The Complexity of Planar Boolean #CSP with Complex Weights

Heng Guo (joint work with Tyson Williams)

University of Wisconsin-Madison

Riga, Latvia July 8th 2013

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex in the set.

•
$$G = (V, E)$$

•
$$G = (V, E)$$

- G = (V, E)
- $\bullet \ \sigma: V \to \{0,1\}$

- \bullet G=(V,E)
- $\bullet \ \sigma: V \to \{0,1\}$

- G = (V, E)
- $\sigma: V \rightarrow \{0,1\}$

$$\prod_{(u,v)\in E} \operatorname{OR}(\sigma(u),\sigma(v)) = 1\cdot 1\cdot 1\cdot 1\cdot 1\cdot 1 = 1$$

- \bullet G=(V,E)
- $\sigma: V \rightarrow \{0,1\}$

$$\prod_{(u,v)\in E} \operatorname{OR}(\sigma(u),\sigma(v)) = 1 \cdot 1 \cdot \frac{0}{0} \cdot 1 \cdot 1 \cdot 1 = 0$$

- G = (V, E)
- $\sigma: V \rightarrow \{0,1\}$

$$\# \mathsf{VertexCover}(G) = \sum_{\sigma: V \to \{0,1\}} \prod_{(u,v) \in E} \mathsf{OR}(\sigma(u), \sigma(v))$$

Constraint Graph

EVEN-PARITY $(x, y, z) \land \text{MAJORITY}(x, y, z) \land \text{OR}(x, y, z)$

Constraint Graph

EVEN-PARITY $(x, y, z) \land \text{MAJORITY}(x, y, z) \land \text{OR}(x, y, z)$

Constraint Satisfaction Problems

$$\#CSP(\mathcal{F})$$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma:V \to \{0,1\}} \prod_{c \in C} f_c \left(\sigma \mid_{N(c)}\right),\,$$

where N(c) are the neighbors of c.

Constraint Satisfaction Problems

$$\#CSP(\mathcal{F})$$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma:V \to \{0,1\}} \prod_{c \in C} f_c \left(\sigma \mid_{N(c)}\right),\,$$

where N(c) are the neighbors of c.

• In this talk we consider the case where the constraint graph is planar, denoted $Pl-\#CSP(\mathcal{F})$.

 ${\sf EVEN\text{-}PARITY}(x,y,z) \land {\sf MAJORITY}(x,y,z) \land {\sf OR}(x,y,z)$

EVEN-PARITY $(x, y, z) \land MAJORITY(x, y, z) \land OR(x, y, z)$

EVEN-PARITY $(x, y, z) \land \text{MAJORITY}(x, y, z) \land \text{OR}(x, y, z)$

NOT planar, so **NOT** an instance of Pl-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₃})

EVEN-PARITY $(x, y, z) \land \text{MAJORITY}(x, y, z) \land \text{OR}(x, y, z)$

NOT planar, so **NOT** an instance of $Pl-\#CSP(\{EVEN-PARITY_3, MAJORITY_3, OR_3\})$

EVEN-PARITY(x, y, z) \land MAJORITY(x, y, z) \land OR(x, y)

EVEN-PARITY(x, y, z) \land MAJORITY(x, y, z) \land OR(x, y)

VALID instance of Pl-#CSP({EVEN-PARITY₃, MAJORITY₃, OR₂})

$\#CSP(\mathcal{F})$ in Holant Framework

$\#CSP(\mathcal{F})$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma:V\to\{0,1\}} \prod_{c\in C} f_c\left(\sigma\mid_{N(c)}\right),\,$$

where N(c) are the neighbors of c.

$\#CSP(\mathcal{F})$ in Holant Framework

$\#CSP(\mathcal{F})$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma:V\to\{0,1\}} \prod_{c\in C} f_c\left(\sigma\mid_{N(c)}\right),\,$$

where N(c) are the neighbors of c.

$Holant(\mathcal{F})$

• On input graph G = (V, E), compute

$$\sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)}\right),\,$$

where E(v) are the incident edges of v.

