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Gibbs Distribution

G=(V,E)

e g > 2 spin states

« eachv eV, distribution b, : [q] —

oo
ISP
g g 14, . each e € E, symmetric A, : [g]* —

vconfiguration e € [g] :

w(o) = H A, <6u, av) Hbv (av)

e={u,v}eE veV

Gibbs distribution: u(o) = @ where Z = Z w(o)
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Dynamic Sampling

G = (V.E) G' = (V.E
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dynamic sampling algorithm:
X ~ 25 - X' ~ //l,
with cost that depends on

|lupdate| £ # changed vertices and edges
p



Dynamic Sampling
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dynamic sampling algorithm:
X ~ 25 - X' ~ //l,
with cost O(|update]|)

|update | £ # changed vertices and edges




Dynamic Sampling

empty graph (V, @) G = (V,E)
O O O O O—0O—0O
coo0o0 B oooe
O O O O O—0—0 o'

dynamic sampling algorithm:

X(O) ~ @v bv - X ~ I[/t
O(|update|) dynamic sampling
—> O(| E|) static sampling



A Moser-Tardos style algorithm

|[Feng, Vishnoi, Y. *19]
Gibbs distribution: u(o) H A ,, O, Hb

e={u,v}ek veV

current sample: X ~ u

R <« {v € V| vis updated or incident to updated e};

while R # @ do
for every v € R, resample X, ~ b, independently;
every internal e = {u v} C R accepts |nd W.P. A (X ( )

, every boundary e = {u v} W|th = R y 92 R accepts |nd
- AX,X)
A (Xold X)

R(—Ue;

e rejects

min A, (X°|d - ); /I X°9: X before resampllng _
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Rejection Sampling

Gibbs distribution: u(o) « H A, (au, av) Hbv (av)

e={u,v}€E veV

Rejection sampling: X|R=@)~u

for every v € R, sample X, ~ b, independently;
every edge e = {u, v} € E accepts independently w.p. A (X, X );

R<—Ue

e rejects



A Moser-Tardos style algorithm

|[Feng, Vishnoi, Y. *19]
Gibbs distribution: u(o) H A ,, O, Hb

e={u,v}ek veV

current sample: X ~ u

R < {v € V| vis updated or incident to updated e};
while R # @ do

for every v € R, resample X, ~ b, independently;

every internal e = {u v} C R accepts |nd W.p. A ( ) |
every boundary e = {u v} with 1 € R % % R accepts ind. wpx7
; AXo X)) /I X°: X before resampling ;.
‘ A (XOId v) wotoou
R « U e,
e rejects

Partial Rejection Sampling (PRS): [Guo, Jerrum, Liu *17]



A heat-bath based algorithm

|[Feng, Guo, Y. 19]
Gibbs distribution: u(o) « H A, (au, av) Hbv (av)

e={u,v}eFE vevV
current sample: X ~ u

R < {v € V| v is updated or incident to updated e };
while R # @ do

- CONstant factor

pick a random u € R;
/1/ depends only on

do XRONu)

heat-bath

eIete U fro R: o .k.a. Glauber dynamics
’ Gibbs sampling

else

add all neighbors of u to R;

N(u) £ neighborhood of u



M-T dynamic sampler

R <« {vertices affected by update};
while R 75 @ do
" for every Ve

resample X

, 1%

¢ every internal e = {u,v} C R accepts w.p. A (X, X,); J

t every boundary e = {u, v} withu € R,v € R accepts W.p. |

j ( u’ V) §
e(Xb?'d,Xv)

re U

clrejects

heat-bath dynamic sampler

R « {vertices affected by update };
whlle R ;é %] do
p|c ‘a random u €

1

do
[ /“tu(Xu | XN(u)) 4
| resample X, ~ (- | Xyi);

i S
y

with probability o

.‘ delete u from R;
! else
_addall neighbors of uto R,

chain: (X R) — (X', R)

configuration X € [g]¥

set R C V of “incorrect” vertices

Conditional Gibbs property:

Given any R and Xj, the X7 always follows ,ugR.

» X ~puwhenR =0

(marginal distribution on
R conditioned on Xp)



Equilibrium Condition

P
chain: (x,R) — (y,R’)

Conditional Gibbs property:

Given any R and X, the Xz always follows ,u%(R.

Fix any ¢ € [q]%, 7 € [q].

Vy € [q]Vthat Ve = T:

us(vg) & Y ps(xg) - P(x,R), (v, R))

xelql"
XR=6




M-T dynamic sampler heat-bath dynamic sampler

R « {vertices affected by update}; R <« {vertices affected by update};
while R ;é @ do wh|Ie R ;é %] do
#for every v € R, resample X, ~ b, independently; #picka random u € K; %
" every internal e = {u,v} C R accepts w.p.A (X, X) with probability o 1 do
¢ every boundary e = {u,v} withu € R,v & R accepts wp I # (X, | Xy
i i (X 28 ) i resample Xu ~ /’lu( ) | XN(u));
T A (X2, X ) ! i delete u from R;
. R« U e; ! else .
\___erefects ] %___addall neighbors of uto R;

chain: (X R) — (X', R)

Conditional Gibbs property:

Given any R and X, the Xz always follows ,ug’?.

