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Abstract
We prove a complexity dichotomy theorem for symmetric complex-weighted Boolean #CSP

when the constraint graph of the input must be planar. The problems that are #P-hard over
general graphs but tractable over planar graphs are precisely those with a holographic reduction
to matchgates. This generalizes a theorem of Cai, Lu, and Xia for the case of real weights. We
also obtain a dichotomy theorem for a symmetric arity 4 signature with complex weights in the
planar Holant framework, which we use in the proof of our #CSP dichotomy. In particular, we
reduce the problem of evaluating the Tutte polynomial of a planar graph at the point (3, 3) to
counting Eulerian orientations over planar 4-regular graphs to show the latter is #P-hard. This
strengthens a theorem by Huang and Lu to the planar setting. Our proof techniques combine
new ideas with refinements and extensions of existing techniques. These include planar pairings,
the unary recursive construction, the anti-gadget technique, and pinning in the Hadamard basis.

1 Introduction
In 1979, Valiant [47] defined the class #P to explain the apparent intractability of counting perfect
matchings in a graph. Yet over a decade earlier, Kasteleyn [36] gave a polynomial-time algorithm
to compute this quantity for planar graphs. This was an important milestone in a decades-long
research program by physicists in statistical mechanics to determine what problems the restriction
to the planar setting renders tractable [34, 42, 56, 57, 40, 44, 35, 36, 1, 41, 55]. More recently,
Valiant introduced matchgates [50, 49] and holographic algorithms [52, 51] that rely on Kasteleyn’s
algorithm to solve certain counting problems over planar graphs. In a series of papers [7, 8, 16, 17],
Cai et al. characterized the local constraint functions (which define counting problems) that are
representable by matchgates in a holographic algorithm.

From the viewpoint of computational complexity, we seek to understand exactly which in-
tractable problems the planarity restriction enable us to efficiently compute. Partial answers to
this question have been given in the context of various counting frameworks [54, 19, 13, 15]. In
every case, the problems that are #P-hard over general graphs but tractable over planar graphs
are essentially those characterized by Cai et al. In this paper, we give more evidence for this
phenomenon by extending the results of [19] to the setting of complex-valued constraint functions.
This provides the most natural setting to express holographic algorithms and transformations.

Our main result is a dichotomy theorem for the framework of counting Constraint Satisfaction
Problems (#CSP), but our proof is in a generalized framework called Holant problems [23, 22, 18,
20]. We briefly introduce the Holant framework and then explain its main advantages. A set of
functions F defines the problem Holant(F). An instance of this problem is a tuple Ω = (G,F , π)
called a signature grid, where G = (V,E) is a graph, π labels each v ∈ V with a function fv ∈ F ,
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and fv maps {0, 1}deg(v) to C. We also call the functions in F signatures. An assignment σ for
every e ∈ E gives an evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the incident edges of v and

σ |E(v) denotes the restriction of σ to E(v). The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv
(
σ |E(v)

)
.

Counting perfect matchings in G corresponds to attaching the Exact-One signature at every
vertex of G. A function or signature is called symmetric if its output depends only on the Hamming
weight of the input. We often denote a symmetric signature by the list of its outputs sorted by
input Hamming weight in ascending order. For example, [0, 1, 0, 0] is the Exact-One function on
three bits. The output is 1 if and only if the input is 001, 010, or 100, and 0 otherwise.

We consider #CSP, which are also parametrized by a set of functions F . The problem#CSP(F)
is equivalent to Holant(F ∪ EQ), where EQ = {=1,=2,=3, . . . } and (=k) = [1, 0, . . . , 0, 1] is the
equality signature of arity k. This explicit role of equality signatures permits a finer classification
of problems. For a direct definition of #CSP, see [26].

We often consider a Holant problem over bipartite graphs, which is denoted by Holant(F | G),
where the sets F and G contain the signatures available for assignment to the vertices in each
part. Considering the edge-vertex incidence graph, one can see that Holant(F) is equivalent to
Holant(=2| F). One powerful tool in this setting is the holographic transformation. Let T be a
nonsingular 2-by-2 matrix and define TF = {T⊗ arity(f)f | f ∈ F}, where T⊗k is the tensor product
of k factors of T . Here we view f as a column vector by listing its values in lexicographical order
as in a truth table. Similarly FT is defined by viewing f ∈ F as a row vector. Valiant’s Holant
theorem [52] states that Holant(F | G) is equivalent to Holant(FT−1 | TG).

