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#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is
incident to at least one vertex in the set.
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Systematic Approach to #VertexCover
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#VerTEXCOVER(G) = ) OR(c(u), o (v))
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Constraint Graph

EVEN-PARITY (x, y,z) A MAJORITY (x, y,z) A OR(x, y, z)
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Constraint Graph

EVEN-PARITY (x, y,z) A MAJORITY(x, y,z) A OR(x, y, 2)

X EVEN-PARITY
y MAJORITY
z OR
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Constraint Satisfaction Problems

#CSP(F)
e On input with (bipartite) constraint graph G = (V, C, E), compute

Y A Ivo)

0:V—{0,1} ceC

where N(c¢) are the neighbors of c.
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Constraint Satisfaction Problems

#CSP(F)
o On input with (bipartite) constraint graph G = (V, C, E), compute

Y A Ivo)

0:V—{0,1} ceC

where N(c¢) are the neighbors of c.

o In this talk we consider the case where the constraint graph is planar,

denoted PI-#CSP(F).
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Planar Constraint Graph
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Planar Constraint Graph

EVEN-PARITY (x, y, z) A MAJORITY (x, y, z) A OR(x, )

x EVEN-PARITY ¥ EVEN-PARITY
y MAJORITY Q-
z OR MAJORITY

VALID instance of P1-#CSP({EVEN-PARITY3, MAJORITY;, OR;, })
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#CSP(F) in Holant Framework
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#CSP(F) in Holant Framework

#CSP(F)
o On input with (bipartite) constraint graph G = (V, C, E), compute
> IIr ).
0:V—{0,1} ceC

where N(c) are the neighbors of c.
Holant(F)
o On input graph G = (V, E), compute
> I#@lzw).
0:E—{0,1} v€V

where E(v) are the incident edges of v.

#CSP(F) =r Holant(EQ U F),

where £Q = {=1, =3, =3, ... } is the set of equalities of all arities.
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Symmetric signatures

Symmetric Signatures: value only depends on the Hamming weight of the inputs.

=1[0,1,1]
AND3 [0,0,0,1]
EVEN-PARITY, = [1,0,1,0, 1]

MAJORITY; = [0,0,0,1, 1, 1]
(=¢) = EQUALITY = [1,0,0,0,0,0, 1]
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Holographic transformation

o The action of a 2-by-2 non-singular matrix T on a signature f of arity # is
T®"f. We use TF to denote that T acts upon every element of F.
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Some Signature Sets

Affine signatures .<7:
0 [1,0,...,0,%1]
@ [1,0,...,0,=]]
o 1, 0,1,0 .,00r1]
o [1,—i,1,—i,...,(—i) or 1]
(5] [0,1,0,1,.. Oorl]
0 [1,i,1,i,...,ior1]
@ [1,0,—1,0,1,0,—1,0,...,0 0r 1 or (—1)]
o [1,1,-1,-1,1,1,—-1,—1,...,1or (—1)]
@ [0,1,0,—1,0,1,0,—1,.. Oorlor( 1)]
o [1,—1, 1,1,1,—1,—1,1,...,1or(—1)]

Product-type signatures #:
9 [0,x,0]
@ [),0,...,0,2z] (includes all unary signatures)
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Some Signature Sets

Matchgate signatures .7
Q [@",0,a"15,0,...,0,ap"" 1,0, 3"
9 [",0,a"13,0,...,0,aB8" 1 0,5",0]
@ [0,0",0,a"715,0,...,0,ap" 1,0,
9 [0,0",0,a"713,0,...,0,a8""1 0,5",0]
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Some Signature Sets

Matchgate signatures .7
Q [@",0,a"15,0,...,0,ap"" 1,0, 3"
9 [",0,a"13,0,...,0,aB8" 1 0,5",0]
@ [0,0",0,a"715,0,...,0,ap" 1,0,
9 [0,0",0,a"713,0,...,0,a8""1 0,5",0]

Example

£0 = {EVEN-PARITY, | n € Z*}
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Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]
o Dichotomy for PI-#CSP(F) with real weights
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Main Result

Theorem

Let F be any set of symmetric, complex-valued signatures in Boolean variables.

Then P1-#CSP(F) is #P-hard unless F C o/, F C P, or F C M,

in which case the problem is in P.
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Theorem
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|
Secondary Result

Theorem

Iff is a non-degenerate, symmetric, complex-valued signature of arity 4 in Boolean
variables, then Pl-Holant(f) is #P-hard unless f is

o </ -transformable,
P -transformable,
vanishing, or

A -transformable,

in which case the problem is in P.

