Modified Log-Sobolev inequalities for strongly Log-concave distributions

Heng Guo (University of Edinburgh)

Joint with Mary Cryan and Giorgos Mousa (Edinburgh)

Tsinghua University

Jun 25th, 2019

STRONGLY LOG-CONCAVE DISTRIBUTIONS

DISCRETE LOG-CONCAVE DISTRIBUTION

What is the correct definition of a log-concave distribution?

What about 1 dimension? For $\pi:[n]\to\mathbb{R}_{\geqslant 0},$ $\pi(i+1)\pi(i-1)\leqslant\pi(i)^2?$

DISCRETE LOG-CONCAVE DISTRIBUTION

What is the correct definition of a log-concave distribution?

What about 1 dimension? For π : $[n] \to \mathbb{R}_{\geqslant 0}, \pi(i+1)\pi(i-1) \leqslant \pi(i)^2$?

Consider $\pi(1) = 1/2$, $\pi(n) = 1/2$ and all other $\pi(i)$ are 0.

This distribution satisfies the condition, but it is **not** even unimodal.

What about high dimensions?

STRONGLY LOG-CONCAVE POLYNOMIALS

Log-concave polynomial

A polynomial $p \in \mathbb{R}_{\geqslant 0}[x_1, \dots, x_n]$ is log-concave (at x) if the Hessian $\nabla^2 \log p(x)$ is negative semi-definite.

 \Rightarrow $\nabla^2 p(x)$ has at most one positive eigenvalue.

Strongly log-concave polynomial

A polynomial $p \in \mathbb{R}_{\geqslant 0}[x_1, \dots, x_n]$ is strongly log-concave if for any index set $I \subseteq [n]$, $\partial_I p$ is log-concave at 1.

Originally introduced by Gurvitz (2009), equivalent to:

- completely log-concave (Anari, Oveis Gharan, and Vinzant, 2018);
- Lorentzian polynomials (Brändén and Huh, 2019+).

STRONGLY LOG-CONCAVE DISTRIBUTIONS

A distribution $\pi:2^{[n]}\to\mathbb{R}_{\geqslant 0}$ is strongly log-concave if so is its generating polynomial

$$g_{\pi}(\mathbf{x}) = \sum_{S \subseteq [n]} \pi(S) \prod_{i \in S} x_i.$$

An important example of homogeneous strongly log-concave distributions is the uniform distribution over bases of a matroid (Anari, Oveis Gharan, and Vinzant 2018; Brändén and Huh 2019+).

MATROID

A matroid $\mathcal{M}=(E,\mathcal{I})$ consists of a finite ground set E and a collection \mathcal{I} of subsets of E (independent sets) such that:

- $\emptyset \in \mathfrak{I}$;
- if $S \in \mathcal{I}$, $T \subseteq S$, then $T \in \mathcal{I}$ (downward closed);
- if $S,T\in \mathcal{I}$ and |S|>|T|, then there exists an element $\mathfrak{i}\in S\setminus T$ such that $T\cup \{\mathfrak{i}\}\in \mathcal{I}$.

Maximum independent sets are the bases. For any two bases, there is a sequence of exchanges of ground set elements from one to the other.

Let n = |E| and r be the rank, namely the size of any basis.

EXAMPLE — **GRAPHIC MATROIDS**

Spanning trees for graphs form the bases of graphic matroids.

Nelson (2018): Almost all matroids are non-representable!

ALTERNATIVE CHARACTERISATION FOR SLC

Brändén and Huh (2019+): An r-homogeneous multiaffine polynomial p with non-negative coefficients is strongly log-concave if and only if:

- the support of p is a matroid;
- after taking r 2 partial derivatives, the quadratic is real stable or 0.

Real stable: $p(\mathbf{x}) \neq 0$ if $\Im(x_i) > 0$ for all i.

Real stable polynomials (and strongly Rayleigh distributions) capture only "balanced" matroids, whereas SLC polynomials capture all matroids.

BASES-EXCHANGE WALK

The following Markov chain $P_{BX,\pi}$ converges to a homogeneous SLC π :

- **1. remove** an element uniformly at random from the current basis (call the resulting set *S*);
- **2.** add $i \notin S$ with probability proportional to $\pi(S \cup \{i\})$.

The implementation of the second step may be non-trivial.

The mixing time measures the convergence rate of a Markov chain:

$$t_{mix}(P,\epsilon) := \min_{t} \left\{ t \mid \|P^t(x_0,\cdot) - \pi\|_{TV} \leqslant \epsilon \right\}.$$

- 1. Remove an edge uniformly at random;
- 2. Add back one of the available choices uniformly at random.

- \rightarrow **1.** Remove an edge uniformly at random;
 - 2. Add back one of the available choices uniformly at random.

- \rightarrow **1.** Remove an edge uniformly at random;
 - 2. Add back one of the available choices uniformly at random.

Example — BASES-EXCHANGE

- 1. Remove an edge uniformly at random;
- ightarrow **2.** Add back one of the available choices uniformly at random.

- 1. Remove an edge uniformly at random;
- ightarrow **2.** Add back one of the available choices uniformly at random.

- \rightarrow **1.** Remove an edge uniformly at random;
 - ${\bf 2.}\;$ Add back one of the available choices uniformly at random.

- \rightarrow **1.** Remove an edge uniformly at random;
 - ${\bf 2.}\;$ Add back one of the available choices uniformly at random.

- 1. Remove an edge uniformly at random;
- ightarrow **2.** Add back one of the available choices uniformly at random.

- 1. Remove an edge uniformly at random;
- ightarrow **2.** Add back one of the available choices uniformly at random.

- 1. Remove an edge uniformly at random;
- 2. Add back one of the available choices uniformly at random.

- 1. Remove an edge uniformly at random;
- **2.** Add back one of the two choices uniformly at random.