Cai, Lu, and Xia gave a dichotomy for complex-weighted Boolean #CSP(F) in [18]. Let
Pl-#CSP(F) (resp. Pl-Holant(F)) denote the #CSP (resp. Holant problem) defined by F when the
inputs are restricted to planar graphs. In this paper, we investigate the complexity of Pl-#CSP(F)
for a set F of symmetric complex-weighted functions. In particular, we would like to deter-
mine which sets become tractable under this planarity restriction. Holographic algorithms with
matchgates provide planar tractable problems for sets that are matchgate realizable after a holo-
graphic transformation. From the Holant perspective, the signatures in EQ are always available
in #CSP(F). By the signature theory of Cai and Lu [17], the Hadamard matrix H =

[
1 1
1 −1

]
essentially defines the only1 holographic transformation under which EQ becomes matchgate real-
izable. Let F̂ denoteHF for any set F of signatures. Then ÊQ is {[1, 0], [1, 0, 1], [1, 0, 1, 0], . . . } while
(=2)(H

−1)⊗2 is still =2. Therefore #CSP(F) and Holant(F∪EQ) are equivalent to Holant(F̂ ∪ÊQ)
by Valiant’s Holant theorem.

Our main dichotomy theorem is stated as follows.

Theorem 1.1. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
Then Pl-#CSP(F) is #P-hard unless F satisfies one of the following conditions, in which case it
is tractable:

1. #CSP(F) is tractable (cf. [18]); or
2. F̂ is realizable by matchgates (cf. [17]).

A more explicit description of the tractable cases can be found in Theorem 9.3.
1Up to transformations under which matchgates are closed.
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In many previous dichotomy theorems for Boolean #CSP(F), the proof of hardness began by
pinning. The goal of this technique is to realize the constant functions [1, 0] and [0, 1] and was
always achieved by a nonplanar reduction. In the nonplanar setting, [1, 0] and [0, 1] are contained
in each of the maximal tractable sets. Therefore, pinning in this setting does not imply the collapse
of any complexity classes. However, EQ with {[1, 0], [0, 1]} are not simultaneously realizable as
matchgates. If we are to prove our main theorem, one should not expect to be able to pin for
Pl-#CSP(F), since otherwise #P collapses to P! Instead, apply the Hadamard transformation and
consider Pl-Holant(F̂ ∪ ÊQ). In this Hadamard basis, pinning becomes possible again since [1, 0]
and [0, 1] are included in every maximal tractable set. Indeed, we prove our pinning result in this
Hadamard basis in Section 8.

For Holant problems, it is often important to understand the complexity of the small arity cases
first [19, 32, 10]. In [19], Cai, Lu, and Xia gave a dichotomy for Pl-Holant(f) when f is a symmetric
arity 3 signature while a dichotomy for Holant(f) when f is a symmetric arity 4 signature was shown
in [10]. In the proof of the latter result, most of the reductions were planar. However, the crucial
starting point for hardness, namely counting Eulerian orientations (#EO) over 4-regular graphs,
was not known to be #P-hard under the planarity restriction. Huang and Lu [32] had recently
proved that #EO is #P-hard over 4-regular graphs but left open its complexity when the input
is also planar. We show that #EO remains #P-hard over planar 4-regular graphs. The problem
we reduce from is the evaluation of the Tutte polynomial of a planar graph at the point (3, 3),
which has a natural expression in the Holant framework. In addition, we determine the complexity
of counting complex-weighted matchings over planar 4-regular graphs. The problem is #P-hard
except for the tractable case of counting perfect matchings. With these two ingredients, we obtain
a dichotomy for Pl-Holant(f) when f is a symmetric arity 4 signature.

Our main result is a generalization of the dichotomy by Cai, Lu, and Xia [19] for Pl-#CSP(F)
when F contains symmetric real-weighted Boolean functions. It is natural to consider complex
weights in the Holant framework because surprising equivalences between problems are often dis-
covered via complex holographic transformations, sometimes even between problems using only
rational weights. Our proof of hardness for #EO over planar 4-regular graphs in Section 3 is a
prime example of this. Extending the range from R to C also enlarges the set of problems that can
be transformed into the framework.

However, a dichotomy for complex weights is more technically challenging. The proof tech-
nique of polynomial interpolation often has infinitely many failure cases in C corresponding to the
infinitely many roots of unity, which prevents a brute force analysis of failure cases as was done
in [19]. This increased difficulty requires us to develop new ideas to bypass previous interpolation
proofs. In particular, we perform a planar interpolation with a rotationally invariant signature
to prove the #P-hardness of #EO over planar 4-regular graphs. For the complexity of counting
complex-weighted matchings over planar 4-regular graphs, we introduce the notion of planar pair-
ings to build reductions. We show that every planar 3-regular graph has a planar pairing and that
one can be efficiently computed. We also refine and extend existing techniques for application in
the new setting, including the unary recursive construction, the anti-gadget technique, compressed
matrix criteria, and domain pairing.

