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Counting Problems

Counting problems

Computational Counting problems appear often in statistical physics, machine
learning, quantum computation, information theory, and so on. The quantity to

be computed is usually expressed as a sum of products.
o The expectation of any random variable;

e Approximate an integral by a weighted sum;

Heng Guo (CS, UW-Madison) Complex Holant STOC 2013 3/29



Counting Problems

Counting problems

Computational Counting problems appear often in statistical physics, machine
learning, quantum computation, information theory, and so on. The quantity to

be computed is usually expressed as a sum of products.
o The expectation of any random variable;
e Approximate an integral by a weighted sum;

o Classical simulation of quantum circuits;

Heng Guo (CS, UW-Madison) Complex Holant STOC 2013 3/29



Counting Problems

Counting problems

Computational Counting problems appear often in statistical physics, machine
learning, quantum computation, information theory, and so on. The quantity to

be computed is usually expressed as a sum of products.
o The expectation of any random variable;
e Approximate an integral by a weighted sum;
o Classical simulation of quantum circuits;

@ Partition functions.

Ising model, Potts model, Hard-core gas model, ...
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Counting Problems

Partition functions

Let us take a closer look at the partition functions.

o Ising model (without an external field):

> p,

o:Vis{+,-}

where n(c0) is the number of (+, +) and (—, —) neighbours in the graph given o.
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Counting Problems

Partition functions

Let us take a closer look at the partition functions.

o Ising model (without an external field):

> p,

o: Vi {+,-}
where n(c0) is the number of (+, +) and (—, —) neighbours in the graph given o.

@ We can rewrite it in the following form:

Z H fisma(o (i), (7)),

0:Vi{0,1} (i,j)€EE

WhereﬁSING(07 O) :_fISING(17 1) = B: fISING(07 1) :,fISING(17 0) =1
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Counting Problems

Partition functions

@ Hard-core gas model:

V/
Z )‘l ! I{V’ is an independent set}

VICV
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Counting Problems

Partition functions

@ Hard-core gas model:

V/
Z )‘l ! I{V’ is an independent set}
vicv

@ We can rewrite it in the following form:
DO | BAGIORIO)) § FAC(O)E
o:Vis{0,1} (i) €E =%

where fi5(0,0) = £is(1,0) = £5(0,1) =1, fis(1,1) =0,
2s(0) = 1and g(1) = A.
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Counting Problems

Perfect matchings

o #Perfect-Matching:

E I{E/ is a perfect marching}

E'CE
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Counting Problems

Perfect matchings

o #Perfect-Matching:
E I{E’ is a perfect marching}

E'CE

@ We can rewrite it in the following form:

Z Hﬁ’M(U |E(V)))

0:E—{0,1} v€V

where 0 |g(y) is the assignment o restricted to the set E(v) of incident edges of v,

and f,, is the Exact-ONE function.
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Counting Problems

Common features

o Instance is a graph.
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o Instance is a graph.
o Vertices and edges are associated with some functions.

e Functions take assignments on adjacent edges/vertices as inputs.
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Counting Problems

Common features

o Instance is a graph.

o Vertices and edges are associated with some functions.

Functions take assignments on adjacent edges/vertices as inputs.

Quantity to compute is an exponential sum over all possible assignments.
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Counting Problems

Frameworks

Counting problems are often parameterized by constraint functions. Frameworks

specify where to put the functions and to sum over what assignments.
@ Graph Homomorphisms
@ Constraint Satisfaction Problems (#CSP)

© Holant Problems

The expressive power is increasing in order.

Heng Guo (C
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Counting Problems

Instance - signature grid

A signature grid Q = (G, F, ) consists of a graph G = (V, E), where each vertex
is labeled by a function f, € F, and 7 : V — F is the labelling.

Figure: A signature grid
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Counting Problems

Holant problems

The Holant problem on instance €2 is to evaluate

Holantq = Z l_va(J ’E(v))?

0:E—{0,1} veV

a sum over all edge assignments o : E — {0, 1}.
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Counting Problems

Symmetric functions

Holantg = Z va(a |E(v))>

o veVv

When the function is ExacT-ONE, the Holant counts perfect matchings in G.
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Counting Problems

Symmetric functions

Holantg = Z va(U |E(V))7

o veVv

When the function is Exact-ONE, the Holant counts perfect matchings in G.

o Such a function is symmetric. The output only depends on the Hamming

weight of the input.

o List a symmetric function f by the Hamming weights: [fo, f1, . . ., fa]-
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Counting Problems

Some examples

e Exact-One: [0,1,0,...,0]. The Holant counts perfect matchings.
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Counting Problems

Some examples

e Exact-One: [0,1,0,...,0]. The Holant counts perfect matchings.

o Ar-Most-ONE: [1,1,0,...,0]. The Holant counts matchings.