- \rightarrow 1. Remove an edge uniformly at random;
 - **2.** Add back one of the two choices uniformly at random.

- 1. Remove an edge uniformly at random;
- \rightarrow **2.** Add back one of the two choices uniformly at random.

- \rightarrow 1. Remove an edge uniformly at random;
 - **2.** Add back one of the two choices uniformly at random.

- 1. Remove an edge uniformly at random;
- \rightarrow **2.** Add back one of the two choices uniformly at random.

Example — Bases-exchange

- 1. Remove an edge uniformly at random;
- **2.** Add back one of the two choices uniformly at random.

If we encode the state as a binary string, then this is just the lazy random walk on the Boolean hypercube $\{0,1\}^r$.

(The rank of this matroid is r and the ground set has size n=2r.)

The mixing time is $\Theta(r \log r)$.

Theorem (mixing time)

For any r-homogeneous strongly log-concave distribution π ,

$$t_{\mathsf{mix}}(P_{\mathsf{BX},\pi},\epsilon) \leqslant r \left(\log \log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{2\epsilon^2} \right),$$

where $\pi_{\min} = \min_{x \in \Omega} \pi(x)$.

Previously, Anari, Liu, Oveis Gharan, and Vinzant (2019):

$$t_{\mathsf{mix}}(P_{\mathsf{BX},\pi},\epsilon) \leqslant r \left(\mathsf{log} \, \frac{1}{\pi_{\mathsf{min}}} + \mathsf{log} \, \frac{1}{\epsilon} \right)$$

E.g. for the uniform distribution over bases of matroids (with n elements and rank r), our bound is $O(r(\log r + \log \log n))$, whereas the previous bound is $O(r^2 \log n)$.

The bound is asymptotically optimal, shown by the previous example.

Main result — concentration

Theorem (concentration bounds)

Let π and $P_{BX,\pi}$ be as before, and Ω be the support of π . For any observable function $f:\Omega\to\mathbb{R}$ and $\alpha\geqslant 0$,

$$\Pr_{\mathbf{x} \sim \pi}(|\mathbf{f}(\mathbf{x}) - \mathbb{E}_{\pi} \, \mathbf{f}| \geqslant \alpha) \; \leqslant \; 2 \exp\left(-\frac{\alpha^2}{2 \text{rv}(\mathbf{f})}\right),$$

where v(f) is the maximum of one-step variances

$$\nu(\mathbf{f}) := \max_{\mathbf{x} \in \Omega} \left\{ \sum_{\mathbf{y} \in \Omega} P_{\mathsf{BX},\pi}(\mathbf{x},\mathbf{y}) (\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y}))^2 \right\}.$$

For c-Lipschitz function f, $v(f) \leq c^2$.

Generalises concentration of Lipschitz functions in strongly Rayleigh distributions by Pemantle and Peres (2014); see also Hermon and Salez (2019+).

DIRICHLET FORM

For a Markov chain P and two functions f and g over the state space Ω ,

$$\mathcal{E}_{P}(f,g) := g^{T} \operatorname{diag}(\pi) \mathcal{L} f.$$

(the Laplacian $\mathcal{L} := \mathbf{I} - \mathbf{P}$)

For reversible Markov chains,

$$\mathcal{E}_{P}(f,g) = \frac{1}{2} \sum_{x,y \in O} \pi(x) P(x,y) (f(x) - f(y))) (g(x) - g(y)).$$

Modified Log-Sobolev inequality

Theorem (modified log-Sobolev inequality)

For any $f:\Omega\to\mathbb{R}_{\geqslant 0}$,

$$\mathcal{E}_{\mathsf{P}_{\mathsf{BX},\pi}}(\mathsf{f},\mathsf{log}\,\mathsf{f})\geqslant \frac{1}{\mathsf{r}}\cdot\mathsf{Ent}_{\pi}(\mathsf{f}),$$

Both main results are consequences of this.

 $Ent_{\pi}(f)$ is defined by

$$\operatorname{Ent}_{\pi}(f) := \mathbb{E}_{\pi}(f \circ \log f) - \mathbb{E}_{\pi} f \cdot \log \mathbb{E}_{\pi} f.$$

If we normalise \mathbb{E}_{π} f=1, then $Ent_{\pi}(f)=D(\pi\circ f\parallel\pi)$, the relative entropy (or Kullback-Leibler divergence) between $\pi\circ f$ and π .

Poincare constant (spectral gap):

$$\lambda(P) := \inf_{\mathsf{Var}_{\pi}(f) \neq 0} \frac{\mathcal{E}_{P}(f, f)}{\mathsf{Var}_{\pi}(f)},$$

$$t_{mix}(P,\epsilon) \leqslant \frac{1}{\lambda(P)} \left(\log \frac{1}{\pi_{min}} + \log \frac{1}{\epsilon} \right)$$

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

$$\alpha(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\mathcal{E}_P(\sqrt{f}, \sqrt{f})}{\mathsf{Ent}_\pi(f)},$$

$$t_{mix}(P,\epsilon) \leqslant \frac{1}{4\alpha(P)} \left(\log\log\frac{1}{\pi_{min}} + \log\frac{1}{2\epsilon^2}\right)$$

modified log-Sobolev constant (Bobkov and Tetali, 2006):

$$\rho(\mathsf{P}) := \inf_{\mathsf{Ent}_{\pi}(\mathsf{f}) \neq 0} \frac{\mathcal{E}_{\mathsf{P}}(\mathsf{f}, \mathsf{log}\,\mathsf{f})}{\mathsf{Ent}_{\pi}(\mathsf{f})},$$

$$t_{mix}(P,\epsilon) \leqslant \frac{1}{\rho(P)} \left(\log \log \frac{1}{\pi_{min}} + \log \frac{1}{2\epsilon^2} \right)$$