$\#CSP(\mathcal{F})$ in Holant Framework

$\#CSP(\mathcal{F})$

• On input with (bipartite) constraint graph G = (V, C, E), compute

$$\sum_{\sigma:V\to\{0,1\}} \prod_{c\in C} f_c\left(\sigma\mid_{N(c)}\right),\,$$

where N(c) are the neighbors of c.

$Holant(\mathcal{F})$

• On input graph G = (V, E), compute

$$\sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)}\right),\,$$

where E(v) are the incident edges of v.

$$\#CSP(\mathcal{F}) \equiv_T Holant(\mathcal{EQ} \cup \mathcal{F}),$$

where $\mathcal{EQ} = \{=_1, =_2, =_3, \dots\}$ is the set of equalities of all arities.

Example

Example

Symmetric signatures

Symmetric Signatures: value only depends on the Hamming weight of the inputs.

$$\begin{split} OR_2 &= [0,1,1]\\ AND_3 &= [0,0,0,1]\\ EVEN-PARITY_4 &= [1,0,1,0,1]\\ MAJORITY_5 &= [0,0,0,1,1,1]\\ (=_6) &= EQUALITY_6 &= [1,0,0,0,0,0,1] \end{split}$$

• The action of a 2-by-2 non-singular matrix T on a signature f of arity n is $T^{\otimes n}f$. We use $T\mathcal{F}$ to denote that T acts upon every element of \mathcal{F} .

- The action of a 2-by-2 non-singular matrix T on a signature f of arity n is $T^{\otimes n}f$. We use $T\mathcal{F}$ to denote that T acts upon every element of \mathcal{F} .
- Holographic transformation: If H is orthogonal, then Valiant's Holant theorem implies that $\operatorname{Holant}(\mathcal{F}) \equiv_T \operatorname{Holant}(H\mathcal{F})$.

- The action of a 2-by-2 non-singular matrix T on a signature f of arity n is $T^{\otimes n}f$. We use $T\mathcal{F}$ to denote that T acts upon every element of \mathcal{F} .
- Holographic transformation: If H is orthogonal, then Valiant's Holant theorem implies that $Holant(\mathcal{F}) \equiv_T Holant(H\mathcal{F})$.
- Example: Let $H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$H_2^{\otimes n}(=_n) = \text{EVEN-PARITY}_n$$

- The action of a 2-by-2 non-singular matrix T on a signature f of arity n is $T^{\otimes n}f$. We use $T\mathcal{F}$ to denote that T acts upon every element of \mathcal{F} .
- Holographic transformation: If H is orthogonal, then Valiant's Holant theorem implies that $Holant(\mathcal{F}) \equiv_T Holant(H\mathcal{F})$.
- Example: Let $H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$H_2^{\otimes n}(=_n) = \text{EVEN-PARITY}_n$$

Let
$$H_2\mathcal{F} = \widehat{\mathcal{F}}$$

- The action of a 2-by-2 non-singular matrix T on a signature f of arity n is $T^{\otimes n}f$. We use $T\mathcal{F}$ to denote that T acts upon every element of \mathcal{F} .
- Holographic transformation: If H is orthogonal, then Valiant's Holant theorem implies that $Holant(\mathcal{F}) \equiv_T Holant(H\mathcal{F})$.
- Example: Let $H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$H_2^{\otimes n}(=_n) = \text{EVEN-PARITY}_n$$

Let
$$H_2\mathcal{F} = \widehat{\mathcal{F}}$$

Note: $H_2\widehat{\mathcal{F}} = \mathcal{F}$ since $H_2\widehat{\mathcal{F}} = H_2H_2\mathcal{F} = \mathcal{F}$

Some Signature Sets

Affine signatures 4:

