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Counting Independent Sets

Independent Sets

Counting independent sets:

#IS =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = 1 ifσ induces an independent set andw(σ) = 0 otherwise.
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Counting Independent Sets

Independent Sets

Hardcore gasmodel:

ZG(λ) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = λ|σ| ifσ induces an independent set andw(σ) = 0 otherwise.
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The IsingModel

Edge interaction
[
β 1
1 β

]
:

1

β

1

β

1
β

β1

Isingmodel:

ZG(β) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm(σ),m(σ) is the number ofmonochromatic edges underσ.
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2-SpinModels

Parametrization: edge function
[
β 1
1 γ

]
and vertexweight [ 1

λ ].

Hardcore gas: [ 1 1
1 0 ] and [ 1

λ ].

Isingmodel without external fields:
[
β 1
1 β

]
and [ 11 ].

Partition function:

ZG(β,γ, λ) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm0(σ)γm1(σ)λn1(σ),

mi(σ) is the number of (i, i) edges underσ,

n1(σ) is the number of 1 vertices underσ.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 4 / 18



2-SpinModels

Parametrization: edge function
[
β 1
1 γ

]
and vertexweight [ 1

λ ].

Hardcore gas: [ 1 1
1 0 ] and [ 1

λ ].

Isingmodel without external fields:
[
β 1
1 β

]
and [ 11 ].

Partition function:

ZG(β,γ, λ) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm0(σ)γm1(σ)λn1(σ),

mi(σ) is the number of (i, i) edges underσ,

n1(σ) is the number of 1 vertices underσ.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 4 / 18



2-SpinModels

Parametrization: edge function
[
β 1
1 γ

]
and vertexweight [ 1

λ ].

Hardcore gas: [ 1 1
1 0 ] and [ 1

λ ].

Isingmodel without external fields:
[
β 1
1 β

]
and [ 11 ].

Partition function:

ZG(β,γ, λ) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm0(σ)γm1(σ)λn1(σ),

mi(σ) is the number of (i, i) edges underσ,

n1(σ) is the number of 1 vertices underσ.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 4 / 18



2-SpinModels

Parametrization: edge function
[
β 1
1 γ

]
and vertexweight [ 1

λ ].

Hardcore gas: [ 1 1
1 0 ] and [ 1

λ ].

Isingmodel without external fields:
[
β 1
1 β

]
and [ 11 ].

Partition function:

ZG(β,γ, λ) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm0(σ)γm1(σ)λn1(σ),

mi(σ) is the number of (i, i) edges underσ,

n1(σ) is the number of 1 vertices underσ.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 4 / 18



GibbsMeasure on Infinite Trees

LetT∆ be the infinite∆-regular tree.

A Gibbsmeasure onT∆ is ameasure such that for any finite subtree T ⊂ T∆, the

induced distribution on T conditioned on the outer boundary is the same as that

given by Pr(σ) = w(σ)
Z .

(Semi-)translation-invariant: invariant under all (parity-preserving) automorphisms

ofT∆.

Phase transition: the uniqueness of (semi-)translation invariant Gibbsmeasures

may change as parameters change.

For anti-ferro (βγ < 1) systems, translation invariant Gibbsmeasure is always

unique, whereas semi-translation invariant onesmay not be.
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Computational Transition of Anti-Ferro Systems

Phase transition coincides with computational transition.

On the algorithmic side, there exists an FPTAS for the partition function of the

parameter set (β,γ, λ,∆) satisfying the uniqueness condition

[Weitz 06 ], [ Sinclair, Srivastava, Thurley 12 ], [ Li, Lu, Yin 12, 13 ].

On the hardness side, it is NP-hard to approximate the partition function beyond the

uniqueness threshold [ Sly 10 ], [ Galanis, Štefankovič, Vigoda 12 ], [ Sly, Sun 12 ].
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OnBipartite Graphs

Wewill talk about bipartite graphs.

Algorithms still apply, but hardness results break because reductions are

fromMax-Cut.

#BIS: Counting Bipartite Independent Set.

Conjectured to have intermediate complexity in approximation.

Neither algorithmnor hardness reduction is known for #BIS.
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Main Results

Theorem
For all tuples of parameters (β,γ, λ,∆)with∆ ⩾ 3 andβγ < 1, ifT∆ is in the

non-uniqueness region, then approximating ZG(β,γ, λ) on bipartite graphswith

maximumdegree∆ is #BIS-equivalent, except for the case (β = γ, λ = 1), which

has an FPRAS.