 $2\lambda(P) \geqslant \rho(P) \geqslant 4\alpha(P)$

$$\alpha(P) \leqslant \frac{1}{\log \pi_{min}^{-1}}$$

$$(P_{BX,\pi}) \geqslant 1/r$$

(Bobkov and Tetali, 2006)

(observed by Hermon and Salez, 2019+)

(our result)

Poincare constant (spectral gap):

$$\lambda(P) := \inf_{\mathsf{Var}_{\pi}(f) \neq 0} \frac{\epsilon_{P}(f,f)}{\mathsf{Var}_{\pi}(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P,\epsilon) \leqslant \frac{1}{\lambda(P)} \left(\log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{\epsilon} \right)$$

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

$$\alpha(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\epsilon_P(\sqrt{f}, \sqrt{f})}{\mathsf{Ent}_\pi(f)}, \qquad \qquad t_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{4\alpha(P)} \left(\log \log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{2\epsilon^2} \right)$$

modified log-Sobolev constant (Bobkov and Tetali, 2006)

$$\mathsf{t}_{\mathsf{mix}}(\mathsf{P}) := \inf_{\mathsf{Ent}_{\pi}(\mathsf{f}) \neq 0} \frac{\mathcal{E}_{\mathsf{P}}(\mathsf{f}, \mathsf{log}\,\mathsf{f})}{\mathsf{Ent}_{\pi}(\mathsf{f})}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(\mathsf{P}, \epsilon) \leqslant \frac{1}{\rho(\mathsf{P})} \left(\mathsf{log}\,\mathsf{log}\,\frac{1}{\pi_{\mathsf{min}}} + \mathsf{log}\,\frac{1}{2\epsilon^2} \right)$$

 $2\lambda(P) \geqslant \rho(P) \geqslant 4\alpha(P)$

$$\alpha(P) \leqslant \frac{1}{\log \pi_{\min}^{-1}}$$

$$\rho(P_{BX} = 1/\tau) \ge 1/\tau$$

(Bobkov and Tetali, 2006)

(observed by Hermon and Salez, 2019+)

(our result)

Poincare constant (spectral gap):

$$\lambda(P) := \inf_{\mathsf{Var}_{\pi}(f) \neq 0} \frac{\epsilon_{P}(f,f)}{\mathsf{Var}_{\pi}(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P,\epsilon) \leqslant \frac{1}{\lambda(P)} \left(\log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{\epsilon} \right)$$

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

$$\alpha(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\mathcal{E}_P(\sqrt{f}, \sqrt{f})}{\mathsf{Ent}_\pi(f)}, \qquad \qquad t_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{4\alpha(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

modified log-Sobolev constant (Bobkov and Tetali, 2006):

$$\rho(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\mathcal{E}_P(f, \log f)}{\mathsf{Ent}_\pi(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{\rho(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

$$2\lambda(P) \geqslant \rho(P) \geqslant 4\alpha(P)$$

$$\alpha(P) \leqslant \frac{1}{\log \pi_{\min}^{-1}}$$

 $\rho(P_{BX,\pi}) \geqslant 1/r$

(observed by Hermon and Salez, 2019+)

Poincare constant (spectral gap):

$$\lambda(P) := \inf_{\mathsf{Var}_{\pi}(f) \neq 0} \frac{\epsilon_{P}(f,f)}{\mathsf{Var}_{\pi}(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P,\epsilon) \leqslant \frac{1}{\lambda(P)} \left(\log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{\epsilon} \right)$$

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

$$\alpha(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\epsilon_P(\sqrt{f}, \sqrt{f})}{\mathsf{Ent}_\pi(f)}, \qquad \qquad t_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{4\alpha(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

modified log-Sobolev constant (Bobkov and Tetali, 2006):

$$\rho(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\mathcal{E}_P(f, \log f)}{\mathsf{Ent}_\pi(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{\rho(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

$$2\lambda(P)\geqslant \rho(P)\geqslant 4\alpha(P)$$
 (Bobkov and Tetali, 2006)
$$\alpha(P)\leqslant \frac{1}{\log\pi_{\min}^{-1}}$$
 (observed by Hermon and Salez, 2019+)
$$(P_{RX,\pi})\geqslant 1/r$$
 (our result)

Poincare constant (spectral gap):

$$\lambda(P) := \inf_{\mathsf{Var}_{\pi}(f) \neq 0} \frac{\epsilon_{P}(f,f)}{\mathsf{Var}_{\pi}(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P,\epsilon) \leqslant \frac{1}{\lambda(P)} \left(\log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{\epsilon} \right)$$

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

$$\alpha(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\epsilon_P(\sqrt{f}, \sqrt{f})}{\mathsf{Ent}_\pi(f)}, \qquad \qquad t_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{4\alpha(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

modified log-Sobolev constant (Bobkov and Tetali, 2006):

$$\rho(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\mathcal{E}_P(f, \log f)}{\mathsf{Ent}_\pi(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{\rho(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

$$2\lambda(P)\geqslant\rho(P)\geqslant 4\alpha(P) \tag{Bobkov and Tetali, 2006}$$

$$\alpha(P)\leqslant\frac{1}{\log\pi_{\min}^{-1}} \tag{observed by Hermon and Salez, 2019+)}$$

Poincare constant (spectral gap):

$$\lambda(P) := \inf_{\mathsf{Var}_{\pi}(f) \neq 0} \frac{\mathcal{E}_{P}(f,f)}{\mathsf{Var}_{\pi}(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P,\epsilon) \leqslant \frac{1}{\lambda(P)} \left(\log \frac{1}{\pi_{\mathsf{min}}} + \log \frac{1}{\epsilon}\right)$$