- $0 [1,0,\ldots,0,\pm 1]$
- $[1,0,\ldots,0,\pm i]$
- $[1,0,1,0,\ldots,0 \text{ or } 1]$
- $[1, -i, 1, -i, \dots, (-i) \text{ or } 1]$
- $[0, 1, 0, 1, \dots, 0 \text{ or } 1]$
- $[1, i, 1, i, \dots, i \text{ or } 1]$
- $[1,0,-1,0,1,0,-1,0,\ldots,0 \text{ or } 1 \text{ or } (-1)]$
- $[1, 1, -1, -1, 1, 1, -1, -1, \dots, 1 \text{ or } (-1)]$
- $[0, 1, 0, -1, 0, 1, 0, -1, \dots, 0 \text{ or } 1 \text{ or } (-1)]$
- $[1,-1,-1,1,1,-1,-1,1,\dots,1 \text{ or } (-1)]$

Product-type signatures \mathscr{P} :

- 0 [0, x, 0]
- $[y,0,\ldots,0,z]$ (includes all unary signatures)

Some Signature Sets

Matchgate signatures *M*:

- $\bullet \ [\alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n]$
- $[\alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n, 0]$
- **6** $[0, \alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n]$
- $[0, \alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n, 0]$

Some Signature Sets

Matchgate signatures *M*:

- $\bullet \quad [\alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n]$
- $[\alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n, 0]$
- $[0, \alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n]$
- $[0, \alpha^n, 0, \alpha^{n-1}\beta, 0, \dots, 0, \alpha\beta^{n-1}, 0, \beta^n, 0]$

Example

$$\widehat{\mathcal{EQ}} = \{ \text{EVEN-PARITY}_n \mid n \in \mathbb{Z}^+ \}$$

Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]

• Dichotomy for Pl- $\#CSP(\mathcal{F})$ with **real** weights

Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]

- Dichotomy for Pl- $\#CSP(\mathcal{F})$ with **real** weights
- Dichotomy for Pl-Holant(*f*) for arity 3 signature with **complex** weights

Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]

- Dichotomy for Pl- $\#CSP(\mathcal{F})$ with real weights
- Dichotomy for Pl-Holant(f) for arity 3 signature with **complex** weights

[Cai, Kowalczyk 10]

• Dichotomy for Pl-#CSP([a, b, c]) with **complex** weights

Main Result

Theorem

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables.

Then $\operatorname{Pl-\#CSP}(\mathcal{F})$ is $\#\operatorname{P-hard}$ unless $\mathcal{F}\subseteq\mathscr{A}$, $\mathcal{F}\subseteq\mathscr{P}$, or $\mathcal{F}\subseteq\widehat{\mathscr{M}}$, in which case the problem is in P .

Main Result

Theorem

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then $\operatorname{Pl-\#CSP}(\mathcal{F})$ is $\#\operatorname{P-hard}$ unless $\mathcal{F}\subseteq\mathscr{A}$, $\mathcal{F}\subseteq\mathscr{P}$, or $\mathcal{F}\subseteq\widehat{\mathscr{M}}$, in which case the problem is in P .

Theorem

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then $\operatorname{Pl-Holant}(\mathcal{F} \cup \widehat{\mathcal{EQ}})$ is $\#\operatorname{P-hard}$ unless $\mathcal{F} \subseteq \mathscr{A}$, $\mathcal{F} \subseteq \widehat{\mathscr{P}}$, or $\mathcal{F} \subseteq \mathscr{M}$, in which case the problem is in P .

Secondary Result

Theorem

If f is a non-degenerate, symmetric, complex-valued signature of arity 4 in Boolean variables, then Pl-Holant(f) is #P-hard unless f is

- A-transformable,
- *P*-transformable,
- vanishing, or
- *M*-transformable,

in which case the problem is in P.

Definition (\mathcal{F} -transformable)

A signature f is \mathcal{F} -transformable if there exists $T \in \mathbb{C}^{2 \times 2}$ such that

- $f \in T\mathcal{F}$ and
- = $_{2}T^{\otimes 2} \in \mathcal{F}$.

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Proof Outline: Dependency Graph

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\#CSP(\mathcal{F} \cup \{[1,0],[0,1]\}) \leq_T \#CSP(\mathcal{F})$.

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\#CSP(\mathcal{F} \cup \{[1,0],[0,1]\}) \leq_T \#CSP(\mathcal{F})$.

