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FKT Algorithm

Counting PerfectMatchings is #P-hard [Valiant 79] in general graphs.

However, for planar graphs, there is a polynomial time algorithm [Kastelyn

61& 67, Temperley and Fisher 61] .

The FKT algorithm is based on Pfaffian orientations of planar graphs.
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Counting PerfectMatchings Revisited

A systematic way to view #PM.

Put functionsExact-One (EO) on nodes andmake edges variables.

#PM is just the partition function:

#PM =
∑

σ:E 7→{0,1}

∏
v∈V

EOd(σ |E(v)).
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Holant Problems

The (Boolean) Holant problem on instanceΩ is to evaluate

HolantΩ =
∑

σ:E 7→{0,1}

∏
v∈V

fv(σ |E(v)),

a sumover all edge assignmentsσ : E → {0, 1}.

It is parameterized by a function setFwith fv ∈ F.

Also known as:

Read-Twice #CSP, Tensor Networks, GraphicalModels…
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Functions Expressible by PerfectMatchings

View some functions together as a new one.

The function f on the right is (2,0,0,1).

f

EO3 EO3
x1 x2

y1

y2

This is also called tensor contraction.

Given functions f1, f2, and a partition x1 and x2 of variables x, the contraction g is:

g(x) =
∑
y

f1(x1, y)f2(x2, y).

If a set of functionsF is tractable, then any function expressible byF is also

tractable.
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Holographic Transformations

Let Holant(f | g) be the problemwhen input graphs are bipartite and f and g

are assigned on the two sides.

For a 2-by-2 nonsingularmatrix T, two functions f and g of aritiesm and n

respectively, Valiant's Holant theorem [Valiant 04] states

Holant(f | g) ≡ Holant(fT⊗m | (T−1)⊗ng).

Note that Holant(f) ≡ Holant(f |=2).
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Holographic Algorithms Based onMatchgates

Holographic algorithmbased onmatchgates [Valiant 04] :

Matchgates: functions expressible by perfectmatchings.

Holographic Transformation: Holant(f | g) ⇒ Holant(fT⊗m | (T−1)⊗ng).

A series of work (see e.g. [Cai and Lu 07] ) characterizes what problems can be

solved by holographic algorithms based onmatchgates.

Question : how about replacingmatchgates by other tractable functions?

This work provides some answer to the question.
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Symmetric Functions

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)),

When the function isExact-One, theHolant counts perfectmatchings.

Such a function is symmetric. The output only depends on theHammingweight of

the input.

List f byHammingweights of its inputs: [f0, f1, . . . , fn].

E.g.Exact-One is [0, 1, 0, . . . , 0].

This is called the succinct expression.

Functions expressible by symmetric functions are not necessarily symmetric.
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Holographic Transformations - an Example

Consider the problemHolant([3, 0, 1, 0, 3]).

Under the transformation
[ 1 1

i −i
]
,

Holant([3, 0, 1, 0, 3] |=2) ≡ Holant([0, 0, 1, 0, 0] | ̸=2).

̸=2 imposes an orientation and [0, 0, 1, 0, 0] requires it to be Eulerian.

Holant([3, 0, 1, 0, 3]) in fact counts the number of Eulerian orientations on

4-regular graphs (up to an easy to compute factor).
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General Tractable Functions

The two non-trivial tractable families of functions in general graphs.

Product type, denotedP : functions that are products of binary equalities, binary

dis-equalities, and unary functions.

▶ The algorithm is a simple propagation.

Affine type, denotedA .

▶ Parity functions define an affine system and the number of solutions is easy to

compute via computing the rank. The familyA generalizes such functions.
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compute via computing the rank. The familyA generalizes such functions.
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Complex Affine Functions

Let f ∈ A . Then f is of the form:

χxA=0 ·
√
−1xBx

T

,

where x = (x1, x2, . . . , xk, 1), A is amatrix overF2,

χ is a 0-1 indicator function such thatχAx=0 is 1 iff Ax = 0,

and B is a symmetric integermatrix.

The contraction of any two functions inA is still inA and easy to compute [Cai, Lu,

Xia 09] .

In particular, this family contains Clifford gates in quantum computation as a special

case.
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A - andP-transformable Functions

Holant(f) ≡ Holant(f |=2) ≡ Holant(fT⊗n | (T−1)⊗2 =2)

Say f isF-transformable if there exists T such that {fT⊗n, (T−1)⊗2 =2} ⊂ F.

IfF defines a tractable Holant problem, then anyF-transformable is also

tractable.