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

$$\alpha(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\epsilon_P(\sqrt{f}, \sqrt{f})}{\mathsf{Ent}_\pi(f)}, \qquad \qquad t_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{4\alpha(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

modified log-Sobolev constant (Bobkov and Tetali, 2006):

$$\rho(P) := \inf_{\mathsf{Ent}_\pi(f) \neq 0} \frac{\mathcal{E}_P(f, \log f)}{\mathsf{Ent}_\pi(f)}, \qquad \qquad \mathsf{t}_{\mathsf{mix}}(P, \epsilon) \leqslant \frac{1}{\rho(P)} \left(\log\log\frac{1}{\pi_{\mathsf{min}}} + \log\frac{1}{2\epsilon^2}\right)$$

$$2\lambda(P)\geqslant \rho(P)\geqslant 4\alpha(P) \tag{Bobkov and Tetali, 2006}$$

$$\alpha(P)\leqslant \frac{1}{\log \pi_{min}^{-1}} \tag{observed by Hermon and Salez, 2019+)}$$

$$\rho(P_{\text{BX}},\pi)\geqslant 1/r \tag{our result)}$$

STRATIFICATION

The set of all independent sets of a matroid ${\mathfrak M}$ is downward closed.

Let $\mathfrak{M}(k)$ be the set of independent sets of size k. Thus, $\mathfrak{M}(r)$ is the set of all bases.

Let \mathcal{M}_i denote the matroid \mathcal{M} after contracting i, which is another matroid itself.

WEIGHTS FOR INDEPENDENT SETS

We equip $\ensuremath{\mathfrak{M}}$ with the following inductively defined weight function:

$$w(\mathrm{I}) := \begin{cases} \pi(\mathrm{I})\mathsf{Z}_{\mathrm{r}} & \text{if } |\mathrm{I}| = \mathrm{r}, \\ \sum_{\mathrm{I}' \supset \mathrm{I}, \, |\mathrm{I}'| = |\mathrm{I}| + 1} w(\mathrm{I}') & \text{if } |\mathrm{I}| < \mathrm{r}, \end{cases}$$

for some normalisation constant $Z_r > 0$.

For example, we may choose w(B)=1 for all $B\in \mathcal{B}$ and $Z_r=|\mathcal{B}|$, which corresponds to the uniform distribution over \mathcal{B} .

Let π_k be the distribution such that $\pi_k(I) \propto w(I)$, and Z_k be the corresponding normalising constant.

EXAMPLE

Independent sets of the matroid:

THREE VIEWS

Polynomial	Matroid	Distribution
$\frac{\partial}{\partial x_i} p$	contraction over i	conditioning on having i
$set \ x_i = 0$	deletion of i	conditioning on not having i
$(r-k)! \cdot \partial_{\mathrm{I}} p(1)$	w(I)	$\propto \pi_k(I)$
p(1)	38	$\pi_{0}(\emptyset)=1$

RANDOM WALK BETWEEN LEVELS

There are two natural random walks converging to π_k .

The "down-up" random walk P_k^{\vee} :

- \rightarrow 1. remove an element of $I\in \mathfrak{M}(k)$ uniformly at random to get $I'\in \mathfrak{M}(k-1);$
 - **2.** move to J such that $J \in \mathcal{M}(k), J \supset I'$ with probability $\frac{w(J)}{w(I')}$.

The bases-exchange walk $P_{BX,\pi} = P_{\mathbf{r}}^{\vee}$.

The "up-down" walk P_k^{\wedge} is defined similarly.

RANDOM WALK BETWEEN LEVELS

There are two natural random walks converging to π_k .

The "down-up" random walk P_k^{\vee} :

- 1. remove an element of $I \in \mathcal{M}(k)$ uniformly at random to get $I' \in \mathcal{M}(k-1)$;
- \rightarrow **2.** move to J such that $J \in \mathcal{M}(k), J \supset I'$ with probability $\frac{w(J)}{w(I')}$.

The bases-exchange walk $P_{BX,\pi} = P_{\boldsymbol{r}}^{\vee}$.

The "up-down" walk P_k^{\wedge} is defined similarly.

Let A_k be the matrix whose rows are indexed by $\mathfrak{M}(k)$ and columns by $\mathfrak{M}(k+1)$ such that $A_k(I,J)=1$ if and only if $I\subset J$.

Let $\mathbf{w}_k = \{w(I)\}_{I \in \mathcal{M}(k)},$ and

$$\begin{split} P_{k+1}^{\downarrow} &:= \frac{1}{k+1} \cdot A_k^{\mathsf{T}}; \\ P_k^{\uparrow} &:= \mathsf{diag}(\mathbf{w}_k)^{-1} A_k \, \mathsf{diag}(\mathbf{w}_{k+1}). \end{split}$$

$$P_{k+1}^{\vee} = P_{k+1}^{\downarrow} P_{k}^{\uparrow}$$
$$P_{k}^{\wedge} = P_{k}^{\uparrow} P_{k+1}^{\downarrow}$$

Let A_k be the matrix whose rows are indexed by $\mathfrak{M}(k)$ and columns by $\mathfrak{M}(k+1)$ such that $A_k(I,J)=1$ if and only if $I\subset J$.

Let $\mathbf{w}_k = \{w(I)\}_{I \in \mathcal{M}(k)},$ and

$$\begin{split} P_{k+1}^{\downarrow} &:= \frac{1}{k+1} \cdot A_k^{\mathsf{T}}; \\ P_k^{\uparrow} &:= \mathsf{diag}(\mathbf{w}_k)^{-1} A_k \, \mathsf{diag}(\mathbf{w}_{k+1}). \end{split}$$

$$P_{k+1}^{\vee} = P_{k+1}^{\downarrow} P_{k}^{\uparrow}$$
$$P_{k}^{\wedge} = P_{k}^{\uparrow} P_{k+1}^{\downarrow}$$

Let A_k be the matrix whose rows are indexed by $\mathfrak{M}(k)$ and columns by $\mathfrak{M}(k+1)$ such that $A_k(I,J)=1$ if and only if $I\subset J$.