This paper is organized as follows. In Section 2, we give a review of terminology and previous
dichotomy theorems. In Section 3, we prove that counting Eulerian orientations is #P-hard for
planar 4-regular graphs. In Section 4, we strengthen a popular interpolation technique that uses
recursive constructions, which leads to simpler proofs. In Section 5, we obtain our dichotomy
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theorem for Pl-Holant(f) when f is a symmetric arity 4 signature with complex weights. In
Section 6, we prove several useful lemmas about a technique we call domain pairing that essentially
realizes an odd arity signature using only signatures of even arity. In Section 7, we show that
the three known sets of tractable signatures become #P-hard when mixed. In Section 8, we use
the pinning technique in a new planar proof to realize the constant functions [1, 0] and [0, 1]. In
Section 9, we obtain our dichotomy theorem for Pl-#CSP(F).

2 Preliminaries
2.1 Problems and Definitions
The framework of Holant problems is defined for functions mapping any [q]k → F for a finite q and
some field F. In this paper, we investigate complex-weighted Boolean Holant problems, that is,
all functions are [2]k → C. Strictly speaking, for consideration of computational models, functions
take complex algebraic numbers.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E), where each vertex is labeled by
a function fv ∈ F , and π : V → F is the labeling. We say Ω is a planar signature grid if G is
planar, where the variables of fv are ordered counterclockwise. The Holant problem on instance Ω
is to evaluate HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all edge assignments σ : E → {0, 1}.

A function fv can be represented by listing its values in lexicographical order as in a truth table,
which is a vector in C2deg(v) , or as a tensor in (C2)⊗ deg(v). We also use fα to denote the value f(α),
where α is a binary string. A function f ∈ F is also called a signature. A symmetric signature f
on k Boolean variables can be expressed as [f0, f1, . . . , fk], where fw is the value of f on inputs of
Hamming weight w. In this paper, we consider symmetric signatures. Sometimes we represent a
signature of arity k by a labeled vertex with k ordered dangling edges corresponding to its input.

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define the counting problem Holant(F) as:
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

The problem Pl-Holant(F) is defined similarly using a planar signature grid. The Holantc

framework is the special case of Holant problems when the constant signatures of the domain are
freely available. In the Boolean domain, the constant signatures are [1, 0] and [0, 1].

Definition 2.2. Given a set of signatures F , Holantc(F) denotes Holant(F ∪ {[0, 1], [1, 0]}).

The problem Pl-Holantc(F) is defined similarly. A signature f of arity n is degenerate if there
exist unary signatures uj ∈ C2 (1 ≤ j ≤ n) such that f = u1 ⊗ · · · ⊗ un. A symmetric degenerate
signature has the form u⊗n. For such signatures, it is equivalent to replace it by n copies of the
corresponding unary signature. Replacing a signature f ∈ F by a constant multiple cf , where c ̸= 0,
does not change the complexity of Holant(F). It introduces a global nonzero factor to HolantΩ.
Hence, for two signatures f, g of the same arity, we use f ̸= g to mean that these signatures are
not equal in the projective space sense, i.e. not equal up to any nonzero constant multiple.

We say a signature set F is tractable (resp. #P-hard) if the corresponding counting problem
Pl-#CSP(F) is tractable (resp. #P-hard). Sometimes we abuse this notation and also say that
F is tractable to mean Pl-Holant(F) is tractable. The intended counting problem should be clear
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from context. Similarly for a signature f , we say f is tractable (resp. #P-hard) if {f} is. We follow
the usual conventions about polynomial-time Turing reduction ≤T and polynomial-time Turing
equivalence ≡T .

2.2 Holographic Reduction
To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a
general graph, we can always transform it into a bipartite graph while preserving the Holant value,
as follows. For each edge in the graph, we replace it by a path of length two. (This operation is
called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new vertex is
assigned the binary Equality signature (=2) = [1, 0, 1].

We use Holant(F | G) to denote the Holant problem over bipartite graphs H = (U, V,E), where
each vertex in U or V is assigned a signature in F or G, respectively. An input instance for this
bipartite Holant problem is a bipartite signature grid and is denoted by Ω = (H; F | G; π).
Signatures in F are considered as row vectors (or covariant tensors); signatures in G are considered
as column vectors (or contravariant tensors) [25]. Similarly, Pl-Holant(F | G) denotes the Holant
problem over signature grids with a planar bipartite graph.