Pl-#CSP($\widehat{\mathcal{M}} \cup \{[1,0],[0,1]\}$) #P-hard but Pl-#CSP($\widehat{\mathcal{M}}$) tractable

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\#CSP(\mathcal{F} \cup \{[1,0],[0,1]\}) \leq_T \#CSP(\mathcal{F})$.

$$\text{Pl-\#CSP}(\widehat{\mathscr{M}} \cup \{[1,0],[0,1]\}) \; \#\text{P-hard but Pl-\#CSP}(\widehat{\mathscr{M}}) \; \text{tractable}$$

Lemma (Cai, Lu, Xia 10)

For any set of signatures \mathcal{F} with real weights,

$$\begin{array}{c} \text{Pl-Holant}(\widehat{\mathcal{EQ}} \cup \mathcal{F}) \text{ is } \#P\text{-hard (or in P)} \\ & \updownarrow \\ \text{Pl-Holant}(\widehat{\mathcal{EQ}} \cup \mathcal{F} \cup \{[1,0],[0,1]\}) \text{ is } \#P\text{-hard (or in P)} \end{array}$$

Graph Homomorphism

- [Dyer, Greenhill 00]
- [Bulatov, Grohe 05]
- [Goldberg, Grohe Jerrum, Thurley 10]
- [Cai, Chen, Lu 10]

#CSP

- [Bulatov, Dalmau 07]
- [Dyer, Goldberg, Jerrum 09]
- [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
- [Cai, Lu, Xia 10]
- [Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, $\#CSP(\mathcal{F} \cup \{[1,0],[0,1]\}) \leq_T \#CSP(\mathcal{F})$.

$$\text{Pl-}\#\text{CSP}(\widehat{\mathscr{M}} \cup \{[1,0],[0,1]\}) \; \#\text{P-hard but Pl-}\#\text{CSP}(\widehat{\mathscr{M}}) \; \text{tractable}$$

Lemma (G, Williams 13)

For any set of signatures \mathcal{F} with complex weights,

$$\begin{array}{c} \text{Pl-Holant}(\widehat{\mathcal{EQ}} \cup \mathcal{F}) \text{ is } \#P\text{-hard (or in P)} \\ & \updownarrow \\ \text{Pl-Holant}(\widehat{\mathcal{EQ}} \cup \mathcal{F} \cup \{[1,0],[0,1]\}) \text{ is } \#P\text{-hard (or in P)} \end{array}$$

#Pl-4Reg-EO: Eulerian Orientation

Definition

At each vertex in an Eulerian orientation of a graph,

in-degree equals out-degree.

Example

#Pl-4Reg-EO: Theorem and Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

#Pl-4Reg-EO: Theorem and Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

#Pl-4Reg-EO: Theorem and Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

Proof.

Reduction from the evaluation of the Tutte polynomial at the point (3,3) for planar graphs:

$$\begin{aligned} \text{Pl-Tutte}(3,3) &\leq_T &\vdots \\ &\leq_T \text{\#Pl-4Reg-EO} \end{aligned}$$

#Pl-4Reg-EO: Tutte Polynomial

Theorem (Vertigan 05)

For any $x, y \in \mathbb{C}$, the problem of computing the Tutte polynomial at (x, y) over planar graphs is #P-hard unless $(x-1)(y-1) \in \{1,2\}$ or $(x,y) \in \{(1,1),(-1,-1),(j,j^2),(j^2,j)\}$, where $j=e^{2\pi i/3}$. In each of these exceptional cases, the computation can be done in polynomial time.

20 / 34

#PI-4Reg-EO: Medial Graph

Definition

For a connected plane graph *G*, its medial graph *H* has a vertex for each edge of *G* and two vertices in *H* are joined by an edge for each face of *G* in which their corresponding edges occur consecutively.