Corollary
Approximately counting independent sets in bipartite graphswithmaximum

degree 6 is as hard as without the degree constraint.
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Nearly Independent Phase Correlated Spins

Sly's gadget [ Sly 10 ]:

A bipartite graphGwith a subset of terminal vertices T = T+ ∪ T− satisfying the following

properties:

Two phases: a typical configurationwill choosemore vertices from left than right or

vice versa. They should happenwith non-trivial probabilities.

Conditional on the phase, terminals in T are drawn nearly independently.

Moreover, in the+ phase, vertices in T± are drawnwith probability p±. In the−

phase, it is reversed.

We call this nearly independent phase correlated spins.
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Nearly Independent Phase Correlated Spins - Definition

Given t and ε, letG be drawn fromG(t, n(t, ε),∆). The following should holdwith
probability at least 3/4:

1 The phases are roughly balanced, i.e.,

PrG;β,γ,λ(Y(σ) = +) ⩾ 1
f(t,ε) and PrG;β,γ,λ(Y(σ) = −) ⩾ 1

f(t,ε) .

2 For a configurationσ : V → {0, 1} and anyτ : T → {0, 1},∣∣∣∣PrG;β,γ,λ(σ|T = τ | Y(σ) = +)

Q+(τ)
− 1

∣∣∣∣ ⩽ ε and
∣∣∣∣PrG;β,γ,λ(σ|T = τ | Y(σ) = −)

Q−(τ)
− 1

∣∣∣∣ ⩽ ε,

whereQ+ is the joint distributionwhere each vertex in T± is drawn independently with

probability p±, and swapping p+ and p− givesQ−.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 10 / 18



Symmetry Breaking

Definition
A tuple of parameters (β,γ, λ,∆) supports symmetry-breaking if there is a bipartite

graphHwhose vertices have degree atmost∆with a distinguished degree-1 vertex vH

such that PrH;β,γ,λ(σvH = 1) ̸∈ {0, λ/(1+ λ), 1}.

Intuitively, thismeans the system is not “perfectly symmetric”.

“Subgraph” chain: an FPRAS for the partition function of ferromagnetic Ising

(β = γ > 1)models [ Jerrum, Sinclair 93 ].

On bipartite graphs, anti-ferro Isingmodels without external fields (β = γ < 1,

λ = 1) can be reduced to ferromagnetic systems, by flipping one side's assignments.

We showed that all other cases support symmetry breaking.
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Symmetry Breaking

Definition
A tuple of parameters (β,γ, λ,∆) supports symmetry-breaking if there is a bipartite

graphHwhose vertices have degree atmost∆with a distinguished degree-1 vertex vH

such that PrH;β,γ,λ(σvH = 1) ̸∈ {0, λ/(1+ λ), 1}.

Intuitively, thismeans the system is not “perfectly symmetric”.

“Subgraph” chain: an FPRAS for the partition function of ferromagnetic Ising

(β = γ > 1)models [ Jerrum, Sinclair 93 ].

On bipartite graphs, anti-ferro Isingmodels without external fields (β = γ < 1,

λ = 1) can be reduced to ferromagnetic systems, by flipping one side's assignments.

We showed that all other cases support symmetry breaking.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 11 / 18



Symmetry Breaking

Definition
A tuple of parameters (β,γ, λ,∆) supports symmetry-breaking if there is a bipartite

graphHwhose vertices have degree atmost∆with a distinguished degree-1 vertex vH

such that PrH;β,γ,λ(σvH = 1) ̸∈ {0, λ/(1+ λ), 1}.

Intuitively, thismeans the system is not “perfectly symmetric”.

“Subgraph” chain: an FPRAS for the partition function of ferromagnetic Ising

(β = γ > 1)models [ Jerrum, Sinclair 93 ].

On bipartite graphs, anti-ferro Isingmodels without external fields (β = γ < 1,

λ = 1) can be reduced to ferromagnetic systems, by flipping one side's assignments.

We showed that all other cases support symmetry breaking.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 11 / 18



Symmetry Breaking

Definition
A tuple of parameters (β,γ, λ,∆) supports symmetry-breaking if there is a bipartite

graphHwhose vertices have degree atmost∆with a distinguished degree-1 vertex vH

such that PrH;β,γ,λ(σvH = 1) ̸∈ {0, λ/(1+ λ), 1}.

Intuitively, thismeans the system is not “perfectly symmetric”.

“Subgraph” chain: an FPRAS for the partition function of ferromagnetic Ising

(β = γ > 1)models [ Jerrum, Sinclair 93 ].

On bipartite graphs, anti-ferro Isingmodels without external fields (β = γ < 1,

λ = 1) can be reduced to ferromagnetic systems, by flipping one side's assignments.