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity n, g = T⊗nf},
similarly for FT . Whenever we write T⊗nf or TF , we view the signatures as column vectors;
similarly for fT⊗n or FT as row vectors. In the special case that T =

[
1 1
1 −1

]
, we also define

TF = F̂ .
Let T be an invertible 2-by-2 matrix. The holographic transformation defined by T is the

following operation: given a signature grid Ω = (H; F | G; π), for the same bipartite graph H,
we get a new grid Ω′ = (H; FT | T−1G; π′) by replacing each signature in F or G with the
corresponding signature in FT or T−1G.

Theorem 2.3 (Valiant’s Holant Theorem [52]). If there is a holographic transformation mapping
signature grid Ω to Ω′, then HolantΩ = HolantΩ′.

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic trans-
formation, the orthogonal transformation, that preserves the binary equality and thus can be used
freely in the standard setting.

Theorem 2.4 (Theorem 2.2 in [18]). Suppose T is a 2-by-2 orthogonal matrix (TT ⊺ = I2) and let
Ω = (H,F , π) be a signature grid. Under a holographic transformation by T , we get a new grid
Ω′ = (H,TF , π′) and HolantΩ = HolantΩ′.

Since the complexity of a signature is equivalent up to a nonzero constant factor, we also call
a transformation T such that TT ⊺ = λI for some λ ̸= 0 an orthogonal transformation. Such
transformations do not change the complexity of a problem.

2.3 Realization
One basic notion used throughout the paper is realization. We say a signature f is realizable or
constructible from a signature set F if there is a gadget with some dangling edges such that each
vertex is assigned a signature from F , and the resulting graph, when viewed as a black-box signature
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Figure 1: An F-gate with 5 dangling edges.

with inputs on the dangling edges, is exactly f . If f is realizable from a set F , then we can freely
add f into F while preserving the complexity.

Formally, such a notion is defined by an F-gate [18, 19]. An F-gate is similar to a signature grid
(G,F , π) except that G = (V,E,D) is a graph with some dangling edges D. The dangling edges
define external variables for the F-gate. (See Figure 1 for an example.) We denote the regular
edges in E by 1, 2, . . . ,m and the dangling edges in D by m+ 1, . . . ,m+ n. Then we can define a
function Γ for this F-gate as

Γ(y1, . . . , yn) =
∑

x1,...,xm∈{0,1}

H(x1, . . . , xm, y1, . . . , yn),

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges and H(x1, . . . , xm, y1, . . . , yn) is
the value of the signature grid on an assignment of all edges, which is the product of evaluations at
all internal vertices. We also call this function Γ the signature of the F-gate. An F-gate is planar
if the underlying graph G is a planar graph, and the dangling edges, ordered counterclockwise
corresponding to the order of the input variables, are in the outer face in a planar embedding.
A planar F-gate can be used in a planar signature grid as if it is just a single vertex with the
particular signature.

Using the idea of planar F-gates, we can reduce one planar Holant problem to another. Suppose
g is the signature of some planar F-gate. Then Pl-Holant(F∪{g}) ≤T Pl-Holant(F). The reduction
is simple. Given an instance of Pl-Holant(F ∪ {g}), by replacing every appearance of g by the F-
gate, we get an instance of Pl-Holant(F). Since the signature of the F-gate is g, the Holant values
for these two signature grids are identical.

We note that even for a very simple signature set F , the signatures for all planar F-gates can
be quite complicated and expressive.

2.4 #CSP and Its Tractable Signatures
An instance of #CSP(F) has the following bipartite view. Create a node for each variable and each
constraint. Connect a variable node to a constraint node if the variable appears in the constraint
function. This bipartite graph is also known as the incidence graph [24] or constraint graph. Under
this view, we can see that

#CSP(F) ≡T Holant(F | EQ) ≡T Holant(F ∪ EQ),

where EQ = {=1,=2,=3, . . . } is the set of equality signatures of all arities. This equivalence also
holds for the planar versions of these frameworks.
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For the #CSP framework, the following two signature sets are tractable [18].

Definition 2.5. A k-ary function f(x1, . . . , xk) is affine if it has the form

λχAx=0 ·
√
−1

∑n
j=1⟨αj ,x⟩

,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)
⊺, A is a matrix over F2, αj is a vector over F2, and χ is a 0-1

indicator function such that χAx=0 is 1 iff Ax = 0. Note that the dot product ⟨αj , x⟩ is calculated
over F2, while the summation

∑n
j=1 on the exponent of i =

√
−1 is evaluated as a sum mod 4 of

0-1 terms. We use A to denote the set of all affine functions.

