim \mu$

```
\begin{aligned} R &\leftarrow \{v \in V \mid v \text{ is updated or incident to updated } e\}; \\ \textbf{while } R \neq \varnothing \textbf{ do} \\ &\text{for every } v \in R, \textbf{resample } X_v \sim b_v \text{ independently;} \\ &\text{every internal } e = \{u,v\} \subseteq R \text{ accepts ind. w.p. } A_e(X_u,X_v); \\ &\text{every boundary } e = \{u,v\} \text{ with } u \in R, v \not\in R \text{ accepts ind. w.p.} \\ &\propto \frac{A_e(X_u,X_v)}{A_e(X_u^{\text{old}},X_v)}; & \text{$//\!\!/} X_u^{\text{old}}; X_u \text{ before resampling} \\ &R \leftarrow \bigcup_{e \text{ rejects}} e; \end{aligned}
```

Partial Rejection Sampling (PRS): [Guo, Jerrum, Liu '17]

A heat-bath based algorithm

[Feng, Guo, Y. '19]

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

current sample: $X \sim \mu$

```
R \leftarrow \{v \in V \mid v \text{ is updated or incident to updated } e\};
while R \neq \emptyset do
                                                          constant factor
      pick a random u \in R;
                                                          depends only on
      with probability (\alpha)
                                                              X_{R\cap N(u)}
                                                    do
            resample X_u \sim \mu_u(\cdot \mid X_{N(u)});
                                                     heat-bath
                                                a.k.a. Glauber dynamics
            delete u from R;
                                                    Gibbs sampling
      else
            add all neighbors of u to R;
```

 $N(u) \triangleq \text{neighborhood of } u$

M-T dynamic sampler

heat-bath dynamic sampler

```
R \leftarrow \{\text{vertices affected by update}\}; while R \neq \emptyset do \text{for every } v \in R, \text{resample } X_v \sim b_v \text{ independently;} every internal e = \{u, v\} \subseteq R \text{ accepts w.p.} A_e(X_u, X_v); every boundary e = \{u, v\} \text{ with } u \in R, v \notin R \text{ accepts w.p.} \propto \frac{A_e(X_u, X_v)}{A_e(X_u^{\text{old}}, X_v)}; R \leftarrow \bigcup_{e \text{ rejects}} e;
```

$$R \leftarrow \{ \text{vertices affected by update} \};$$
 while $R \neq \emptyset$ do pick a random $u \in R;$ with probability $\propto \frac{1}{\mu_u(X_u \mid X_{N(u)})}$ do resample $X_u \sim \mu_u(\; \cdot \mid X_{N(u)});$ delete u from $R;$ else add all neighbors of u to $R;$

chain:
$$(X,R) \longrightarrow (X',R')$$

configuration $X \in [q]^V$ set $R \subseteq V$ of "incorrect" vertices

Conditional Gibbs property:

Given any R and X_R , the $X_{\overline{R}}$ always follows $\mu_{\overline{R}}^{X_R}$.

$$X \sim \mu$$
 when $R = \emptyset$

Equilibrium Condition

chain:
$$(x, R) \xrightarrow{P} (y, R')$$

Conditional Gibbs property:

Given any R and X_R , the $X_{\overline{R}}$ always follows $\mu_{\overline{R}}^{X_R}$.

Fix any $\sigma \in [q]^R$, $\tau \in [q]^{R'}$.

$$\forall y \in [q]^V \text{ that } y_{R'} = \tau$$
:

$$\mu_{\overline{R'}}^{\tau}(y_{\overline{R'}}) \propto \sum_{\substack{x \in [q]^V \\ x_R = \sigma}} \mu_{\overline{R}}^{\sigma}(x_{\overline{R}}) \cdot P((x,R),(y,R'))$$

M-T dynamic sampler

heat-bath dynamic sampler

```
R \leftarrow \{\text{vertices affected by update}\}; while R \neq \emptyset do \{\text{for every } v \in R, \text{resample } X_v \sim b_v \text{ independently;} \} every internal e = \{u, v\} \subseteq R \text{ accepts w.p. } A_e(X_u, X_v); every boundary e = \{u, v\} \text{ with } u \in R, v \notin R \text{ accepts w.p. } \frac{A_e(X_u, X_v)}{A_e(X_u^{\text{old}}, X_v)}; R \leftarrow \bigcup_{e \text{ rejects}} e;
```

$$R \leftarrow \{ \text{vertices affected by update} \};$$
 while $R \neq \emptyset$ do pick a random $u \in R;$ with probability $\propto \frac{1}{\mu_u(X_u \mid X_{N(u)})}$ do resample $X_u \sim \mu_u(\cdot \mid X_{N(u)});$ delete u from $R;$ else add all neighbors of u to $R;$

chain:
$$(X,R) \longrightarrow (X',R')$$

Conditional Gibbs property:

Given any R and X_R , the $X_{\overline{R}}$ always follows $\mu_{\overline{R}}^{X_R}$.