BothA - andP-transformable functions are tractable.

A (orP)-transformable is a proper super set ofA (orP).

Fibonnaci gates [Cai, Lu, Xia 08] are in factP-transformable.
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Holant Dichotomy for General Graphs

Theorem (Cai, G.,Williams 13)
Let f be a symmetric function.Holant(f) is#P-hard unless f is

1 degenerate or binary,
2 vanishing,
3 A -transformable, or
4 P-transformable.

which are computable in polynomial time.

This dichotomy also generalizes to a set of functions.
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Main Results

Theorem
There is a polynomial time algorithm to decidewhether a finite set of functionsF isA - or

P-transformable.

Theorem
There is a polynomial time algorithm to decidewhether a finite set of symmetric functionsF given

in succinct expressions isA - orP-transformable.

Corollary
The dichotomy theorem for symmetric Holant problems is decidable in polynomial time.
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Deciding GeneralA Functions

Recall that for f ∈ A ,

f(x) = χxA=0 ·
√
−1xBx

T
.

For a fixed arity n, there are 2O(n2) distinct functions inA .

First checkwhether the support S of f is an affine subspace:

Build a basis inductively.

If so, decide B by solving entries one at a time.

Then check if it is consistent with f.
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Deciding GeneralA -transformable

Wewant to decidewhether there exists T ∈ GL2(C) such that fT⊗n ∈ A (orP),

with the additional restriction ((T−1)⊗2 =2) ∈ A (orP).

Consider the stabilizer group ofA :

Stab(A ) := {T ∈ GL2(C)|TA ⊆ A }.

In fact, Stab(A ) is generated bymatrices [ 1 0
0 i ] and [

1 1
1 −1 ] up to a constant.

Normalize a valid transformation T usingmatrices in Stab(A ) such that either

T ∈ SO2(C) or
[

1 0
0 e

πi
4

]
T ∈ SO2(C).
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Deciding GeneralA -transformable (cont.)

T ∈ SO2(C) ⇔ T =
[ a b
−b a

]
where a2 + b2 = 1.

Key observation:

[ 1 i
1 −i

] [ a b
−b a

]
=

[ a−bi 0
0 a+bi

] [ 1 i
1 −i

]
.

Then g = T⊗nf iff [ 1 i
1 −i

]⊗n g = .

Diagonal transformations are easy to check.
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Deciding SymmetricA -transformable

Challenge: exponentially succinct.

AnyA -transformable function has to be in the form of
(
v⊗n
0 + v⊗n

1
)
. The

(symmetric) tensor rank is 2 and preserved by any holographic transformation.

Let v0 =
[ a0

b0

]
and v1 =

[ a1
b1

]
. Define

θ(v0, v1) :=
(

a0a1 + b0b1
a1b0 − a0b1

)2

.

Thenθ(v0, v1) is invariant under orthogonal transformations.

A -transformable⇒θ(v0, v1) = 0,−1 or− 1
2 .

When all these are satisfied, valid transformations are restricted to polynomially

many.
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DecidingP Functions

Recall thatP contains function products of binary equalities, binary

dis-equalities, and unary functions.

Lemma (Uniqueness of tensor factorizations)
Let f(x) =

∏
i fi(xi)where {xi} is a partition.

Then fi 's are unique up to permutations and can be computed in polynomial time.

Function product factorizations are not unique, that is, fi 's are not unique if some xi
and xj overlap.

Decidingmembership ofP is straightforward.
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DecidingP-transformable

For general functions, using ideas similar toA -transformable, we can

restrict to orthogonal and related transformations. Then check them in the[ 1 i
1 −i

]
basis.

For symmetric functions, the procedure is also similar to deciding symmetric

A -transformable functions. We can check if f is a sumof two tensor powers

and then checkθ(v0, v1). When both checks pass, the number of valid

transformations are restricted.

HengGuo (CS, UW-Madison) General Holographic Algorithms ICALP 2014 21 / 22



DecidingP-transformable

For general functions, using ideas similar toA -transformable, we can

restrict to orthogonal and related transformations. Then check them in the[ 1 i
1 −i

]
basis.

For symmetric functions, the procedure is also similar to deciding symmetric

A -transformable functions. We can check if f is a sumof two tensor powers

and then checkθ(v0, v1). When both checks pass, the number of valid

transformations are restricted.

HengGuo (CS, UW-Madison) General Holographic Algorithms ICALP 2014 21 / 22



Thank you!

Papers are available onmy homepage:

pages.cs.wisc.edu/~hguo/
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