Notice that there is no restriction on the number of rows in the matrix A. The trivial case is
when A is the zero matrix so that χAx=0 = 1 holds for all x.

Definition 2.6. A function is of product type if it can be expressed as a product of unary functions,
binary equality functions ([1, 0, 1]), and binary disequality functions ([0, 1, 0]). We use P to denote
the set of product-type functions.

An alternate definition for P, implicit in [21], is the tensor closure of signatures with support
on two entries of complement indices.

It is easy to see (cf. Lemma A.1 in [33], the full version of [32]) that if f is a symmetric signature
in P, then f is either degenerate, binary disequality, or generalized equality (i.e. [a, 0, . . . , 0, b] for
a, b ∈ C). It is known that the set of non-degenerate symmetric signatures in A is precisely the
nonzero signatures (λ ̸= 0) in F1 ∪ F2 ∪ F3 with arity at least two, where F1, F2, and F3 are
three families of signatures defined as

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, and

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

We explicitly list all the signatures in F1 ∪ F2 ∪ F3 up to an arbitrary constant multiple from C:
1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)
10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)

In the Holant framework, there are two corresponding signature sets that are tractable. A
signature f is A -transformable if there exists a holographic transformation T such that f ∈ TA
and [1, 0, 1]T⊗2 ∈ A . Similarly, a signature f is P-transformable if there exists a holographic
transformation T such that f ∈ TP and [1, 0, 1]T⊗2 ∈ P. These two families are tractable
because after a transformation by T , it is a tractable #CSP instance. We note that Â = A . For
symmetric signatures, this easily follows from the expressions of the signatures in F1 ∪ F2 ∪ F3.
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2.5 Matchgate Signatures
Matchgates were introduced by Valiant [50, 49] in order to give polynomial-time algorithms for a
collection of counting problems over planar graphs. As the name suggests, problems expressible by
matchgates can be reduced to computing a weighted sum of perfect matchings. The latter problem
is tractable over planar graphs by Kasteleyn’s algorithm [36]. These counting problems are naturally
expressed in the Holant framework using matchgate signatures. We use M to denote the set of
all matchgate signatures; thus Pl-Holant(M ) is tractable. In general, matchgate signatures are
characterized by the matchgate identities (see [9] for the identities and a self-contained proof).

The parity of a matchgate signature is even (resp. odd) if its support is on entries of even
(resp. odd) Hamming weight. Lemmas 6.2 and 6.3 in [7] (and the paragraph the follows them)
characterize the symmetric signatures in M . Instead of formally stating these two lemmas, we
explicitly list all the symmetric signatures in M : For any α, β ∈ C and n ∈ N,

1. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n ≥ 2);
2. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n+ 1 ≥ 1);
3. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n+ 1 ≥ 1);
4. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n+ 2 ≥ 2).

In the last three cases with n = 0, the signatures are [1, 0], [0, 1], and [0, 1, 0]. Any multiple of these
is also a matchgate signature. Roughly speaking, the symmetric matchgate signatures have 0 for
every other entry (which is called the parity condition), and form a geometric progression with the
remaining entries.

In the standard basis of the Pl-#CSP framework, the set
[
1 1
1 −1

]
M = M̂ of signatures is

tractable and consists of signatures with the following expressions.2

Theorem 2.7 (Special case of Theorem 4 in [16]). A symmetric signature [f0, f1, . . . , fn] is realizable
under the basis

[
1 1
1 −1

]
iff it takes one of the following forms:

1. there exists constants λ, α, β ∈ C and ε = ±1, such that for all ℓ, 0 ≤ ℓ ≤ n,

fℓ = λ[(α+ β)n−ℓ(α− β)ℓ + ε(α− β)n−ℓ(α+ β)ℓ];

2. there exists a constant λ ∈ C, such that for all ℓ, 0 ≤ ℓ ≤ n,

fℓ = λ(n− 2ℓ)(−1)ℓ;

3. there exists a constant λ ∈ C, such that for all ℓ, 0 ≤ ℓ ≤ n,

fℓ = λ(n− 2ℓ).

We note that case 1 corresponds to the general case (ε = +1 for signatures with even parity and
ε = −1 for signatures with odd parity) while case 3 corresponds to the perfect matching signatures
[0, 1, 0, . . . , 0] and case 2 corresponds to their reversals.

We summarize the known tractability results for the Pl-#CSP framework in the following
theorem, which is stated in the Hadamard basis with [1, 0] and [0, 1] present.
Theorem 2.8. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
Then Pl-Holantc(F ∪ ÊQ) is tractable if F ⊆ A , F ⊆ P̂, or F ⊆ M .