- defined in [Feng, Vishnoi, Y. '19], also implicitly in [Guo, Jerrum '18]
- retrospectively, holds for *Partial Rejection Sampling* [Guo, Jerrum, Liu '17] and *Randomness Recycler* [Fill, Huber '00]

heat-bath dynamic sampler

 $R \leftarrow \{\text{vertices affected by update}\};$

while $R \neq \emptyset$ do

pick a random $u \in R$;

with probability $\propto \frac{1}{\mu_u(X_u \mid X_{N(u)})}$ do

resample $X_u \sim \mu_u(\cdot \mid X_{N(u)});$

delete u from R;

else

add all neighbors of u to R;

invariant CGP: $X_{\overline{R}} \sim \mu_{\overline{R}}^{X_R}$

chain:

$$(X,R) \longrightarrow (X',R')$$

Conditional Gibbs property:

Given any R and X_R , $X_{\overline{R}}$ always follows $\mu_{\overline{D}}^{X_R}$.

success case:

$$R' = R \setminus \{u\}$$

filter

Pr[filter succeeds]
$$\propto \frac{\mu_{\overline{R}}^{X_{R'}}(X_{\overline{R}})}{\mu_{\overline{D}}^{X_{R}}(X_{\overline{R}})} = \frac{\mu_{u}^{X_{R'}}(X_{u})}{\mu_{u}^{X_{N(u)}}(X_{u})} \propto \frac{1}{\mu_{u}^{X_{N(u)}}(X_{u})}$$

Bayes law depends only on
$$X_R$$

$$\frac{X_{R'}(X_{\overline{R}})}{X_{R}(X_{\overline{R}})} = \frac{\mu_u^{X_{R'}}(X_u)}{\mu_u^{X_{N(u)}}(X_u)} \propto \frac{1}{\mu_u^{X_N}}$$

$$\propto \frac{1}{\mu_u^{X_{N(u)}}(X_u)}$$

$$X_{\overline{R}} \sim \mu_{\overline{R}}^{X_{R'}} + X_u \sim \mu_u(\cdot \mid X_{N(u)}) \Longrightarrow X_{\overline{R'}} \sim \mu_{\overline{R'}}^{X_{R'}}$$

invariant

heat-bath dynamic sampler

 $R \leftarrow \{\text{vertices affected by update}\};$ while $R \neq \emptyset$ do pick a random $u \in R$; with probability $\propto \frac{1}{\mu_u(X_u \mid X_{N(u)})}$ do resample $X_u \sim \mu_u(\cdot \mid X_{N(u)});$ delete u from R; else add all neighbors of u to R;

invariant CGP: $X_{\overline{R}} \sim \mu_{\overline{R}}^{X_R}$

chain:

$$(X,R) \longrightarrow (X',R')$$

Conditional Gibbs property:

Given any R and X_R , $X_{\overline{R}}$ always follows $\mu_{\overline{P}}^{X_R}$.

failure case:

$$R' = R \cup N(u)$$

all vertices whose spins are revealed are includes in R'

invariant CGP: $X_{\overline{R}'} \sim \mu_{\overline{R}'}^{X_{R'}}$

M-T dynamic sampler

Efficiency Analysis:

$$\begin{split} R &\leftarrow \{\text{vertices affected by update}\}; \\ \textbf{while } R \neq \varnothing \ \textbf{do} \\ \text{for every } v \in R, \text{resample } X_v \sim b_v \text{ independently;} \\ \text{every internal } e = \{u,v\} \subseteq R \text{ accepts w.p.} A_e(X_u,X_v); \\ \text{every boundary } e = \{u,v\} \text{ with } u \in R, v \not\in R \text{ accepts w.p.} \\ &\propto \frac{A_e(X_u,X_v)}{A_e(X_u^{\text{old}},X_v)}; \\ R \leftarrow \bigcup_{e \text{ rejects}} e; \end{split}$$

$$\mathbf{E}[H(R') \mid R] < H(R)$$

set R (or some potential of it) decays in expectation in every step in the worst case

Gibbs distribution: $\mu(\sigma) \propto \prod A_e(\sigma_u, \sigma_v) \prod b_v(\sigma_v)$ $e = \{u,v\} \in E$

- $\bullet \quad \min A_e > 1 \frac{1}{4\Lambda}, \quad \text{where Δ is the max-degree}$
- Ising model with inverse temp. β : $e^{-2|\beta|} > 1 \frac{1}{2.221 \Lambda + 1}$
- hardcore model with fugacity $\lambda < \frac{1}{\sqrt{2}\Delta 1}$