Heng Guo (CS, UW-Madison) Complex Holant STOC 2013 12/29



Counting Problems

Some examples

e Exact-One: [0,1,0,...,0]. The Holant counts perfect matchings.
o Ar-Most-ONE: [1,1,0,...,0]. The Holant counts matchings.

e What about f= [3,0,1,0, 3]?
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Counting Problems

Holant([3,0, 1,0, 3])

o The input must be a 4-regular graph G.
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Counting Problems

Holant([3,0, 1,0, 3])

e The input must be a 4-regular graph G.

o Consider the edge-vertex incidence graph of G. The problem becomes

Holant ([1,0, 1] | [3,0,1,0,3]). We often use =; to denote [1, 0, 1].
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Counting Problems

Holant([3,0, 1,0, 3])

e The input must be a 4-regular graph G.

o Consider the edge-vertex incidence graph of G. The problem becomes

Holant ([1,0, 1] | [3,0,1,0,3]). We often use =; to denote [1, 0, 1].

f
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Counting Problems

Holographic transformation

For a 2-by-2 nonsingular matrix T, two functions f and g of arities m and n

respectively, Valiant's Holant theorem states

Holant (f | g) = Holant (fT®™ | (T~")®"g)

This is what we call a holographic transformation. Here fis treated as a row vector

of length 2 and g as a column vector of length 2".
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Counting Problems

Holant([3,0, 1,0, 3])

We apply the transformation Z = % [+ ;] to Holant (=] [3,0,1,0, 3]).
o (=2)7%% = [0, 1, 0], which we denote by #,.

o (Zz71)®4([3,0,1,0,3]) = 2[0,0, 1,0, 0]. The constant does not affect the

complexity.

Therefore,

Holant (=] [3,0, 1,0, 3]) = Holant (#,| 2[0,0, 1,0,0]).
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Counting Problems

Holant([3,0, 1,0, 3])

What is Holant (#,] [0, 0, 1,0,0])?

e On the edge side, #, suggests an orientation.
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Counting Problems

Holant([3,0, 1,0, 3])

What is Holant (#,] [0, 0, 1,0,0])?
e On the edge side, 7#; suggests an orientation.

o On vertices, [0, 0, 1,0, 0] requires the orientation to be Eulerian.
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Counting Problems
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e On the edge side, 7#; suggests an orientation.
o On vertices, [0, 0, 1,0, 0] requires the orientation to be Eulerian.

e Holant (#;| [0,0, 1,0, 0]) is actually the #EULERIAN-ORIENTATION

problem on 4-regular graphs. So is Holant([3, 0, 1, 0, 3])!
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Counting Problems

Holant([3,0, 1,0, 3])

What is Holant (#,] [0, 0, 1,0,0])?
e On the edge side, 7#; suggests an orientation.
o On vertices, [0, 0, 1,0, 0] requires the orientation to be Eulerian.

e Holant (#;| [0,0, 1,0, 0]) is actually the #EULERIAN-ORIENTATION

problem on 4-regular graphs. So is Holant([3, 0, 1, 0, 3])!

Two integer weighted problems are equivalent via a complex holographic

transformation.
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Dichotomy

Known tractable cases

e Our goal is to determine the complexity of Holant problems with complex

weights.
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Dichotomy

Known tractable cases

o Our goal is to determine the complexity of Holant problems with complex
weights.
o Real-weighted dichotomy [Huang and Lu '12].

o Tractable cases:

o Equivalent to a problem on graphs of bounded degree 2;

o Equivalent to a tractable #CSP problem (via a holographic transformation).
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Dichotomy

Our Contribution

Theorem
Let F be a set of complex-weighted Boolean symmetric functions. Then Holant(F) is

either tractable or #P-hard.
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Dichotomy

Our Contribution

Theorem
Let F be a set of complex-weighted Boolean symmetric functions. Then Holant(F) is

either tractable or #P-hard.

o A new class of tractable functions: vanishing signatures.

o A clear characterization regarding cases that can be transformed into

tractable #CSPs.

o Everything else is hard.
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Vanishing

A set of signatures F is called vanishing if the value Holantq (F) is zero for every

signature grid €2.
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Vanishing

A set of signatures F is called vanishing if the value Holantq(F) is zero for every

signature grid €2.

o The signature [1, i] is vanishing.