We also say a signature f is M -transformable if there exists a holographic transformation T
such that f ∈ TM and [1, 0, 1]T⊗2 ∈ M .

2Even though Theorem 2.7 is technically about generator signatures, neither generators nor recognizers are men-
tioned because Theorems 3 and 4 in [16] coincide when the basis is an orthogonal transformation.
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2.6 Some Known Dichotomies
We use the dichotomy for a single ternary signature in the planar Holant framework to prove the
planar dichotomy for a single arity 4 signature. A signature is called vanishing if the Holant of any
signature grid using only that signature is zero (see [11], the full version of [10]).

Theorem 2.9 (Special case of Theorem V.1 in [19]). If f is a symmetric, non-degenerate, complex-
valued ternary signature, then Pl-Holant(f) is #P-hard unless f satisfies one of the following
conditions, in which case the problem is computable in polynomial time:

1. Holant(f) is tractable (i.e. f is A -transformable, P-transformable, or vanishing);
2. f is M -transformable.

We use the following theorem about edge-weighted signatures on degree prescribed graphs in
both of our dichotomy theorems. See also Theorem 22 in [37], which contains a proof.

Theorem 2.10 (Theorem 4 in [12]). Let S ⊆ Z+ be nonempty, let G = {=k| k ∈ S}, and let
d = gcd(S). Then Pl-Holant([f0, f1, f2] | G) is #P-hard for all f0, f1, f2 ∈ C unless one of the
following conditions hold, in which case the problem is computable in polynomial time:

1. G ⊆ {=1,=2};
2. f0f2 = f2

1 ;
3. f1 = 0;
4. f0f2 = −f2

1 ∧ fd
0 = −fd

2 ;
5. fd

0 = fd
2 .

For the arity 4 dichotomy (Theorem 5.6), we use Theorem 2.10 with G = {=4}. For the Pl-#CSP
dichotomy, we use Theorem 2.10 with G = EQ, which is the special case of Pl-#CSP(F) when F
contains a single binary signature. Over general domains, this special case is also known as counting
graph homomorphism from a planar input graph to a fixed target graph. Furthermore, we perform
a holographic transformation by the Hadamard matrix H =

[
1 1
1 −1

]
. Under this transformation,

it is easy to see that the conditions f0f2 = f2
1 and f0f2 = −f2

1 ∧ f0 = −f2 are invariant while
the conditions f1 = 0 and f0 = f2 map to each other. Therefore, by an apparent coincidence, the
tractability conditions remain the same. To be clear, we restate Theorem 2.10 both before and
after a holographic transformation by H with G = EQ.

Theorem 2.11 (Special case of Theorem 2.10). For any f0, f1, f2 ∈ C, both Pl-Holant([f0, f1, f2] |
EQ) and Pl-Holant([f0, f1, f2] | ÊQ) are #P-hard unless one of the following conditions hold, in
which case both problems are computable in polynomial time:

1. f0f2 = f2
1 ;

2. f1 = 0;
3. f0f2 = −f2

1 and f0 = −f2;
4. f0 = f2.

3 The Complexity of Counting Eulerian Orientations
Recall the definition of an Eulerian orientation.

Definition 3.1. Given a graph G, an orientation of its edges is an Eulerian orientation if for each
vertex v of G, the number of incoming edges of v equals the number of outgoing edges of v.

9



(a) (b) (c)

Figure 2: A plane graph (a), its medial graph (c), and both graphs superimposed (b).

Counting (unweighted) Eulerian orientations over 4-regular graphs was shown to be #P-hard
in Theorem V.10 of [32]. We improve this result by showing that this problem remains #P-hard
when the graph is also planar. The reduction begins with the problem of evaluating the Tutte
polynomial at the point (3,3), which is #P-hard even over planar graphs.

Theorem 3.2 (Theorem 5.1 in [54]). For x, y ∈ C, evaluating the Tutte polynomial at (x, y) is #P-
hard over planar graphs unless (x− 1)(y− 1) ∈ {1, 2} or (x, y) ∈ {(1, 1), (−1,−1), (ω, ω2), (ω2, ω)},
where ω = e2πi/3. In each exceptional case, the computation can be done in polynomial time.

The first step in the reduction concerns a sum of weighted Eulerian orientations on a medial
graph of a planar graph. Recall the definition of a medial graph.

Definition 3.3 (cf. [2]). For a connected plane graph G (i.e. a planar embedding of a connected
planar graph), its medial graph H has a vertex for each edge of G and two vertices in H are joined
by an edge for each face of G in which their corresponding edges occur consecutively.

