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DISCRETE LOG-CONCAVE DISTRIBUTION

What is the correct definition of a log-concave distribution?

What about 1 dimension? For 7t: [n] — Rxo, (i + 1)7(i— 1) < w(i)??
Consider 7t(1) = 1/2,1(n) = 1/2 and all other 7t(1) are 0.

This distribution satisfies the condition, but it is not even unimodal.

What about high dimensions?



STRONGLY LOG-CONCAVE POLYNOMIALS

Log-concave polynomial

A polynomial p € Rxo[x1,...,%n] is log-concave (at x) if the Hessian V2 logp(x) is negative
semi-definite.

= V?2p(x) has at most one positive eigenvalue.

Strongly log-concave polynomial
A polynomial p € R>o[x1,...,xn] is strongly log-concave if for any index set I C [nl, 0rp is
log-concave at 1.

Originally introduced by Gurvitz (2009), equivalent to:

« completely log-concave (Anari, Oveis Gharan, and Vinzant, 2018);

« Lorentzian polynomials (Brandén and Huh, 2019+).



STRONGLY LOG-CONCAVE DISTRIBUTIONS

A distribution 7t : 2V — R0 is strongly log-concave if so is its generating polynomial

grlx) = Y n(S) [

SCln] €S

An important example of homogeneous strongly log-concave distributions is the uniform distri-

bution over bases of a matroid (Anari, Oveis Gharan, and Vinzant 2018; Brandén and Huh 2019+).



MATROID

A matroid M = (E, J) consists of a finite ground set E and a collection J of subsets of E (indepen-
dent sets) such that:

e D ey,

« ifS€J, TCS,thenT € J(downward closed);

o if S, T € Jand |S| > [T|, then there exists an element i € S\ T such that TU{i} € J.
Maximum independent sets are the bases. For any two bases, there is a sequence of exchanges of
ground set elements from one to the other.

Let n = |[E| and T be the rank, namely the size of any basis.



EXAMPLE — GRAPHIC MATROIDS

Spanning trees for graphs form the bases of graphic matroids.

Nelson (2018): Almost all matroids are non-representable!



ALTERNATIVE CHARACTERISATION FOR SLC

Brandén and Huh (2019+): An m-homogeneous multiaffine polynomial p with non-negative coef-

ficients is strongly log-concave if and only if:
o the support of p is a matroid;

o after taking r — 2 partial derivatives, the quadratic is real stable or 0.

Real stable: p(x) # 0 if J(x;) > O for all i.

Real stable polynomials (and strongly Rayleigh distributions) capture only “balanced” matroids,
whereas SLC polynomials capture all matroids.



BASES-EXCHANGE WALK

The following Markov chain Pgx . converges to a homogeneous SLC 7t:
1. remove an element uniformly at random from the current basis (call the resulting set S);

2. add i & S with probability proportional to 7t(S U {i}).

The implementation of the second step may be non-trivial.

The mixing time measures the convergence rate of a Markov chain:

tmix(Py €) = mtin {t | |IP*(x0, ) — 7t||7v < s} .



EXAMPLE — BASES-EXCHANGE

1. Remove an edge uniformly at random;

2. Add back one of the available choices uniformly at random.
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EXAMPLE — BASES-EXCHANGE

1. Remove an edge uniformly at random;

2. Add back one of the two choices uniformly at random.

If we encode the state as a binary string, then this is just the lazy random walk on the Boolean

hypercube {0, 1}".
(The rank of this matroid is T and the ground set has size n = 2r.)

The mixing time is ©(rlog ).



MAIN RESULT — MIXING TIME

Theorem (mixing time)

For any r-homogeneous strongly log-concave distribution T,

1 1
tmix(Pex,m, €) < T <Iog|og ~ +log 252) )

min
where Ttyin = Mingea 7(X).
Previously, Anari, Liu, Oveis Gharan, and Vinzant (2019):
1 4 1
oF —
TTmin € £

E.g. for the uniform distribution over bases of matroids (with n elements and rank 1), our bound
is O(r(log T + log logn)), whereas the previous bound is O (12 logn).

tmix(PBX,T[) E) < T <|Og

The bound is asymptotically optimal, shown by the previous example.



MAIN RESULT — CONCENTRATION

Theorem (concentration bounds)

Let 7t and Pgx ~ be as before, and () be the support of . For any observable functionf: QO — R and
a=>0,

aZ
Pr 100~ Exfl > 0) < 20 (~ 327 ).

where v(f) is the maximum of one-step variances

‘= max Z PBXH )y ( ) (y))z

xeQ
ye

For c-Lipschitz function f, v(f) < c?.