Example

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = \begin{bmatrix} f^{0000} & f^{0010} & f^{0001} & f^{0011} \\ f^{0100} & f^{0110} & f^{0101} & f^{0111} \\ f^{000} & f^{010} & f^{001} & f^{001} & f^{0111} \\ f^{1100} & f^{1110} & f^{1101} & f^{1111} \end{bmatrix}$$

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = \begin{bmatrix} f^{0000} & f^{0010} & f^{0001} & f^{0011} \\ f^{0100} & f^{0110} & f^{0101} & f^{0111} \\ f^{0000} & f^{1010} & f^{1001} & f^{1011} \\ f^{1100} & f^{1110} & f^{1101} & f^{1111} \end{bmatrix}$$

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = egin{bmatrix} 0 & 0 & 0 & f^{0011} \ 0 & f^{0110} & f^{0101} & 0 \ 0 & f^{1010} & f^{1001} & 0 \ f^{1100} & 0 & 0 & 0 \end{bmatrix}$$

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = egin{bmatrix} 0 & 0 & 0 & f^{0011} \ 0 & f^{0110} & f^{0101} & 0 \ 0 & f^{1010} & f^{1001} & 0 \ f^{1100} & 0 & 0 & 0 \end{bmatrix}$$

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = egin{bmatrix} 0 & 0 & 0 & f^{9011} \ 0 & f^{9110} & 2 & 0 \ 0 & 2 & f^{4001} & 0 \ f^{4100} & 0 & 0 & 0 \end{bmatrix}$$

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = egin{bmatrix} 0 & 0 & 0 & f^{0011} \ 0 & f^{0110} & 2 & 0 \ 0 & 2 & f^{1001} & 0 \ f^{1100} & 0 & 0 & 0 \end{bmatrix}$$

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let $\mathcal{O}(H)$ be the set of all Eulerian orientations in the medial graph H of G. Then

$$2 \cdot \text{Pl-Tutte}_G(3,3) = \sum_{O \in \mathscr{O}(H)} 2^{\beta(O)},$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. vertices in which the edges are oriented ``in, out, in, out'' in cyclic order.

- Let $f(w, x, y, z) = f^{wxyz}$ be an arity 4 signature
- Row index is (w, x),
 BUT the column index is (z, y)
 (order reversed)

$$M_f = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

#Pl-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$Pl-Tutte(3,3) \equiv_{T} Pl-Holant \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right)$$

$$\leq_{T} \qquad \vdots$$

$$\leq_T$$
 #Pl-4Reg-EO

#PI-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \text{Pl-Tutte}(3,3) &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\leq_{T} & \vdots \\ &\leq_{T} \text{Pl-Holant}([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\equiv_{T} \# \text{Pl-4Reg-EO} \end{aligned}$$

#Pl-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \text{Pl-Tutte}(3,3) &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\leq_{T} & \vdots \\ &\leq_{T} \text{Pl-Holant}([0,1,0] \mid [0,0,1,0,0]) \\ &\equiv_{T} \# \text{Pl-4Reg-EO} \end{aligned}$$

#PI-4Reg-EO: Holographic Transformations

To remove bipartiteness, do holographic transformation by $Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$:

#Pl-4Reg-EO: Holographic Transformations

To remove bipartiteness, do holographic transformation by $Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$:

$$Pl-Holant([0,1,0] \mid f) \equiv_T Pl-Holant(f),$$

where

$$M_{f} = egin{bmatrix} 2 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 2 \end{bmatrix}.$$

#PI-4Reg-EO: Holographic Transformations

To remove bipartiteness, do holographic transformation by $Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$:

$$Pl-Holant([0,1,0] \mid f) \equiv_T Pl-Holant(f),$$

where

$$M_{f} = egin{bmatrix} 2 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 2 \end{bmatrix}.$$

Similarly,

 $\text{Pl-Holant}\,([0,1,0] \mid [0,0,1,0,0]) \equiv_T \text{Pl-Holant}([3,0,1,0,3]).$

#Pl-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{split} \text{Pl-Tutte}(3,3) &\equiv_T \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\equiv_T \text{Pl-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \right) \\ &\leq_T & \vdots \\ &\leq_T \text{Pl-Holant}([3,0,1,0,3]) \\ &\equiv_T \text{Pl-Holant}\left([0,1,0] \mid [0,0,1,0,0] \right) \\ &\equiv_T \text{\#Pl-4Reg-EO} \end{split}$$

#Pl-4Reg-EO: Planar Tetrahedron Gadget

Assign [3, 0, 1, 0, 3] to every vertex of this gadget...

