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Partition function (normalizing factor):

Z(B) = )  wlo)

o:V—{0,1}

wherew(o) = B"(°), m(o) is the number of monochromatic edges under o.
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Complexity Results

Exact evaluation of Zg(f3):
@ #P-hardunless 3 = 0, 41, +1i. [Jaeger, Vertigan, Welsh 90]
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Complexity Results

Exact evaluation of Zg(f3):

@ #P-hardunless 3 = 0, 41, +1i. [Jaeger, Vertigan, Welsh 90]

Approximation:

@ FPRASIif3 > 1and NP-hardif0 < 3 < 1. [Jerrum, Sinclair 93]
@ Forbounded degree graphsand 0 < 3 < 1,

» FPTAS below the uniqueness threshold.
[Sinclair, Srivastava, Thurley12]and [ Li,Lu,Yin12,13]
» NP-hard beyond it. [Sly, Sun12]

Note that we can amplify any constant approximation into an FPRAS.

In this talk we will focus on approximating Zg(3) for 3 € C.
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Quantum Connection

IQP (Instantaneous Quantum Polynomial-time) [ Shepherd, Bremner 09]is a
subclass of BQP.
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Quantum Connection

IQP (Instantaneous Quantum Polynomial-time) [ Shepherd, Bremner 09]is a
subclass of BQP.

An IQP circuit satisfies:
@ each qubitline starts and ends with an H gate;

@ all other gates are diagonal.

Lemma ( Fuiji, Morimae, 13)

Given an IQP circuit Cand an output x, there is a graph G such that the marginal
probability of x equals to |Z¢ (e™/)| up to an easy to compute factor.
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Implication on Complex Ising

Lemma ( Fuiji, Morimae, 13)

Given an IQP circuit Cand an output x, there is a graph G such that the marginal
probability of x equals to |Z¢(e™/4)| up to an easy to compute factor.

Lemma ( Bremner, Jorza, Shepherd 11)

Sampling x with multiplicative errors classically in polynomial time implies that
the polynomial hierarchy collapses to the third level.

Combining above two results together, |Z(e*/4)| cannot be approximated
efficiently unless the polynomial hierarchy collapses.

But is the quantum machinery necessary to study Zg(3)?
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Approximate Complex Numbers

Given a complex number z, one may approximate |z| and arg(z).
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Definition (Ziv's measure [ Ziv 82 1)

The distance between two complex numbers z and z’ should be measured as
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Approximate Complex Numbers

Given a complex number z, one may approximate |z| and arg(z).

Definition (Ziv's measure [ Ziv 82 1)

The distance between two complex numbers z and z’ should be measured as

lz—2/|

d(z,2) = ——21 _
&2) = e

where d(0,0) = 0.

Hardness of approximating |z| or arg(z) implies hardness under Ziv's measure.
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Complex Ising

Our main result is the approximation complexity of |Z¢(B )| for p € C.
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Our main result is the approximation complexity of |Z¢(B )| for p € C.

@ 3 €{0,41,+£1i}, tractable. JVW90].

@ B € (1,00), FPRAS. [J593] m(B)
@ B € (0,1), NP-hard. J$93]
@ B € (—1,0),NP-hard. [Glog]
@ B € (—oo0,—1),#PM.[C)08] =1 1 Re(j3)

@ B ZRU{i,—1i}, NP-hard. [CG14]

@ B € (—1,0),#P-hard. [CC14]

IBl =1, B & {1, £1}, #P-hard. [GC14]

Re(P)=0, B & {0, £i}, #P-hard. [GG14]
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#P-hardness

To get #P-hardness of approximation is non-trivial, as any problem in #P can be
approximated using an NP-oracle within polynomial time.
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IfZc(P) = 0, even the approximation requires the exact answer.

We relax our problem so thatif Z¢(3) = O, we accept any return.
Our hardness results hold for these relaxed versions.
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#P-hardness

To get #P-hardness of approximation is non-trivial, as any problem in #P can be
approximated using an NP-oracle within polynomial time.

IfZc(P) = 0, even the approximation requires the exact answer.
We relax our problem so thatif Zg(3) = 0, we accept any return.
Our hardness results hold for these relaxed versions.

We reduce #MINIMUM CARDINALITY (s, t)-CuT [ Provan, Ball 83] to approximating
1Zc(B)[ forany p € (—1,0).

The key part of the #P-hardness proof is a bisection argument.

This idea has been used to show hardness of determining signs of Tutte
polynomials (at real points). [ Coldberg, Jerrum, 12 ]
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@ Givenagraph G, suppose C =#Min-(s, t)-Cut.