@ 0 @ 1-1
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Vanishing

A set of signatures F is called vanishing if the value Holantq(F) is zero for every

signature grid €2.

o The signature [1, i] is vanishing.

@ 1 0 1-1+i-i
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Vanishing

A set of signatures F is called vanishing if the value Holantq (F) is zero for every

signature grid €2.

o The signature [1, i] is vanishing.

@ @ 1-1+i-i=0
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Vanishing Signatures

Vanishing

e We can view several unary
signatures as a new one, which we
call degenerate. It is the tensor | | |

product of the unary signatures. [‘ ‘ ‘]

For example,

f=g®gxh.
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Vanishing

o Any degenerate signature

containing more than half [1,1]'s

is vanishing. For example, [‘ ‘ ‘]

f=[i®I1,i®]o,1]. 1
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Vanishing Signatures

Vanishing

o Any degenerate signature

containing more than half [1,1]'s

is vanishing. For example, [‘ ‘ ‘]

f=[i®I1,i®]o,1]. 1

o However, such signatures are not symmetric. We need to introduce an

operation of symmetrization.
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natures

Sum of vanishing

A key observation is that the linear sum of a set of vanishing signatures is still vanishing.
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Vanishing Signatures

Sum of vanishing

A key observation is that the linear sum of a set of vanishing signatures is still vanishing.

Assume f= fi + fo + f5, and {f1, /2, 3} is vanishing.

Holantq = Z Hf(U |E(v))

o veV
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Vanishing Signatures

Sum of vanishing

A key observation is that the linear sum of a set of vanishing signatures is still vanishing.

Assume f = fi + fo + f3, and {f1, /2, f3} is vanishing.

Holantg = Z HﬂU |E(V))

o veV

S S T Am )

T:Vi+123 o veEV
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Vanishing Signatures

Sum of vanishing

A key observation is that the linear sum of a set of vanishing signatures is still vanishing.

Assume f = fi + fo + f3, and {f1, /2, f3} is vanishing.

Holantg = Z HﬂU |E(V))

o veV

> ST )

T:Vi=+1,2,3 o veV

Notice that ) [,cvfro(o |gw)) = 0 because {f1, f2, 3} is vanishing.
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Vanishing Signatures

Sum of vanishing

A key observation is that the linear sum of a set of vanishing signatures is still vanishing.

Assume f = fi + fo + f3, and {f1, /2, f3} is vanishing.

Holantg = Z HﬂU |E(V))

o veV

S S T A0 )

T:Vi+123 o veEV

= ) 0=0

T:Vi—1,2,3

Notice that ) [,cvfro(o |gw)) = 0 because {f1, f2, 3} is vanishing.
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Symmetrization

Let S,, be the symmetric group of degree n. Then for positive integers t and n

with t < n and unary signatures v, v1, . .., V4, we define
n
t(o. _
Sym, (v;vi,...,vu—t) = E ® Ur(k)»
mweSy k=1

where the ordered sequence

(ur,uz, .. yun) = (Vy ooy vy V1o V).

t copies
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Vanishing Signatures

Examples

For example,

Sym3([1,4]; [0, 1]) = 2[0,1] ® [1,1] & [1, 1] + 2[1,1] ® [0, 1] ® [1, 1] + 2[1,{] ® [1, 1] ® [0, 1]

= 2[0, 1,2i, —3].
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Vanishing Sig}

Vanishing degrees

Definition

A nonzero symmetric signature f of arity n has positive vanishing degree k > 1,
which is denoted by vd™ (f) = k, if k < n is the largest positive integer such that

there exists n — k unary signatures v, . .., v, satisfying

f=Sym ([, ;v v k)

If f cannot be expressed as such a symmetrization form, we define vd™ (f) = 0.
If fis the all zero signature, define vd™ (f) = n + 1.
We define vd ™ (f) similarly, using —i instead of i.
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Vanishing Signatures

Characterization

Theorem

A signature f is vanishing if and only if

2vd?(f) > arity(f)

Joro =+ or —.

This result also generalizes to a set of signatures.
o vd"([0,1,2i,—3]) = 2, 50 [0, 1,2, —3] is vanishing.

e vd([1,0,1]) = vd™([1,0,1]) = 1. It is not vanishing.
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Vanishing Signatures

Related tractable cases

e Vanishing signatures are by themselves tractable.

e Some unary and binary (non-vanishing) signatures can be combined with

them and remain tractable.

o Technically there are two categories, but the basic idea is that for these

problems a given instance is either vanishing or of bounded degree 2.
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Thank you!
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