Generalises concentration of Lipschitz functions in strongly Rayleigh distributions by Pemantle
and Peres (2014); see also Hermon and Salez (2019+).



DIRICHLET FORM

For a Markov chain P and two functions f and g over the state space (),
&p(f,g) = g' diag(m)Lf.

(the Laplacian £ :=1— P)

For reversible Markov chains,

% m(x)P(x,y) (f(x) — f(y)))(9(x) — g(y)).

X, yeQ

EP(f) 9) =



MODIFIED LOG-SOBOLEV INEQUALITY

Theorem (modified log-Sobolev inequality)
Forany f: Q — R,

(C’Psx,n (f, lOg f) = : Entﬂ(f),

1
T
Both main results are consequences of this.

Ent.(f) is defined by
Ent,(f) :=E (fologf) —E,f-logE,f.

If we normalise E f = 1, then Ent.(f) = D(7t o f || 7t), the relative entropy (or Kullback-Leibler
divergence) between 7t o f and 7.
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THREE “CONSTANTS”

Poincare constant (spectral gap):

. Ep(f,f) 1 1 1
A(P) == f — s < — | log —
(P)i= o o Varn(F) mix(Py &) < S7py 18 o~ Floe ¢
log-Sobolev constant (Diaconis and Saloff-Coste, 1996):
Ep (V1) 1 1 1
P) .= =l AN ADRVAT ] i« (P < log| log =—
x(P) Entr ()20  Entz(f) tmix (P, €) < 4x(P) oglog P + log 522

modified log-Sobolev constant (Bobkov and Tetali, 2006):

. Ep(f,logf) 1 1 1
P) = f o o— ix(P < —— [ logl log —
p( ) Entnl?f)#o Entﬂ(f) ’ tm ( ‘E) = p(P) oglog Tomin + log D2
2A(P) = p(P) > 4x(P) (Bobkov and Tetali, 2006)
1
o(P) < — (observed by Hermon and Salez, 2019+)
log 7t in

p(Pex,x) = 1/7 (our result)




DECAY OF RELATIVE ENTROPY




STRATIFICATION

The set of all independent sets of a matroid M is downward closed.
Let M(k) be the set of independent sets of size k. Thus, M(r) is the set of all bases.

Let M; denote the matroid M after contracting i, which is another matroid itself.



WEIGHTS FOR INDEPENDENT SETS

We equip M with the following inductively defined weight function:
n(I)Z if I =7
W(U:_{()r _ifn=n,
ZI/DI“I/‘:|I‘+1 W(I ) lf|I| <T)

for some normalisation constant Z, > 0.

For example, we may choose w(B) = 1 for all B € B and Z, = |B|, which corresponds to the
uniform distribution over B.

Let 7t be the distribution such that 7t (I) o< w(I), and Zy be the corresponding normalising
constant.



" 1 I< >I 4 "

Independent sets of the matroid:




THREE VIEWS

Polynomial Matroid Distribution
az- P contraction over i conditioning on having i
setx; =0 deletion of 1 conditioning on not having i

w(l)

oc o (1)

7'[0(@) =1




RANDOM WALK BETWEEN LEVELS

There are two natural random walks converging to 7ty.

The “down-up” random walk P} :

— 1. remove an element of I € M(k) uniformly at random to get I’ € M(k — 1);

2. move to | such that ] € M(k),] D I’ with probability V‘:’((IJ,)].

The bases-exchange walk Pgx ~ = PY.

The “up-down” walk P is defined similarly.




RANDOM WALK BETWEEN LEVELS

There are two natural random walks converging to 7ty.
The “down-up” random walk P} :

1. remove an element of I € M(k) uniformly at random to get I’ € M(k — 1);

w(])
w(i’)-

— 2. move to J such that ] € M(k),] D I’ with probability

The bases-exchange walk Pgx ~ = PY.

The “up-down” walk P is defined similarly.
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KEY LEMMA

Lemma
Foranyk > 2 and f : M(k) — Rxo,

Entr, (f) _ Entr, (PI_,f)
k7 k—1

o If E;, f =1, then my ofis adistribution. View it as a row vector:
1 (PE_J) = (m o f)PL.

So applying qu to the left corresponds to the random walk Pt.

o Then the lemma is saying that Pt contracts the relative entropy by at least (1 —1/k).
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BASE CASE

For the base case, we want to show that
Entye, (f) — 2Ent,, (PTf) > 0.

Using alog ¢ > a —b for a,b > 0, we can get

1
Enty, (f) — 2Ent,, (PTf) > 1— —— - hTWh,
2Z,
where Wi; = w({i,j}) and h = P]f.
Since W = (1 — 2)!Z,V?g,(1), it has at most one positive eigenvalue. The quadratic form is

maximised at h = PIf = 1, which proves the base case.