+ defined in [Feng, Vishnoi, Y. ’19], also implicitly in [Guo, Jerrum ’18]

- satisfied invariantly by the M-T and heat-bath dynamic samplers
—> Las Vegas perfect samplers (interruptible)

- retrospectively, holds for Partial Rejection Sampling [Guo, Jerrum, Liu *17]
and Randomness Recycler [Fill, Huber *00]



heat-bath dynamic sampler

R <« {vertices affected by update};
while R # ¢ do

pick a random R, o

with probability o do

/’tu(Xu | XN(u))
resample X, ~ t,( - | Xy
\; delete u from R;

add all neighbors of u to R;

invariant CGP:  Xg ~ p2*

filter Pr[ filter succeeds | «

chain:
(X,R) — (X', R

Conditional Gibbs property:

Given any R and X,
Xz always follows //th.

SUCCESS Case.

= R\{u}

Bayes law  depends only on Xj

"’tRR(XI’€)\~‘~'i (par (X, ) 1

ER( Xz) u X X) /4 5N<u)( X)

X Y. invariant



heat-bath dynamic sampler chain:

R <« {vertices affected by update}; (X ) R) — (X ,9 R/)
while R # @ do
pick a random u € R; Conditional Gibbs property:
1 :
with probability o AN do Given any R and X,
Hi\Ay N(u) X
X7 always follows =X,
resample X, ~ p,( - | Xy R y MR

delete u fromR; .

R'=RUN(u)

'else

invariant CGP:  Xg ~ p2*

all vertices whose spins are revealed are includes in R’

» invariant CGP: Xrgf’“//t)—(fe/



M-T dynamic sampler Efficiency Analysis:

R « i ffected by update}; /
While{l\ge;clc@esdi ected by update } E[H(R) | R] < H(R)

for every v € R, resample X, ~ b, independently;
every internal e = {u,v} C R accepts w.p. A (X, X,);

every boundary e = {u,v} with u € R,v & R accepts w.p. set R (Or some potential of 't)

o AKX X,) decays in expectation in
old ’ .
ALXZE X) every step in the worst case
R « U e,
T e

e rejects

Gibbs distribution:  u(e) « H A, (au, av)Hbv (av)

e={u,v}€E veV

e MNA,>1-— e where A is the max-degree
1
2.221A + 1

o Ising model with inverse temp. f#: e2/l > 1 —

hardcore model with fugacity 1 <

V2A -1

e X' ~ u'isreturned within O(A |update|) resamples
. e O(A|E|)time Las-Vegas perfect sampler



heat-bath dynamic sampler
(block version)

R < {vertices affected by update};
while R # @& do
pick a random u € R and r-ball B = B,(u);
1

with probability o do
ﬂu(Xu | XGB)
resample Xp ~ pug( - | Xop);

delete u from R;
else
add all boundary vertices in 0B to R;

strong spatial mixing (SSM):
dry(p], pt) < exp(—Q(dist(v, o @ 7)))
sub-exp neighborhood growth:
Vv, |0B.(v)| < exp(o(r))
Eg. 7¢

On graphs with sub-exp neighborhood growth:

[Feng, Guo, Y. ’19]

SSM e

[Dyer, Sinclair,

Vigoda, Weitz *04]
[Goldberg, Martin,

Paterson’03]

O(nlog n) mixing
of block MC

O(|update]|)
dynamic sampling

‘

O(n)-time
perfect sampler




A data structure approach

|[Feng, He, Sun, Y. ’20]

I ) &
trajectory for X,, X, mXQ‘) . X,

. . . e 6 06/ 0606 6 O o0 O
single-site dynamics:
T very

(/)’ i,X,ﬁ.....Q...,Xé—v

Gibbs distribution:  u(c) « exp Z ¢.(0,) + Z ¢.(0,0)

Update of graphical model: @ — @’ with diff = ||® — ®/||,

Dobrushin-Shlosman condition O(diff - Alogn) steps
(path coupling cond.) differ in single-site transition

efficient data structure (with a space overhead)
for resolving such dynamic update



Caveats

equilibrium: Correctness:
conditional » e dynamic sampling (succinct in space)
Gibbs property e perfect sampling (interruptible)

e Does the conditional Gibbs property require stronger
condition to maintain on general graphs?

® ¢.g. expanders

 In dynamic sampling: the updated sample and original
sample are correlated.