...to get a signature 16g' with

$$M_{g'} = egin{bmatrix} 19 & 0 & 0 & 7 \ 0 & 7 & 5 & 0 \ 0 & 5 & 7 & 0 \ 7 & 0 & 0 & 19 \end{bmatrix}.$$

#Pl-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \text{Pl-Tutte}(3,3) &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\equiv_{T} \text{Pl-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant} \left(\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 7 & 5 & 7 & 0 \\ 7 & 0 & 19 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant}([3,0,1,0,3]) \\ &\equiv_{T} \text{Pl-Holant}([0,1,0] \mid [0,0,1,0,0]) \\ &\equiv_{T} \text{Pl-4Reg-EO} \end{aligned}$$

#PI-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \text{Pl-Tutte}(3,3) &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\equiv_{T} \text{Pl-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant} \left(\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 7 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant}([3,0,1,0,3]) \\ &\equiv_{T} \text{Pl-Holant}([0,1,0] \mid [0,0,1,0,0]) \\ &\equiv_{T} \text{Pl-4Reg-EO} \end{aligned}$$

$$M_{f'} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

$$M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation.

$$M_{f'} = egin{bmatrix} 2 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{g'} = egin{bmatrix} 19 & 0 & 0 & 7 \ 0 & 7 & 5 & 0 \ 0 & 5 & 7 & 0 \ 7 & 0 & 0 & 19 \end{bmatrix}$$

$$M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation.

$$M_{f'} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

$$M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation.

$$M_{f'} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

$$M_{g'} = \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}$$

(a) A counterclockwise rotation.

(b) Movement of signature matrix entries under a counterclockwise rotation.

#Pl-4Reg-EO: Diagonalization

$$Let T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

#Pl-4Reg-EO: Diagonalization

$$Let T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}. Then$$

$$M_{f'} = T\Lambda_{f'}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1}$$

and

$$M_{g'} = T\Lambda_{g'}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix} T^{-1}.$$

#Pl-4Reg-EO: Diagonalization

Let
$$T = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
. Then

$$M_{f'} = T\Lambda_{f'}T^{-1} = T \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} T^{-1}$$

and

$$M_{g'} = T\Lambda_{g'}T^{-1} = T \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{vmatrix} T^{-1}.$$

Follows from being both rotationally symmetric and complement invariant.

Suppose that f' appears n times in Ω of Pl-Holant(f'). Construct instances Ω_s of Holant(g') indexed by $s \geq 1$. Obtain Ω_s from Ω by replacing each f' with N_s (g' assigned to all vertices).

Suppose that f' appears n times in Ω of Pl-Holant(f'). Construct instances Ω_s of Holant(g') indexed by $s \geq 1$. Obtain Ω_s from Ω by replacing each f' with N_s (g' assigned to all vertices).

To obtain Ω_s from Ω , we effectively replace $M_{f'}$ with $M_{N_s} = (M_{g'})^s$.

$$\Lambda_{f'} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$\Lambda_{f'} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{g'} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 6 & 0 & 0 \ 0 & 0 & 6 & 0 \ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω_s we effectively replace $M_{f'}$ with $M_{N_s} = (M_{\sigma'})^s$.

$$\Lambda_{f'} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$\Lambda_{f'} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{g'} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 6 & 0 & 0 \ 0 & 0 & 6 & 0 \ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω_s we effectively replace $M_{f'}$ with $M_{N_s} = (M_{\sigma'})^s$.

1 To obtain Ω_s from Ω_s we first replace $M_{f'}$ with $T\Lambda_{f'}T^{-1}$. (Holant unchanged)

$$\Lambda_{\textit{f}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\textit{g}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{f'}$ with $M_{N_s} = (M_{g'})^s$.