Let $\mathbf{w}_k = \{w(I)\}_{I \in \mathcal{M}(k)}$, and

$$\begin{split} P_{k+1}^{\downarrow} &:= \frac{1}{k+1} \cdot A_k^{\mathsf{T}}; \\ P_k^{\uparrow} &:= \mathsf{diag}(\mathbf{w}_k)^{-1} A_k \, \mathsf{diag}(\mathbf{w}_{k+1}). \end{split}$$

$$P_{k+1}^{\vee} = P_{k+1}^{\downarrow} P_{k}^{\uparrow};$$

$$P_{k}^{\wedge} = P_{k}^{\uparrow} P_{k+1}^{\downarrow}.$$

Let A_k be the matrix whose rows are indexed by $\mathfrak{M}(k)$ and columns by $\mathfrak{M}(k+1)$ such that $A_k(I,J)=1$ if and only if $I\subset J$.

Let $\mathbf{w}_k = \{w(I)\}_{I \in \mathcal{M}(k)}$, and

$$\begin{split} P_{k+1}^{\downarrow} &:= \frac{1}{k+1} \cdot A_k^T; \\ P_k^{\uparrow} &:= \mathsf{diag}(\mathbf{w}_k)^{-1} A_k \, \mathsf{diag}(\mathbf{w}_{k+1}). \end{split}$$

$$P_{k+1}^{\vee} = P_{k+1}^{\downarrow} P_{k}^{\uparrow};$$
$$P_{k}^{\wedge} = P_{k}^{\uparrow} P_{k+1}^{\downarrow}.$$

KEY LEMMA

Lemma

For any $k \geqslant 2$ and $f : \mathcal{M}(k) \to \mathbb{R}_{\geqslant 0}$,

$$\frac{\mathsf{Ent}_{\pi_k}(\mathsf{f})}{k} \geqslant \frac{\mathsf{Ent}_{\pi_{k-1}}(\mathsf{P}_{k-1}^{\uparrow}\mathsf{f})}{k-1}.$$

• If \mathbb{E}_{π_k} f=1, then $\pi_k\circ f$ is a distribution. View it as a row vector:

$$\pi_{k-1} \circ \left(P_{k-1}^{\uparrow} f \right) = (\pi_k \circ f) P_k^{\downarrow}$$

So applying P_{k-1}^{\uparrow} to the left corresponds to the random walk P_k^{\downarrow}

• Then the lemma is saying that P_k^{\downarrow} contracts the relative entropy by at least (1-1/k)

KEY LEMMA

Lemma

For any $k \geqslant 2$ and $f : \mathcal{M}(k) \to \mathbb{R}_{\geqslant 0}$,

$$\frac{\mathsf{Ent}_{\pi_k}(\mathsf{f})}{k} \geqslant \frac{\mathsf{Ent}_{\pi_{k-1}}(\mathsf{P}_{k-1}^{\uparrow}\mathsf{f})}{k-1}.$$

• If \mathbb{E}_{π_k} f = 1, then $\pi_k \circ f$ is a distribution. View it as a row vector:

$$\pi_{k-1} \circ \left(P_{k-1}^{\uparrow} f \right) = (\pi_k \circ f) P_k^{\downarrow}.$$

So applying P_{k-1}^{\uparrow} to the left corresponds to the random walk P_k^{\downarrow} .

• Then the lemma is saying that P_k^{\downarrow} contracts the relative entropy by at least (1-1/k).

KEY LEMMA

Lemma

For any $k \geqslant 2$ and $f : \mathcal{M}(k) \to \mathbb{R}_{\geqslant 0}$,

$$\frac{\operatorname{Ent}_{\pi_k}(f)}{k} \geqslant \frac{\operatorname{Ent}_{\pi_{k-1}}(P_{k-1}^{\uparrow}f)}{k-1}.$$

• If \mathbb{E}_{π_k} f = 1, then $\pi_k \circ f$ is a distribution. View it as a row vector:

$$\pi_{k-1} \circ \left(P_{k-1}^{\uparrow} f \right) = (\pi_k \circ f) P_k^{\downarrow}.$$

So applying P_{k-1}^{\uparrow} to the left corresponds to the random walk P_k^{\downarrow} .

• Then the lemma is saying that P_k^{\downarrow} contracts the relative entropy by at least (1-1/k).

BASE CASE

For the base case, we want to show that

$$\operatorname{Ent}_{\pi_2}(f) - 2\operatorname{Ent}_{\pi_1}(\mathsf{P}_1^{\uparrow}f) \geqslant 0.$$

Using $a \log \frac{a}{b} \geqslant a - b$ for a, b > 0, we can get

$$\operatorname{Ent}_{\pi_2}(f) - 2\operatorname{Ent}_{\pi_1}(P_1^{\uparrow}f) \geqslant 1 - \frac{1}{2Z_2} \cdot h^{\mathsf{T}}Wh_1$$

where $W_{ij}=w(\{i,j\})$ and $h=P_1^{\uparrow}f$.

Since $W=(r-2)!Z_r\nabla^2 g_{\pi}(1)$, it has at most one positive eigenvalue. The quadratic form is maximised at $h=P_1^{\uparrow}f=1$, which proves the base case.

BASE CASE

For the base case, we want to show that

$$\operatorname{Ent}_{\pi_2}(f) - 2\operatorname{Ent}_{\pi_1}(\mathsf{P}_1^{\uparrow}f) \geqslant 0.$$

Using $a \log \frac{a}{b} \geqslant a - b$ for a, b > 0, we can get

$$\operatorname{Ent}_{\pi_2}(f) - 2\operatorname{Ent}_{\pi_1}(P_1^{\uparrow}f) \geqslant 1 - \frac{1}{2Z_2} \cdot h^{\mathsf{T}}Wh,$$

where $W_{ij} = w(\{i, j\})$ and $h = P_1^{\uparrow} f$.

Since $W=(r-2)!Z_r\nabla^2 g_{\pi}(1)$, it has at most one positive eigenvalue. The quadratic form is maximised at $h=P_1^{\uparrow}f=1$, which proves the base case.