An example of a plane graph and its medial graph are given in Figure 2. Notice that a me-
dial graph of a planar graph is always a planar 4-regular graph. Las Vergnas [53] connected the
evaluation of the Tutte polynomial of a planar graph G at the point (3,3) with a sum of weighted
Eulerian orientations on a medial graph of G.

Theorem 3.4 (Theorem 2.1 in [53]). Let G be a connected plane graph and let O(Gm) be the set
of all Eulerian orientations in the medial graph Gm of G. Then

2 · T(G; 3, 3) =
∑

O∈O(Gm)

2β(O), (1)

where β(O) is the number of saddle vertices in the orientation O, i.e. the number of vertices in
which the edges are oriented “in, out, in, out” in cyclic order.

Although the medial graph depends on a particular embedding of the planar graph G, the right
side of (1) is invariant under different embeddings of G. This follows from (1) and the fact that the
Tutte polynomial does not depend on the embedding of G.

In addition to these two theorems, our proof also uses a definition from [11].

10



Definition 3.5 (Definition 6.1 in [11]). A 4-by-4 matrix is redundant if its middle two rows and
middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4 signature.

Definition 3.6 (Definition 6.2 in [11]). The signature matrix of a symmetric arity 4 signature
f = [f0, f1, f2, f3, f4] is

Mf =


f0 f1 f1 f2
f1 f2 f2 f3
f1 f2 f2 f3
f2 f3 f3 f4

 .

This definition extends to an asymmetric signature g as

Mg =


g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111

 .

When we present g as an F-gate, we order the four external edges ABCD counterclockwise. In Mg,
the row index bits are ordered AB and the column index bits are ordered DC, in reverse order. This
is for convenience so that the signature matrix of the linking of two arity 4 F-gates is the matrix
product of the signature matrices of the two F-gates.

If Mg is redundant, we also define the compressed signature matrix of g as

M̃g =

1 0 0 0
0 1

2
1
2 0

0 0 0 1

Mg


1 0 0
0 1 0
0 1 0
0 0 1

 .

Now we can prove our hardness result.

Theorem 3.7. #Eulerian-Orientations is #P-hard over planar 4-regular graphs.

Proof. We reduce calculating the right side of (1) to Pl-Holant(̸=2 | [0, 0, 1, 0, 0]), which denotes
the problem of counting Eulerian orientations over planar 4-regular graphs as a bipartite Holant
problem. Then by Theorem 3.2 and Theorem 3.4, we conclude that Pl-Holant(̸=2 | [0, 0, 1, 0, 0]) is
#P-hard.

The right side of (1) is the bipartite Holant problem Pl-Holant(̸=2 | f), where the signature
matrix of f is

Mf =


0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

 .

We perform a holographic transformation by Z =
[
1 1
i −i

]
to get

Pl-Holant(̸=2 | f) ≡T Pl-Holant([0, 1, 0](Z−1)⊗2 | Z⊗4f)

≡T Pl-Holant([1, 0, 1]/2 | 4f̂)
≡T Pl-Holant(f̂),

11



Figure 3: The planar tetrahedron gadget. Each vertex is assigned [3, 0, 1, 0, 3].

where the signature matrix of f̂ is

Mf̂ =


2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

 .

We also perform the same holographic transformation by Z on our target counting problem
Pl-Holant(̸=2 | [0, 0, 1, 0, 0]) to get

Pl-Holant(̸=2 | [0, 0, 1, 0, 0]) ≡T Pl-Holant([0, 1, 0](Z−1)⊗2 | Z⊗4[0, 0, 1, 0, 0])

≡T Pl-Holant([1, 0, 1]/2 | 2[3, 0, 1, 0, 3])
≡T Pl-Holant([3, 0, 1, 0, 3]).

Using the planar tetrahedron gadget in Figure 3, we assign [3, 0, 1, 0, 3] to every vertex and obtain
a gadget with signature 32ĝ, where the signature matrix of ĝ is

Mĝ =
1

2


19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

 .

Now we show how to reduce Pl-Holant(f̂) to Pl-Holant(ĝ) by interpolation. Consider an instance
Ω of Pl-Holant(f̂). Suppose that f̂ appears n times in Ω. We construct from Ω a sequence of
instances Ωs of Holant(ĝ) indexed by s ≥ 1. We obtain Ωs from Ω by replacing each occurrence of
f̂ with the gadget Ns in Figure 4 with ĝ assigned to all vertices. Although f̂ and ĝ are asymmetric
signatures, they are invariant under a cyclic permutation of their inputs. Thus, it is unnecessary
to specify which edge corresponds to which input. We call such signatures rotationally symmetric.