- $X' \sim \mu'$ is returned within $O(\Delta \mid \text{update} \mid)$ resamples $O(\Delta \mid E \mid)$ time Las-Vegas perfect sampler

heat-bath dynamic sampler (block version)

```
\begin{split} R \leftarrow & \{ \text{vertices affected by update} \}; \\ \mathbf{while} \ R \neq \varnothing \ \mathbf{do} \\ & \text{pick a random } u \in R \text{ and } \underbrace{r\text{-ball } B = B_r(u);} \\ & \mathbf{with \ probability} \propto \frac{1}{\mu_u(X_u \mid X_{\partial B})} \ \mathbf{do} \\ & \text{resample} \ X_B \sim \mu_B(\; \cdot \mid X_{\partial B}); \\ & \text{delete } u \text{ from } R; \\ & \text{else} \\ & \text{add all boundary vertices in } \partial B \text{ to } R; \end{split}
```

strong spatial mixing (SSM):

$$d_{\text{TV}}(\mu_v^{\sigma}, \mu_v^{\tau}) \leq \exp(-\Omega(\text{dist}(v, \sigma \oplus \tau)))$$

sub-exp neighborhood growth:

$$\forall v, |\partial B_r(v)| \le \exp(o(r))$$

E.g.
$$\mathbb{Z}^d$$

On graphs with *sub-exp* neighborhood growth:

A data structure approach

[Feng, He, Sun, Y. '20]

Gibbs distribution:
$$\mu(\sigma) \propto \exp\left(\sum_{v \in V} \phi_v(\sigma_v) + \sum_{e=\{u,v\} \in E} \phi_e(\sigma_u, \sigma_v)\right)$$

Update of graphical model: $\Phi \to \Phi'$ with diff $\triangleq \|\Phi - \Phi'\|_1$

Dobrushin-Shlosman condition (path coupling cond.)

 $O(\text{diff} \cdot \Delta \log n)$ steps differ in single-site transition

efficient data structure (with a space overhead) for resolving such dynamic update

Caveats

equilibrium:

conditional Gibbs property

Correctness:

- dynamic sampling (succinct in space)
- perfect sampling (interruptible)
- Does the <u>conditional Gibbs property</u> require stronger condition to maintain on general graphs?
 - e.g. expanders
- In dynamic sampling: the updated sample and original sample are correlated.
 - far-apart spins: decay of correlation
 - nearby spins: possibly resampled

Distributed Gibbs Sampling

Moser-Tardos sampler

```
R \leftarrow V; // used for static sampling
         while R \neq \emptyset do
in parallel: for every v \in R, resample X_v \sim b_v independently;
in parallel: every internal e = \{u, v\} \subseteq R accepts w.p. A_e(X_u, X_v);
in parallel: every boundary e = \{u, v\} with u \in R, v \notin R accepts w.p.
                                         \propto \frac{A_e(X_u, X_v)}{A_e(X_u^{\text{old}}, X_v)};
```

•
$$\min A_e > 1 - \frac{1}{4\Delta}$$

• Ising model: $e^{-2|\beta|} > 1 - \frac{1}{2.221\Delta + 1}$
• hardcore model: $\lambda < \frac{1}{\sqrt{2}\Delta - 1}$
• $X \sim \mu$ is returned in $O(\log n)$ rounds in expectation

e rejects

• hardcore model:
$$\lambda < \frac{1}{\sqrt{2}\Delta - 1}$$

Distributed Gibbs Sampling

Gibbs distribution:

$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

Distributed algorithm:

upon termination return $X \in [q]^V$

- perfect sampling: $X \sim \mu$
- approx. sampling: $d_{\text{TV}}(X, \mu) \leq \epsilon$

network G = (V, E)

[Guo, Jerrum, Liu '17] [Feng, Sun, Y. '17]:

approx. sampling requires $\Omega(\log n)$ rounds for $\epsilon < 1/3$

Distributed Gibbs Sampling

Single-site dynamics $X \to X'$:

pick a random $v \in V$; update X_v according to $X_{N^+(v)}$;

- typical rapid mixing time: $O(n \log n)$
- requires $\Omega(n \log n)$ steps to mix [Hayes, Sinclair '07]

Parallelize single-site dynamics: $O(n \log n)$ steps $\rightarrow O(\log n)$ rounds

- chromatic scheduler: no adjacent concurrent update $\Longrightarrow \Omega(\Delta \log n)$ rounds
- Hogwild! (independently random scheduler): biased,
 but may be good enough for local or Lipschitz estimators

[Niu, Recht, Ré, Wright '11], [De Sa, Olukotun, Ré '16], [Daskalakis, Dikkala, Jayanti '18]