Definition (F-transformable)

A signature f is F-transformable if there exists T € C**2 such that
o f& TF and
° :2’1®2 e F.

4
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Proof Outline: Dependency Graph

#Pl-4Reg-EO

[ Mixing J—{ Pinning
esult

Arity 4
Pl-Holant(f)

Unary
Interpolation

Domain Pairing
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—
Pinning

Graph Homomorphism  #CSP

o [Dyer, Greenhill 00] o [Bulatov, Dalmau 07]

o [Bulatov, Grohe 05] o [Dyer, Goldberg, Jerrum 09]

o [Goldberg, Grohe o [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
Jerrum, Thurley 10] o [Cai, Lu, Xia 10]

e [Cai, Chen, Lu 10] o [Huang, Lu 12]
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#Pl-4Reg-EO: Eulerian Orientation

Definition

At each vertex in an Eulerian orientation of a graph,

in-degree equals out-degree.

Example
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#Pl-4Reg-EO: Theorem and Proof Overview

Theorem
Counting Eulerian Orientations for planar 4-regular graphs is #P-hard. J
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Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.
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#Pl-4Reg-EO: Theorem and Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard. J

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

Proof.

Reduction from the evaluation of the Tutte polynomial at the point (3, 3) for
planar graphs:

Pl-Tutte(3,3) <t
<r #Pl-4Reg-EO

v
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#Pl-4Reg-EO: Tutte Polynomial

Theorem (Vertigan 05)

For any x,y € C, the problem of computing the Tutte polynomial at (x,y) over
planar graphs is #P-hard unless (x — 1)(y — 1) € {1,2} or
(x,y) € {(1,1),(=1,=1), (G, /), (?,))}, where j = ¥ /3. In each of these

exceptional cases, the computation can be done in polynomial time.

Pl-#CSP ICALP 2013 20/ 34
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#Pl-4Reg-EO: Medial Graph

Definition

For a connected plane graph G, its medial graph H has a vertex for each edge of G

and two vertices in H are joined by an edge for each face of G in which their

corresponding edges occur consecutively.

Example
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#P1l-4Reg-EO: The Connection

Theorem (Las Vergnas 88)
Let G be a connected plane graph and let O (H) be the set of all Eulerian orientations
in the medial graph H of G. Then

2-PLTutteg(3,3) = » 2709,

0€6(H)

where B(O) is the number of saddle vertices in the orientation O, i.e. vertices in
which the edges are oriented *‘in, out, in, out" in cyclic order.
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\

Pl-Holant ([0, 1,0] | f) (#,) =10,1,0]
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Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O (H) be the set of all Eulerian orientations
in the medial graph H of G. Then
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Signature matrix:
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(order reversed)
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Let G be a connected plane graph and let O (H) be the set of all Eulerian orientations
in the medial graph H of G. Then
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Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O (H) be the set of all Eulerian orientations
in the medial graph H of G. Then

2-PLTutteg(3,3) = » 2709,
0€6(H)

where B(O) is the number of saddle vertices in the orientation O, i.e. vertices in
which the edges are oriented *‘in, out, in, out" in cyclic order.

Signature matrix:

o Letflw,x,y,z) = f"*
be an arity 4 signature

@ Row index is (w, x), My =
BUT the column index is (z, y)
(order reversed)

— o O O
oSO N = O
S = N O
S O O =
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#P1l-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

Pl-Tutte(3, 3) =7 Pl-Holant ([O, 1,0] | [

i =l=T=}

OO
o—=NO

coo—
_ 1
v

<r

<7 #Pl-4Reg-EO

v
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#P1l-4Reg-EO: Holographic Transformations

To remove bipartiteness, do holographic transformation by Z

I
Si-
o
F—
[——
=
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1 1
To remove bipartiteness, do holographic transformation by Z = % { , } :

Pl-Holant ([0, 1, 0] | f) =r Pl-Holant(f),

where

— o O N
S O = O
S = O O
N O O =
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1 1
To remove bipartiteness, do holographic transformation by Z = % { , } :

Pl-Holant ([0, 1, 0] | f) =r Pl-Holant(f),

where

S O = O
S = O O
N O O =

Similarly,

Pl-Holant ([0, 1,0] | [0,0, 1,0, 0]) =7 Pl-Holant([3,0, 1,0, 3]).
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#P1l-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

0001
Pl-Tutte(3, 3) = Pl-Holant ([0, 1,0] | [8%%8])
1000

20
=1 Pl-Holant ( [8 5
10

<r

<r Pl-Holant([3,0, 1,0, 3])

=7 Pl-Holant ([0, 1, 0] | [0,0, 1,0, 0])
— #Pl-4Reg-EO
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#P1l-4Reg-EO: Planar Tetrahedron Gadget

Assign (3,0, 1,0, 3] to every vertex of this gadget...