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).

@ Wewantto put a weight x on e and a fixed weight 'y on every other edge.

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).

@ Wewantto put a weight x on e and a fixed weight 'y on every other edge.

» Using edge weight 3, we build gadgets to implementy.

We can also approximate any x € (-1,0) exponentially accurately.

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).

@ Wewantto put a weight x on e and a fixed weight 'y on every other edge.

» Using edge weight 3, we build gadgets to implementy.

We can also approximate any x € (-1,0) exponentially accurately.

@ Callthe graph G,. Let f(x) = Z¢, ().

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).
@ Wewantto put a weight x on e and a fixed weight 'y on every other edge.
» Using edge weight 3, we build gadgets to implementy.

We can also approximate any x € (-1,0) exponentially accurately.

@ Callthe graph G,. Let f(x) = Z¢, ().
Notice that f(x) is a linear function in x.
Let xo be the root of f(x).

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).
@ Wewantto put a weight x on e and a fixed weight 'y on every other edge.
» Using edge weight 3, we build gadgets to implementy.

We can also approximate any x € (-1,0) exponentially accurately.

@ Callthe graph G,. Let f(x) = Z¢, ().
Notice that f(x) is a linear function in x.
Let xo be the root of f(x).

@ Our choice of y guarantees that f(0) > 0,f(-1) < 0.

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 9/14



The Reduction

@ Givenagraph G, suppose C =#Min-(s, t)-Cut.
We may assume (s, t) is notin G. Introduce a new edgee = (s, t).
@ Wewantto put a weight x on e and a fixed weight 'y on every other edge.

» Using edge weight 3, we build gadgets to implementy.

We can also approximate any x € (-1,0) exponentially accurately.

@ Callthe graph G,. Let f(x) = Z¢, ().
Notice that f(x) is a linear function in x.
Let xo be the root of f(x).
@ Our choice of y guarantees that f(0) > 0,f(-1) < 0.
Moreover if we can approximate xq accurately enough, C can be computed

exactly.
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

@ We begin with the interval (-1,0). f(x)

@ Divide the currentinterval into 3 subintervals equally.

eo=-1 2 ) e3=0 x
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

@ We begin with the interval (-1,0). fles) f(x)
3
@ Divide the currentinterval into 3 subintervals equally.
@ Evaluate |f(x)| approximately at the 4 endpoints.
flez2)
eo=—1 e €7 33=O X
Xo
fler)
fleo)
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

We begin with the interval (-1,0). f(x)
Divide the current interval into 3 subintervals equally.

Evaluate |f(x)| approximately at the 4 endpoints.

If two points xq, x, are on the same side of xo, then the
accuracy K guarantees that the ordering of g (x; ) and flez)

g(x2) isthe same as that of [f(x; )| and |f(x2)].
eo=-1 e ) e3=0 x
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Evaluate |f(x)| approximately at the 4 endpoints.

If two points xq, x, are on the same side of xo, then the
accuracy K guarantees that the ordering of g (x; ) and flez)

g(x2) isthe same as that of [f(x; )| and |f(x2)].
) . €o="1 e € e3=0 x
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The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

We begin with the interval (-1,0). f(x)
Divide the current interval into 3 subintervals equally.

Evaluate |f(x)| approximately at the 4 endpoints.

If two points xq, x, are on the same side of xo, then the
accuracy K guarantees that the ordering of g (x; ) and flez)
g(x2) isthe same as that of [f(x; )| and |f(x2)].

) . €o=-1 al € e3=0 x
@ Otherwise the order may be wrong, but it happens at X0
most once.
@ Ifg(eg)>g(er)>g(e;),thene; <xo. fler)
f(eo)
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

We begin with the interval (-1,0). f(x)
Divide the current interval into 3 subintervals equally.

Evaluate |f(x)| approximately at the 4 endpoints.

If two points xq, x, are on the same side of xo, then the
accuracy K guarantees that the ordering of g (x; ) and flez)
g(x2) isthe same as that of [f(x; )| and |f(x2)].

) . eo=-1 e e e3=0 x
@ Otherwise the order may be wrong, but it happens at X0
most once.
@ Ifg(eo)>g(e)>g(ez), thene <xo. fler)
Ifg(e1)<g(ez)<g(es),thene, >xo.
f(eo)
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The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

We begin with the interval (-1,0). f(x)
Divide the current interval into 3 subintervals equally.

Evaluate |f(x)| approximately at the 4 endpoints.
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most once.

@ Ifg(eg)>g(er)>g(e;),thene; <xo. fler)
Ifg(e;)<g(es)<g(es),thene, >xo.