DECOMPOSING 7Ty

Consider the following process:

1. draws a basis B ~ 7t

2. repeatedly removes an element from the current set uniformly at random for at most r repetitions.

The outcome Xy after removing v — k elements follows exactly 7.

By the Law of Total Probability,
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DECOMPOSING 7Ty

Consider the following process:

1. draws a basis B ~ 7t

2. repeatedly removes an element from the current set uniformly at random for at most r repetitions.

The outcome Xy after removing v — k elements follows exactly 7.

By the Law of Total Probability,

PriXx =)= Y  Pr(Xc =1|X; ={i}) - Pr(Xs ={i}).
ieM(1)
Noticing that Pr(Xy =1 [ Xy = {i}) = mi x 1 (I) and Pr(X; = {i}) = m (i),

Zﬂlklm)

ieM(1)




INDUCTION STEP

The distribution 7t has the decomposition:

Z m (i ST k—1-
ieM(1
This leads to a decomposition of relative entropy:

Entr, (f)= Y m(D)Ente, ,, (f) + Entq, (F1)).
1eM(1)

where f(1(1) .= E f. In fact, f(V) = H;tﬂ Pij

T, k—1



INDUCTION STEP (CONT.)

As fD = [T P,

Entr, (f) = Y m1(i)Ente, () + Entr, (F1))

ieM(1)
Entr, , (PL_f)= Y  m(i)Entm,  , (PL_;f)+Entr, (£(1)
ieM(1)
Induction hypothesis on Mj implies that
k—1
Entr, () > 1 — Entr (PL_,f).

Induction hypothesis from M (k — 1) to M (1) implies that

> mi(DEntr, ,, (PL_1) > (k— 2)Enty, (1)),
ieM(1)

Finally, notice that




REcAP

We have shown entropy contraction from level k to level k — 1:

Entﬂk (f) > Entﬂkfl (Plf1f)
k - k—1 )

It is straightforward from this to derive the modified log-Sobolev inequality, with the help of
Jensen’s inequality.



BOUND THE MIXING TIME DIRECTLY

For a distribution T on M (k), the relative entropy D (T || 71, ) = Enty, (D;]T) where Dy = diag (7t ). Moreover,
after one step of P/, the distribution is (TTP;/)T = (P;/)TT. Since P¥ is reversible, D? (P;/)T = PEDE].

D (P || i) = Ent, (DR (PY)T7)
= Enty, (PY Dy ')
= Enty, (PLP] Dy '7)

< Enty, (PEJ Dgl T) (Jensen’s inequality)

1
< <1 — E> Enty, (D;Lt) (entropy contraction)

:<]—%>D(T||7Tk).

The mixing time bound follows from Pinsker’s inequality

2|t —o|3, <D(t| o).
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HERBST ARGUMENT

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-
Sobolev inequalities.

v(f)

The key is to show, fort > 0 and ¢ = STP)

E[etf] < et]Ef+ct2
< .

Let Fy := etf—ct? Then we just need to show % < Ef. This, in turn, follows from the claim
that t — @ is non-increasing.
Note that

d (IOg]E[FJ) _ Entn(Ft) —Ctz ]E[Ft]

dt t t2 E[F]

The following inequalities thus finish the argument

1 t2v(f)

Ent,(F¢) < p(P)eP(FtJOgFt) <




CONCLUDING REMARKS




WHY STRONGLY LOG-CONCAVE?

Apparently, strong log-concavity was used in two places:

 Base case: log-concavity;

o Inductive step: closure property under contractions.

The approach should still work with some distribution property that is closed under contractions

(namely conditioning) but has perhaps a “weaker” base case.



ENTROPY DECOMPOSIT

+ The decomposition of Enty, (f) seems to be the key to our argument. This differs from the
traditional Markov chain decomposition techniques, where the state space is partitioned.

« Is there a more general technique?



AN ODDITY

Recall

vV oo _pl T.
P =P P
N _ pltpd
P =P P .

Their spectral gaps are the same: 7\(P¥+]) = A(PQ).

For modified log-Sobolev constants, we showed

1
p(PY1) > PR p(PL) = ——,

but

p(PYi1) = p(P)?
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OPEN PROBLEMS

Fast implementation of the (modified) bases-exchange?

o An Q(rlogr) lower bound of the mixing time?

 Deterministic counting algorithms?

» What can we say about the zeros of (inhomogeneous) SLC polynomials? E.g. the relia-

bility polynomial?

« Common bases / independent sets of matroids?



A professor is one who can speak on any subject for precisely fifty minutes.

— Norbert Wiener

THANK YOU!
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