BASE CASE

For the base case, we want to show that

$$\operatorname{Ent}_{\pi_2}(f) - 2\operatorname{Ent}_{\pi_1}(P_1^{\uparrow}f) \geqslant 0.$$

Using $a \log \frac{a}{b} \geqslant a - b$ for a, b > 0, we can get

$$\operatorname{Ent}_{\pi_2}(f) - 2\operatorname{Ent}_{\pi_1}(P_1^{\uparrow}f) \geqslant 1 - \frac{1}{2Z_2} \cdot h^{\mathsf{T}}Wh,$$

where $W_{ij} = w(\{i, j\})$ and $h = P_1^{\uparrow} f$.

Since $W=(r-2)!Z_r\nabla^2g_\pi(1)$, it has at most one positive eigenvalue. The quadratic form is maximised at $h=P_1^\uparrow f=1$, which proves the base case.

Decomposing π_k

Consider the following process:

- **1.** draws a basis $B \sim \pi$;
- 2. repeatedly removes an element from the current set uniformly at random for at most r repetitions.

The outcome X_k after removing r - k elements follows exactly π_k .

By the Law of Total Probability,

$$\Pr(X_k = I) = \sum_{\mathfrak{i} \in \mathcal{M}(1)} \Pr(X_k = I \mid X_1 = \{\mathfrak{i}\}) \cdot \Pr(X_1 = \{\mathfrak{i}\}).$$

Noticing that
$$\Pr(X_k = I \mid X_1 = \{i\}) = \pi_{i,k-1}(I)$$
 and $\Pr(X_1 = \{i\}) = \pi_1(i)$,

$$\pi_k = \sum_{i \in \mathcal{M}(1)} \pi_{i,k-1} \cdot \pi_1(i).$$

Decomposing π_k

Consider the following process:

- **1.** draws a basis $B \sim \pi$;
- 2. repeatedly removes an element from the current set uniformly at random for at most r repetitions.

The outcome X_k after removing r - k elements follows exactly π_k .

By the Law of Total Probability,

$$\text{Pr}(X_k = I) = \sum_{i \in \mathcal{M}(1)} \text{Pr}(X_k = I \mid X_1 = \{i\}) \cdot \text{Pr}(X_1 = \{i\}).$$

Noticing that
$$\Pr(X_k = I \mid X_1 = \{i\}) = \pi_{i,k-1}(I)$$
 and $\Pr(X_1 = \{i\}) = \pi_1(i)$,
$$\pi_k = \sum_{i \in \mathcal{M}(1)} \pi_{i,k-1} \cdot \pi_1(i).$$

INDUCTION STEP

The distribution π_k has the decomposition:

$$\pi_k = \sum_{i \in \mathcal{M}(1)} \pi_1(i) \cdot \pi_{i,k-1}.$$

This leads to a decomposition of relative entropy:

$$\mathsf{Ent}_{\pi_k}(\mathsf{f}) = \sum_{\mathfrak{i} \in \mathcal{M}(1)} \pi_1(\mathfrak{i}) \mathsf{Ent}_{\pi_{\mathfrak{i},k-1}}(\mathsf{f}) + \mathsf{Ent}_{\pi_1}(\mathsf{f}^{(1)}).$$

where $f^{(1)}(i) := \mathbb{E}_{\pi_{i,k-1}}$ f. In fact, $f^{(1)} = \prod_{j=1}^{k-1} P_j^{\uparrow} f$.

Induction step (cont.)

As
$$f^{(1)} = \prod_{j=1}^{k-1} P_j^{\uparrow} f$$
,

$$\begin{split} & \text{Ent}_{\pi_k}(\mathbf{f}) = \sum_{\mathbf{i} \in \mathcal{M}(1)} \pi_1(\mathbf{i}) \\ & \text{Ent}_{\pi_{\mathbf{i},\mathbf{k}-1}}(\mathbf{f}) + \text{Ent}_{\pi_1}(\mathbf{f}^{(1)}) \\ & \text{Ent}_{\pi_{\mathbf{k}-1}}(P_{\mathbf{k}-1}^{\uparrow}\mathbf{f}) = \sum_{\mathbf{i} \in \mathcal{M}(1)} \pi_1(\mathbf{i}) \\ & \text{Ent}_{\pi_{\mathbf{i},\mathbf{k}-2}}(P_{\mathbf{k}-1}^{\uparrow}\mathbf{f}) + \text{Ent}_{\pi_1}(\mathbf{f}^{(1)}) \end{split}$$

Induction hypothesis on \mathcal{M}_i implies that

$$\operatorname{Ent}_{\pi_{i,k-1}}(f) \geqslant \frac{k-1}{k-2} \cdot \operatorname{Ent}_{\pi_{i,k-2}}(P_{k-1}^{\uparrow}f).$$

Induction hypothesis from $\mathfrak{M}(k-1)$ to $\mathfrak{M}(1)$ implies that

$$\sum_{\mathfrak{i}\in\mathcal{M}(1)}\pi_{1}(\mathfrak{i})\mathsf{Ent}_{\pi_{\mathfrak{i},k-2}}(P_{k-1}^{\uparrow}\mathfrak{f})\geqslant (k-2)\mathsf{Ent}_{\pi_{1}}(\mathfrak{f}^{(1)}).$$

Finally, notice that

$$\frac{k-1}{k-2} = \frac{k}{k-1} + \frac{1}{(k-1)(k-2)}.$$

RECAP

We have shown entropy contraction from level k to level k-1:

$$\frac{\operatorname{Ent}_{\pi_k}(f)}{k}\geqslant \frac{\operatorname{Ent}_{\pi_{k-1}}(P_{k-1}^{\uparrow}f)}{k-1}.$$

It is straightforward from this to derive the modified log-Sobolev inequality, with the help of Jensen's inequality.