@ Atleastoneof the cases is true, so we can shrink the
interval by 2.
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing xo.

We begin with the interval (-1,0). f(x)
Divide the current interval into 3 subintervals equally.

Evaluate |f(x)| approximately at the 4 endpoints.

If two points xq, x, are on the same side of xo, then the
accuracy K guarantees that the ordering of g (x; ) and flez)

g(x2) isthe same as that of [f(x; )| and |f(x2)].
) . €o="1 e € e3=0 x
@ Otherwise the order may be wrong, but it happens at X0

most once.

@ Ifg(eg)>g(er)>g(e;),thene; <xo. fler)
Ifg(e;)<g(es)<g(es),thene, >xo.

@ Atleastoneof the cases is true, so we can shrink the
interval by 2.

f(eo)
We divide the interval into more subintervals so that we don't need an exact evaluation of
If(x)] at xo.
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Further results

@ Hardness results of approximating arg(Zs(p)).
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over planar graphs, all problems in BQP can be solved classically in
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We showed that to determine this sign is #P-hard over general graphs.
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Further results

@ Hardness results of approximating arg(Zs()).
@ Given an oracle computing the sign of Tutte polynomial at (-e?7/% -¢8711/5)
over planar graphs, all problems in BQP can be solved classically in

polynomial time [ Bordewich, Freedman, Lovasz, Welsh 051].

We showed that to determine this sign is #P-hard over general graphs.

@ Acomplete classification of approximating partition functions of Ising
models with external fields, when both the edge weight and the field are

roots of unity.

Heng Guo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 /14



Complex Ising with Fields

Edge weight 3, external field A:

ZBN) = Y wlo)

o:V—{0,1}

where w(o) = B"(9)A4(9) m(o) is the number of monochromatic edges under
0,and ¢, (o) is the number of “blue” vertices.
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Complex Ising with Fields

Edge weight 3, external field A:

ZBN) = Y wlo)

o:V—{0,1}

where w(o) = B"(9)A4(9) m(o) is the number of monochromatic edges under
0,and ¢, (o) is the number of “blue” vertices.

Theorem

Let 3 and A be two roots of unity. Then the following holds:

@ Ifp ==41,0rp ==*iandA € {1,—1,i,—1i}, Zg(P;A) can be computed
exactly in polynomial time.

@ Otherwise |Z¢(f; A)| is #P-hard to approximate.
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Proof Ideas

@ The general idea to reduce from previous cases.
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@ Givenagraph G, we build a graph G’ such that Z;/(3; A) is close to Z¢(B).
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Proof Ideas

@ The general idea to reduce from previous cases.
@ Givenagraph G, we build a graph G’ such that Z;/(3; A) is close to Z¢(B).

@ We can build gadgets to make |Z¢/($;A) — Zg ()] exponentially small,
but we need to convert additive distances into multiplicative distances.
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@ Givenagraph G, we build a graph G’ such that Z;/(3; A) is close to Z¢(B).

@ We can build gadgets to make |Z¢/($;A) — Zg ()] exponentially small,
but we need to convert additive distances into multiplicative distances.

@ If|Z5(B)] = 0, thenitisimpossible.

The non-zero relaxation is necessary to make the reduction go through.
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Proof Ideas

@ The general idea to reduce from previous cases.
@ Givenagraph G, we build a graph G’ such that Z;/(3; A) is close to Z¢(B).

@ We can build gadgets to make |Z¢/($;A) — Zg ()] exponentially small,

but we need to convert additive distances into multiplicative distances.

@ If|Z¢(B)| = 0, thenitisimpossible.
The non-zero relaxation is necessary to make the reduction go through.

@ Sowe canassume|Zs(B)| # 0. All we need is a lower bound of |Zg(B)].

(Even an exponential one suffices.)
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Proof Ideas

@ The general idea to reduce from previous cases.
@ Givenagraph G, we build a graph G’ such that Z¢/ (8; A) is close to Z¢ (B ).

@ We can build gadgets to make |Z¢/($;A) — Zg ()] exponentially small,

but we need to convert additive distances into multiplicative distances.

@ If|Z5(B)] = 0, thenitisimpossible.

The non-zero relaxation is necessary to make the reduction go through.

@ Sowe canassume|Zs(B)| # 0. All we need is a lower bound of |Zg(B)].

(Even an exponential one suffices.)

o If B isrational, this is straightforward by a granularity argument.

If B is algebraic, we need to use some basic transcendental number theory.
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Thank You!

Papers and slides available on my homepage:
www.cs.wisc.edu/~hguo/
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