® far-apart spins: decay of correlation

® nearby spins: possibly resampled




Distributed Gibbs Sampling

Moser-Tardos sampler

R <V, /I used for static sampling
while R # @ do
in parallel: for every v € R, resample X, ~ b, independently;
in parallel: every internal e = {u, v} C R accepts w.p. A (X, X));
in parallel: every boundary e = {u, v} with u € R,v & R accepts w.p.
AX,, X))
A (Xold X)
R « U é;
e rejects
e MNA, >1-———
4A :
. L o 1 X ~ uisreturned
o ISINng model: el >1 - .
22218 +1 in O(log n) rounds
, hardcore model: 4 < In expectation

V2A -1



Distributed Gibbs Sampling

Gibbs distribution: network G = (V, E)

(o) H A, (au, av) Hbv (av)

e={u,v}ek veV

Distributed algorithm:

upon termination return X € [g]"

e perfect sampling: X ~ u

e approx. sampling: dr(X,u) <€

[Guo, Jerrum, Liu ’17] [Feng, Sun, Y. ’17]:

approx. sampling requires €2(log n) rounds for e < 1/3



Distributed Gibbs Sampling

Single-site dynamics X — X"

pick a random v € V;

update X, according to Xy,

e typical rapid mixing time: O(nlogn)

® requires Q(nlogn) steps to mix
[Hayes, Sinclair *07]

Parallelize single-site dynamics: O(nlogn) steps — O(logn) rounds

e chromatic scheduler: no adjacent concurrent update = Q(A log n) rounds

e [Hogwild! (independently random scheduler):  biased,
but may be good enough for local or Lipschitz estimators

[N1u, Recht, R¢, Wright "11], [De Sa, Olukotun, R¢ *16], [Daskalakis, Dikkala, Jayanti 18]



Parallel Metropolis Filters

Gibbs distribution: (@) [] A, (c.0,)]]?. (c.)

e={u,v}€E veV

A Metropolis chain: | Gick a random v € V:

/ o
X-X propose a random ¢, ~ b,;

accept and X, < ¢, wW.p. H A, (X €);
ueN(©)

Local-Metropolis chain: [Feng, Sun, Y. ’17]

every v € Vindependently proposes ¢, ~ b,
every ¢ = {u,v} € E accepts independently w.p.
AX,c) Al,X) - Alc,c,);

every v € V accepts and X, < ¢, if all its incident edges accepted;

Cy €>» Cc, €>Cy

i<

current: (x, (X) @




Parallel Metropolis Filters

Gibbs distribution:  u(o) H A, (au, O'V> Hbv (%)

e={u,v}€E veV

Local-Metropolis chain: [Feng, Sun, Y. ’17]

every v € V independently proposes ¢, ~ b,;
every e = {u,v} € E accepts independently w.p.
AX,c) - Alc,X,) Alc,c,);

every v € V accepts and X, < ¢, if all its incident edges accepted;

- sample from it when stationary
* Improved in [Fischer, Ghaffari *18] [Feng, Hayes, Y. *18]:

path coupling for single-site Metropolis =— O(log n) rounds mixing

- applied in LCA model [Biswas, Rubinfeld, Yodpinyanee *19]



Distributed simulation of
Continuous chain

when the clock at v € V' rings:

update X according to Xy,

We want: faithfully simulate
continuous time 7' in O(T') rounds

To resolve an update at v € V at time t:

e naive: wait until X, attime fis known to v = Q(AT) rounds

e resolve update in advance: [Feng, Hayes, Y. ’19]



Distributed simulation of
Continuous chain

Metropolis Chain

when the clock at v € V' rings:

propose a random c,;

acceptand X, « ¢, W-P°Sv>

We want: faithfully simulate
continuous time 7' in O(T') rounds

To resolve a proposal ¢, of v € V at time :

e naive: wait until X, attime fis known to v = Q(AT) rounds

e resolve update in advance: [Feng, Hayes, Y. ’19]



Distributed simulation of
Continuous chain

rate-1 Poisson clocks

c; 1 proposals: Metropolis Chain

when the clock at v € V' rings:

propose a random c,;

acceptand X, « ¢, w.p.s, v)

We want: faithfully simulate
continuous time 7' in O(T') rounds

To resolve a proposal ¢, of v € V at time :

e naive: wait until X, attime fis known to v = Q(AT) rounds

e resolve update in advance: [Feng, Hayes, Y. 19] LB UB

flip a coin with Bias(c,, Xy+,) before Xy, is fully known [Reié ? A“]
o " 1



Faithfully simulate time-1" continuous Metropolis chain
in O(T + log n) rounds.

|[Feng, Hayes, Y. ’19]

Necessary condition
for mixing

model Efficient simulation

3 constant (>0

g-coloring g >A+2

qg>CA
: : 3 constant C>0) o)
Ising model with C 1 —2|p|
2 o & —e TS
temperature 1 —e < A

3 constant (>0 _
hardcore model C G DAt e

with fugacity A A< < (A—2A T A-2




Summary

e Many new ideas for dynamic/distributed sampling.

e Open problems:
» conditional Gibbs property vs. phase transition
e.g. g-coloring on general graphs for g = O(A)
> impact of correlations in dynamic sampling applications
. e.g. inference, approximate counting
> parallelization of general single-site dynamics
- e.g. Glauber dynamics
> use these new ideas to improve sampling in classic setting

e.g. Moser-Tardos style tight analysis of sampling