We showed that all other cases support symmetry breaking.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 11 / 18



Symmetry Breaking

Definition
A tuple of parameters (β,γ, λ,∆) supports symmetry-breaking if there is a bipartite

graphHwhose vertices have degree atmost∆with a distinguished degree-1 vertex vH

such that PrH;β,γ,λ(σvH = 1) ̸∈ {0, λ/(1+ λ), 1}.

Intuitively, thismeans the system is not “perfectly symmetric”.

“Subgraph” chain: an FPRAS for the partition function of ferromagnetic Ising

(β = γ > 1)models [ Jerrum, Sinclair 93 ].

On bipartite graphs, anti-ferro Isingmodels without external fields (β = γ < 1,

λ = 1) can be reduced to ferromagnetic systems, by flipping one side's assignments.

We showed that all other cases support symmetry breaking.

HengGuo (CS, UW-Madison) Bounded #BIS RANDOM2014 11 / 18



A Sufficient Condition of #BIS-hardness

General Graphs
If a parameter set (β,γ, λ,∆) supports nearly independent phase correlated spins, then

Sly showed a reduction fromMax-Cut to approximating ZG(β,γ, λ) [ Sly 10 ].

Bipartite Graphs - Our Result
If a parameter set (β,γ, λ,∆) supports both nearly independent phase correlated spins

and symmetry breaking, then approximating ZG(β,γ, λ) is #BIS-equivalent.

Non-uniqueness⇒ nearly independent phase correlated spins.

All parameters except (β = γ, λ = 1)⇒ symmetry breaking.
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Reductions - the First Step

The first step is from#BIS to an Isingmodel with the edge interactionβ and

non-uniform external field λ for any 0 < β < 1 and λ ̸= 1.

▶ With the external field, we can effectively pin

variables to 0 or 1.

▶ Replace every edge (u, v) by the gadget on the

right, where the two blue nodes are pinned to 1.

▶ The effective weights are
[

β β

β β3

]

= β
[ 1 1
1 β2

]
.

▶
[ 1 1
1 β2

]
→ [ 1 1

1 0 ] asβ goes to 0.

1

u v

1

β

β

β
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▶ With the external field, we can effectively pin

variables to 0 or 1.

▶ Replace every edge (u, v) by the gadget on the
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Reductions - the Second Step

The second step is to use nearly independent phase correlated spins and

symmetry breaking to simulate this Isingmodel.

▶ Symmetry breaking gadget serves as the external field.

▶ Replace each vertex by a n-i p-c spins gadget.

Replace each edge by connecting terminals:+ to+ and− to−.

▶ Effective edge interaction is of the Ising type.

However, like Sly's gadget, we only require the two phases of the gadget to be

polynomially balanced. This induces an unpleasant polynomially large

external field on each vertex.
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Balance the Gadget

Sly'sMax-Cut reductionworks when the two phases occur with probabilities

that are bounded below by an inverse polynomial.

Wewant to control the external field on each vertex. Hencewe need the two

phases to occur with roughly equal probability, i.e. about 1/2.
▶ Construct a new gadget by gluing two gadgets together,

and connectmany terminals between them. With high

probability the two gadgets will have different phases.

▶ Define the phase of thewhole gadget to be the phase of

the first. The two phases are balanced as

Pr(+−) = Pr(−+).

v v ′...
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Summary

Theorem
For all tuples of parameters (β,γ, λ,∆)withβγ < 1 and∆ ⩾ 3, the following

holds:

1 If the parameters satisfy strict-uniqueness then there is a FPTAS for the

partition function for all graphs [ Li, Lu, Yin 13 ].

2 If the parameters satisfy non-uniqueness then:

1 it is #SAT-hard to approximate the partition function on graphs [ Sly, Sun 12 ].

2 it is #BIS-hard to approximate the partition function on bipartite graphs,

except whenβ = γ and λ = 1, which admits an FPRAS.
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Open Problems

Anti-ferromagnetic (βγ < 1) 2-spin system.

▶ The complexity at the uniqueness threshold.

Ferromagnetic (βγ > 1) 2-spin system.

▶ There is an FPRAS for the Isingmodel [ Jerrum, Sinclair 93 ]. It was generalized

later [ Goldberg, Jerrum, Paterson 03 ], but not to all parameters.

▶ On the other hand it is known to be #BIS-easy for any parameters even in

general graphs [ Goldberg, Jerrum07 ].

▶ Recent progress on #BIS-hardness has beenmade based on our results [ Liu,

Lu, Zhang 14 ].
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Thank You!

Papers and slides available onmy homepage:

www.cs.wisc.edu/~hguo/
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