Parallel Metropolis Filters

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

A Metropolis chain:

$$X \rightarrow X'$$

pick a random $v \in V$; propose a random $c_v \sim b_v$; accept and $X_v \leftarrow c_v$ w.p. $\prod_{u \in N(v)} A_{\{u,v\}}(X_u,c_v)$;

Local-Metropolis chain: [Feng, Sun, Y. '17]

every $v \in V$ independently proposes $c_v \sim b_v$;

every $e = \{u, v\} \in E$ accepts independently w.p.

$$A_e(X_u, c_v) \cdot A_e(c_u, X_v) \cdot A_e(c_u, c_v);$$

every $v \in V$ accepts and $X_v \leftarrow c_v$ if all its incident edges accepted;

Parallel Metropolis Filters

Gibbs distribution:
$$\mu(\sigma) \propto \prod_{e=\{u,v\}\in E} A_e\left(\sigma_u,\sigma_v\right) \prod_{v\in V} b_v\left(\sigma_v\right)$$

Local-Metropolis chain: [Feng, Sun, Y. '17]

```
every v \in V independently proposes c_v \sim b_v; every e = \{u, v\} \in E accepts independently w.p. A_e(X_u, c_v) \cdot A_e(c_u, X_v) \cdot A_e(c_u, c_v); every v \in V accepts and X_v \leftarrow c_v if all its incident edges accepted;
```

- sample from μ when stationary
- improved in [Fischer, Ghaffari '18] [Feng, Hayes, Y. '18]: path coupling for single-site Metropolis $\Longrightarrow O(\log n)$ rounds mixing
- applied in LCA model [Biswas, Rubinfeld, Yodpinyanee '19]

Distributed simulation of Continuous chain

rate-1 Poisson clocks

when the clock at $v \in V$ rings:

update X_{ν} according to $X_{N^+(\nu)}$;

We want: faithfully simulate continuous time T in $\mathcal{O}(T)$ rounds

To resolve an update at $v \in V$ at time t:

- naive: wait until $X_{N^+(v)}$ at time t is known to $v \implies \Omega(\Delta T)$ rounds
- resolve update in advance: [Feng, Hayes, Y. '19]

Distributed simulation of Continuous chain

rate-1 Poisson clocks

Metropolis Chain

when the clock at $v \in V$ rings:

```
propose a random c_v; accept and X_v \leftarrow c_v w.p. \mathrm{Bias}(c_v, X_{N^+(v)});
```

We want: faithfully simulate continuous time T in O(T) rounds

To resolve a proposal c_v of $v \in V$ at time t:

- naive: wait until $X_{N^+(v)}$ at time t is known to $v \implies \Omega(\Delta T)$ rounds
- resolve update in advance: [Feng, Hayes, Y. '19]

Distributed simulation of Continuous chain

rate-1 Poisson clocks

Metropolis Chain

when the clock at $v \in V$ rings:

```
propose a random c_v; accept and X_v \leftarrow c_v w.p. \mathrm{Bias}(c_v, X_{N^+(v)});
```

We want: faithfully simulate continuous time T in O(T) rounds

To resolve a proposal c_v of $v \in V$ at time t:

- naive: wait until $X_{N^+(v)}$ at time t is known to $v \implies \Omega(\Delta T)$ rounds
- resolve update in advance: [Feng, Hayes, Y. '19] flip a coin with ${\tt Bias}(c_v, X_{N^+(v)})$ before $X_{N^+(v)}$ is fully known

Faithfully simulate time-T continuous Metropolis chain in $O(T + \log n)$ rounds.

[Feng, Hayes, Y. '19]

model	Efficient simulation	Necessary condition for mixing
<i>q</i> -coloring	\exists constant $C>0$ $q>C\Delta$	$q \ge \Delta + 2$
Ising model with temperature β	$\exists \text{ constant } C > 0$ $1 - e^{-2 \beta } < \frac{C}{\Delta}$	$1 - e^{-2 \beta } < \frac{2}{\Delta}$
hardcore model with fugacity λ	$\exists \ \text{constant} \ \frac{C>0}{\lambda} < \frac{C}{\Delta}$	$\lambda < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta - 2}$

Summary

Many new ideas for dynamic/distributed sampling.

Open problems:

- conditional Gibbs property vs. phase transition
 - e.g. q-coloring on general graphs for $q = O(\Delta)$
- impact of correlations in dynamic sampling applications
 - e.g. inference, approximate counting
- parallelization of general single-site dynamics
 - e.g. Glauber dynamics
- use these new ideas to improve sampling in classic setting
 - e.g. Moser-Tardos style tight analysis of sampling

Thank you!