...to get a signature 16¢’ with
19 0 0 7
0 75 0
My=10 57 o
7 0 0 19
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#P1l-4Reg-EO: Rotationally Symmetric

2 0 01 19 0 0 7
01 00O 0 75 0
My = M, =
77 1o o010 £ 1o 57 0
1 0 0 2 7 0 0 19
(a) A counterclockwise rotation. (b) Movement of signature matrix entries

under a counterclockwise rotation.
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#Pl-4Reg-EO: Diagonalization

S = = O
S O =
—_0 O =
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#Pl-4Reg-EO: Diagonalization

0 0 1 1
1 1 0 0
Let T = 11 0 o . Then
0 0 —1 1
1 0 0 O
B o o1 0 o]
My =TAT =T|0 o ] ol T
0 0 0 3
and
1 0 0 O
B o6 0 of
My =TAyT =T |0 o ¢ o T
0O 0 0 13
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#Pl-4Reg-EO: Diagonalization

0 0 1 1
1 1 0 0
Let T = 11 0 o . Then
0 0 —1 1
1 0 0 O
B o o1 0 o]
My =TAT =T|0 o ] ol T
0 0 0 3
and
1 0 0 O
B o6 0 of
Mg =TAyT =7| 0 0 o | T
0O 0 0 13

Follows from being both rotationally symmetric and complement invariant.
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#Pl-4Reg-EO: Interpolation

Suppose that f appears # times in  of Pl-Holant(f").
Construct instances s of Holant(g) indexed by s > 1.
Obtain € from € by replacing each f* with N; (¢’ assigned to all vertices).
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#Pl-4Reg-EO: Interpolation

Suppose that f appears # times in  of Pl-Holant(f").
Construct instances s of Holant(g) indexed by s > 1.
Obtain € from € by replacing each f* with N; (¢’ assigned to all vertices).

To obtain € from €,
we effectively replace My with My, = (M )"
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#Pl-4Reg-EO: Interpolation

1 0 00 1 00 0
01 00 06 0 0

A/: —

710 0 1 0 A 00 6 0
00 0 3 0 0 0 13

To obtain €2 from €2,

we effectively replace My with My, = (M )"
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1 0 0 O 1 0 0 O
01 0 O 0 6 0 O
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0 0 0 3 0 0 0 13
To obtain €2 from €2,
we effectively replace My with My, = (M )"
@ To obtain ) from €,
we first replace My with TAy T (Holant unchanged)
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To obtain €2 from €2,

we effectively replace My with My, = (M )"

@ To obtain € from €,
we first replace My with TAy T (Holant unchanged)
@ Then we replace TAp T~ " with T(Ay/ )T,
We only need to consider the assignments to Ay that assign
@ 0000 j many times,
@ 0110 or 1001 k many times, and
@ 1111 ¢ many times.

Let cjxe be the sum over all such assignments of the products of evaluations (including the
contributions from T and T~ ) on €.
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#Pl-4Reg-EO: Interpolation

1 0 0 0 1 00 0
01 0 0 06 0 0
A=10 01 0 Ar=100 6 o
0 0 0 3 0 0 0 13

Then

Pl-Holant, = Z 3ZCjkg
jt+k+t=n
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#Pl-4Reg-EO: Interpolation

1 0 0 O 1 0 0 O
0 1 0 0 0 6 0 O
A=1o 01 0 A=10 0 6 o
0 0 0 3 0O 0 0 13
Then
Pl-Holant, = Z 3ZCjkg
jt+k+t=n
and

Pl-Holanto,, = Z (6“13%) cne
jt+k+L=n

is a full rank Vandermonde system (row index s, column index cjre).
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Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.
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2001
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1002
1900 77
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard. J
Proof.
0001 : H .
Pl-Tutte(3, 3) =7 Pl-Holant ( 0,1,0] | [9132 8] > Major proof techniques:
L1000
2001 .
. @ Holographic
=TP1-Holam([86?8]) et
1002
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7 0019
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Thank You
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