- ① To obtain Ω_s from Ω , we first replace $M_{l'}$ with $T\Lambda_{l'}T^{-1}$. (Holant unchanged)
- ② Then we replace $T\Lambda_{f'}T^{-1}$ with $T(\Lambda_{g'})^sT^{-1}$.

$$\Lambda_{\textit{f}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\textit{g}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{f'}$ with $M_{N_s} = (M_{g'})^s$.

- **1** To obtain Ω_s from Ω , we first replace $M_{f'}$ with $T\Lambda_{f'}T^{-1}$. (Holant unchanged)
- 2 Then we replace $T\Lambda_{\mathbf{f}} T^{-1}$ with $T(\Lambda_{\mathbf{g}'})^s T^{-1}$.

We only need to consider the assignments to $\Lambda_{f'}$ that assign

- 0000 *j* many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\mathbf{f}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\mathbf{g}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{f'}$ with $M_{N_s} = (M_{g'})^s$.

- **1** To obtain Ω_s from Ω , we first replace $M_{f'}$ with $T\Lambda_{f'}T^{-1}$. (Holant unchanged)
- 2 Then we replace $T\Lambda_{f'}T^{-1}$ with $T(\Lambda_{g'})^sT^{-1}$.

We only need to consider the assignments to Λ_{f} that assign

- 0000 *j* many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\textit{f'}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\textit{g'}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{f'}$ with $M_{N_s} = (M_{g'})^s$.

- **1** To obtain Ω_s from Ω , we first replace $M_{f'}$ with $T\Lambda_{f'}T^{-1}$. (Holant unchanged)
- ② Then we replace $T\Lambda_{\mathbf{f}}T^{-1}$ with $T(\Lambda_{\mathbf{g}'})^sT^{-1}$.

We only need to consider the assignments to Λ_{f} that assign

- 0000 *j* many times,
- 0110 or 1001 *k* many times, and
- 1111 ℓ many times.

$$\Lambda_{\mathbf{f}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\mathbf{g}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

To obtain Ω_s from Ω , we effectively replace $M_{f'}$ with $M_{N_s} = (M_{g'})^s$.

- **1** To obtain Ω_s from Ω , we first replace $M_{f'}$ with $T\Lambda_{f'}T^{-1}$. (Holant unchanged)
- 2 Then we replace $T\Lambda_{\mathbf{f}} T^{-1}$ with $T(\Lambda_{\mathbf{g}'})^s T^{-1}$.

We only need to consider the assignments to Λ_{f} that assign

- 0000 *j* many times,
- 0110 or 1001 k many times, and
- 1111 ℓ many times.

$$\Lambda_{\textit{f}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\textit{g}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

Then

$$\mathsf{Pl}\text{-}\mathsf{Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^{\ell} c_{jk\ell}$$

$$\Lambda_{\textit{f}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \qquad \Lambda_{\textit{g}'} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$$

Then

$$Pl-Holant_{\Omega} = \sum_{j+k+\ell=n} 3^{\ell} c_{jk\ell}$$

and

Pl-Holant
$$_{\Omega_s} = \sum_{j+k+\ell=n} (6^k 13^\ell)^s c_{jk\ell}$$

is a full rank Vandermonde system (row index s, column index $c_{ik\ell}$).

#Pl-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{aligned} \text{Pl-Tutte}(3,3) &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\equiv_{T} \text{Pl-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant} \left(\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant}([3,0,1,0,3]) \\ &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid [0,0,1,0,0] \right) \\ &\equiv_{T} \text{Pl-4Reg-EO} \end{aligned}$$

#Pl-4Reg-EO: Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

$$\begin{split} \text{Pl-Tutte}(3,3) &\equiv_{T} \text{Pl-Holant} \left([0,1,0] \mid \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \\ &\equiv_{T} \text{Pl-Holant} \left(\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant} \left(\begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix} \right) \\ &\leq_{T} \text{Pl-Holant}([3,0,1,0,3]) \\ &\equiv_{T} \text{Pl-Holant}([0,1,0] \mid [0,0,1,0,0]) \\ &\equiv_{T} \text{Pl-4Reg-EO} \end{split}$$

Major proof techniques:

- Holographic transformation
- Gadget construction
- Interpolation

Thank You