Bound the mixing time directly

For a distribution τ on $\mathfrak{M}(k)$, the relative entropy $D(\tau \parallel \pi_k) = \text{Ent}_{\pi_k}(D_k^{-1}\tau)$ where $D_k = \text{diag}(\pi_k)$. Moreover, after one step of P_k^{\vee} , the distribution is $(\tau^{\mathsf{T}}P_k^{\vee})^{\mathsf{T}} = (P_k^{\vee})^{\mathsf{T}}\tau$. Since P_k^{\vee} is reversible, $D_k^{-1}(P_k^{\vee})^{\mathsf{T}} = P_k^{\vee}D_k^{-1}$.

$$\begin{split} D\left((P_k^{\vee})^\mathsf{T}\tau \parallel \pi_k\right) &= \mathsf{Ent}_{\pi_k}(D_k^{-1}(P_k^{\vee})^\mathsf{T}\tau) \\ &= \mathsf{Ent}_{\pi_k}(P_k^{\vee}D_k^{-1}\tau) \\ &= \mathsf{Ent}_{\pi_k}(P_k^{\downarrow}P_{k-1}^{\uparrow}D_k^{-1}\tau) \\ &\leqslant \mathsf{Ent}_{\pi_{k-1}}(P_{k-1}^{\uparrow}D_k^{-1}\tau) \\ &\leqslant \left(1 - \frac{1}{k}\right)\mathsf{Ent}_{\pi_k}(D_k^{-1}\tau) \\ &= \left(1 - \frac{1}{k}\right)D\left(\tau \parallel \pi_k\right). \end{split} \tag{Jensen's inequality)}$$

The mixing time bound follows from Pinsker's inequality

$$2 \| \tau - \sigma \|_{TV}^2 \leq D(\tau \| \sigma).$$

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-Sobolev inequalities.

The key is to show, for t>0 and $c=\frac{\nu(f)}{\rho(P)}$

$$\mathbb{E}[e^{\mathsf{tf}}] \leqslant e^{\mathsf{t}\,\mathbb{E}\,\mathsf{f} + \mathsf{c}\,\mathsf{t}^2}.$$

Let $F_t := e^{tf - ct^2}$. Then we just need to show $\frac{\log \mathbb{E}[F_t]}{t} \leqslant \mathbb{E}$ f. This, in turn, follows from the claim that $t \mapsto \frac{\log \mathbb{E}[F_t]}{t}$ is non-increasing.

Note that

$$\frac{d}{dt}\left(\frac{\log \mathbb{E}[\mathsf{F}_t]}{t}\right) = \frac{\mathsf{Ent}_\pi(\mathsf{F}_t) - ct^2\,\mathbb{E}[\mathsf{F}_t]}{t^2\,\mathbb{E}[\mathsf{F}_t]}$$

$$\operatorname{Ent}_{\pi}(\mathsf{F}_{\mathsf{t}}) \leqslant \frac{1}{\rho(\mathsf{P})} \mathcal{E}_{\mathsf{P}}(\mathsf{F}_{\mathsf{t}}, \mathsf{log}\,\mathsf{F}_{\mathsf{t}}) \leqslant \frac{\mathsf{t}^2 \nu(\mathsf{f})}{2\rho(\mathsf{P})} \, \mathbb{E}[\mathsf{F}_{\mathsf{t}}]$$

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-Sobolev inequalities.

The key is to show, for t>0 and $c=\frac{\nu(f)}{\rho(P)},$

$$\mathbb{E}[e^{tf}] \leqslant e^{t \mathbb{E} f + ct^2}.$$

Let $F_t := e^{tf-ct^2}$. Then we just need to show $\frac{\log \mathbb{E}[F_t]}{t} \leqslant \mathbb{E}$ f. This, in turn, follows from the claim that $t \mapsto \frac{\log \mathbb{E}[F_t]}{t}$ is non-increasing.

Note that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\log \mathbb{E}[\mathsf{F}_t]}{t} \right) = \frac{\mathrm{Ent}_{\pi}(\mathsf{F}_t) - \mathrm{ct}^2 \, \mathbb{E}[\mathsf{F}_t]}{\mathrm{t}^2 \, \mathbb{E}[\mathsf{F}_t]}$$

$$\operatorname{Ent}_{\pi}(\mathsf{F}_{\mathsf{t}}) \leqslant \frac{1}{\rho(\mathsf{P})} \mathcal{E}_{\mathsf{P}}(\mathsf{F}_{\mathsf{t}}, \mathsf{log}\,\mathsf{F}_{\mathsf{t}}) \leqslant \frac{\mathsf{t}^2 \nu(\mathsf{f})}{2\rho(\mathsf{P})} \, \mathbb{E}[\mathsf{F}_{\mathsf{t}}]$$

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-Sobolev inequalities.

The key is to show, for t>0 and $c=\frac{\nu(f)}{\rho(P)},$

$$\mathbb{E}[e^{tf}] \leqslant e^{t\mathbb{E}\,f + c\,t^2}.$$

Let $F_t := e^{tf-ct^2}$. Then we just need to show $\frac{\log \mathbb{E}[F_t]}{t} \leqslant \mathbb{E} \, f$. This, in turn, follows from the claim that $t \mapsto \frac{\log \mathbb{E}[F_t]}{t}$ is non-increasing.

Note that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\log \mathbb{E}[\mathsf{F}_t]}{t} \right) = \frac{\mathsf{Ent}_\pi(\mathsf{F}_t) - \mathsf{ct}^2 \, \mathbb{E}[\mathsf{F}_t]}{t^2 \, \mathbb{E}[\mathsf{F}_t]}$$

$$\operatorname{Ent}_{\pi}(\mathsf{F}_{\mathsf{t}}) \leqslant \frac{1}{\rho(\mathsf{P})} \mathcal{E}_{\mathsf{P}}(\mathsf{F}_{\mathsf{t}}, \mathsf{log}\,\mathsf{F}_{\mathsf{t}}) \leqslant \frac{\mathsf{t}^2 \nu(\mathsf{f})}{2\rho(\mathsf{P})} \, \mathbb{E}[\mathsf{F}_{\mathsf{t}}]$$

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-Sobolev inequalities.

The key is to show, for t>0 and $c=\frac{\nu(f)}{\rho(P)},$

$$\mathbb{E}[e^{tf}] \leqslant e^{t\mathbb{E}\,f + c\,t^2}.$$

Let $F_t := e^{tf-ct^2}$. Then we just need to show $\frac{\log \mathbb{E}[F_t]}{t} \leqslant \mathbb{E} \, f$. This, in turn, follows from the claim that $t \mapsto \frac{\log \mathbb{E}[F_t]}{t}$ is non-increasing.

Note that

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\log \mathbb{E}[\mathsf{F}_t]}{t}\right) = \frac{\mathrm{Ent}_\pi(\mathsf{F}_t) - \mathrm{ct}^2 \, \mathbb{E}[\mathsf{F}_t]}{t^2 \, \mathbb{E}[\mathsf{F}_t]}.$$

$$\operatorname{Ent}_{\pi}(\mathsf{F}_{\mathsf{t}}) \leqslant \frac{1}{\rho(\mathsf{P})} \mathcal{E}_{\mathsf{P}}(\mathsf{F}_{\mathsf{t}}, \mathsf{log}\,\mathsf{F}_{\mathsf{t}}) \leqslant \frac{\mathsf{t}^2 \nu(\mathsf{f})}{2\rho(\mathsf{P})} \, \mathbb{E}[\mathsf{F}_{\mathsf{t}}].$$

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-Sobolev inequalities.

The key is to show, for t>0 and $c=\frac{\nu(f)}{\rho(P)},$

$$\mathbb{E}[e^{\mathsf{tf}}] \leqslant e^{\mathsf{t}\,\mathbb{E}\,\mathsf{f} + \mathsf{c}\,\mathsf{t}^2}.$$

Let $F_t := e^{tf-ct^2}$. Then we just need to show $\frac{\log \mathbb{E}[F_t]}{t} \leqslant \mathbb{E} \, f$. This, in turn, follows from the claim that $t \mapsto \frac{\log \mathbb{E}[F_t]}{t}$ is non-increasing.

Note that

$$\frac{d}{dt}\left(\frac{\log \mathbb{E}[\mathsf{F}_t]}{t}\right) = \frac{\mathsf{Ent}_\pi(\mathsf{F}_t) - ct^2\,\mathbb{E}[\mathsf{F}_t]}{t^2\,\mathbb{E}[\mathsf{F}_t]}.$$

$$\operatorname{Ent}_{\pi}(\mathsf{F}_{\mathsf{t}}) \leqslant \frac{1}{\rho(\mathsf{P})} \mathcal{E}_{\mathsf{P}}(\mathsf{F}_{\mathsf{t}}, \mathsf{log}\,\mathsf{F}_{\mathsf{t}}) \leqslant \frac{\mathsf{t}^2 \nu(\mathsf{f})}{2\rho(\mathsf{P})} \, \mathbb{E}[\mathsf{F}_{\mathsf{t}}].$$

WHY STRONGLY LOG-CONCAVE?

Apparently, strong log-concavity was used in two places:

- Base case: log-concavity;
- Inductive step: closure property under contractions.

The approach should still work with some distribution property that is closed under contractions (namely conditioning) but has perhaps a "weaker" base case.

ENTROPY DECOMPOSITION

- The decomposition of ${\rm Ent}_{\pi_k}(f)$ seems to be the key to our argument. This differs from the traditional Markov chain decomposition techniques, where the state space is partitioned.
- Is there a more general technique?

An oddity

Recall

$$P_{k+1}^{\vee} = P_{k+1}^{\downarrow} P_{k}^{\uparrow};$$

$$P_{k}^{\wedge} = P_{k}^{\uparrow} P_{k+1}^{\downarrow}.$$

Their spectral gaps are the same: $\lambda(P_{k+1}^{\vee})=\lambda(P_{k}^{\wedge}).$

For modified log-Sobolev constants, we showed

$$\rho(P_{k+1}^{\vee})\geqslant \frac{1}{k+1}, \qquad \qquad \rho(P_{k}^{\wedge})\geqslant \frac{1}{k+1},$$

but

$$\rho(P_{k+1}^{\vee}) = \rho(P_k^{\wedge})?$$

- Fast implementation of the (modified) bases-exchange?
- An $\Omega(r \log r)$ lower bound of the mixing time?
- Deterministic counting algorithms?
 - What can we say about the zeros of (inhomogeneous) SLC polynomials? E.g. the reliability polynomial?
- Common bases / independent sets of matroids?

- Fast implementation of the (modified) bases-exchange?
- An $\Omega(r \log r)$ lower bound of the mixing time?
- Deterministic counting algorithms?
 - What can we say about the zeros of (inhomogeneous) SLC polynomials? E.g. the reliability polynomial?
- Common bases / independent sets of matroids?

- Fast implementation of the (modified) bases-exchange?
- An $\Omega(r \log r)$ lower bound of the mixing time?
- Deterministic counting algorithms?
 - What can we say about the zeros of (inhomogeneous) SLC polynomials? E.g. the reliability polynomial?
- Common bases / independent sets of matroids?

- Fast implementation of the (modified) bases-exchange?
- An $\Omega(r \log r)$ lower bound of the mixing time?
- Deterministic counting algorithms?
 - What can we say about the zeros of (inhomogeneous) SLC polynomials? E.g. the reliability polynomial?
- Common bases / independent sets of matroids?

A professor is one who can speak on any subject for precisely fifty minutes.

THANK YOU!

Norbert Wiener

arXiv:1903.06081