N1 N2

Ns

Ns+1

Figure 4: Recursive construction to interpolate f̂ . The vertices are assigned ĝ.
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To obtain Ωs from Ω, we effectively replace Mf̂ with MNs = (Mĝ)
s, the sth power of the

signature matrix Mĝ. Let

T =


0 0 1 1
1 1 0 0
−1 1 0 0
0 0 −1 1

 .

Then

Mf̂ = TΛf̂T
−1 = T


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

T−1 and Mĝ = TΛĝT
−1 = T


1 0 0 0
0 6 0 0
0 0 6 0
0 0 0 13

T−1.

We can view our construction of Ωs as first replacing each Mf̂ by TΛf̂T
−1 to obtain a signature

grid Ω′, which does not change the Holant value, and then replacing each Λf̂ with Λs
ĝ. We stratify

the assignments in Ω′ based on the assignment to Λf̂ . We only need to consider the assignments
to Λf̂ that assign

• 0000 j many times,
• 0110 or 1001 k many times, and
• 1111 ℓ many times.

Let cjkℓ be the sum over all such assignments of the products of evaluations from T and T−1 but
excluding Λf̂ on Ω′. Then

HolantΩ =
∑

j+k+ℓ=n

3ℓcjkℓ

and the value of the Holant on Ωs, for s ≥ 1, is

HolantΩs =
∑

j+k+ℓ=n

(6k13ℓ)scjkℓ. (2)

This coefficient matrix in the linear system of (2) is Vandermonde and of full rank since for any
0 ≤ k + ℓ ≤ n and 0 ≤ k′ + ℓ′ ≤ n such that (k, ℓ) ̸= (k′, ℓ′), 6k13ℓ ̸= 6k

′
13ℓ

′ . Therefore, we can
solve the linear system for the unknown cjkℓ’s and obtain the value of HolantΩ.

The previous proof can be easily modified to reduce from #EO over 4-regular graphs by inter-
polating the so-called crossover signature. Conceptually, the current proof is simpler because the
#P-hardness proof for #EO over 4-regular graphs in [32] reduces from the same starting point as
our current proof.

One of our main results in this paper is a dichotomy for Pl-Holant(f) when f is a symmetric
arity 4 signature with complex weights. This dichotomy uses the #P-hardness of counting Eulerian
orientations over planar 4-regular graphs in a crucial way. In [11], it was shown that most arity 4
signatures define a #P-hard Holant problem by a reduction from counting Eulerian orientations
over 4-regular graphs (see Lemmas 6.4 and 6.6 in [11]). Although the reductions were planar, #P-
hardness over planar 4-regular graphs did not follow because the complexity of counting Eulerian
orientations over such graphs was unknown. Theorem 3.7 shows that this problem is #P-hard.
Therefore, we obtain the planar version of Corollary 6.7 in [11].
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Figure 5: The circles are assigned [a, 0, 0, 0, b, c].

Corollary 3.8. Let f be an arity 4 signature with complex weights. If Mf is redundant and M̃f is
nonsingular, then Pl-Holant(f) is #P-hard.

There is a simpler corollary for symmetric signatures.

Corollary 3.9. For a symmetric arity 4 signature [f0, f1, f2, f3, f4] with complex weights, if there
does not exist a, b, c ∈ C, not all zero, such that for all k ∈ {0, 1, 2},

afk + bfk+1 + cfk+2 = 0,

then Pl-Holant(f) is #P-hard.

Proof. If the compressed signature matrix M̃f is nonsingular, then Pl-Holant(f) is #P-hard by
Corollary 3.8, so assume that the rank of M̃f is at most 2. Then we have

a′

f0
f1
f2

+ 2b′

f1
f2
f3

+ c′

f2
f3
f4

 =

0
0
0


for some a′, b′, c′ ∈ C, not all zero. Thus, a = a′, b = 2b′, and c = c′ have the desired property.

We close this section with a simple application of Corollary 3.8 to an arity 5. We encounter
signatures of this form in Sections 8 and 9.

Lemma 3.10. Let a, b, c ∈ C. If ab ̸= 0, then for any set F of complex-weighted symmetric
signatures containing [a, 0, 0, 0, b, c], Pl-Holant(F) is #P-hard.

Proof. Let f be the signature of the gadget in Figure 5 with [a, 0, 0, 0, b, c] assigned to both vertices.
The signature matrix of f is 

a2 0 0 0
0 b2 b2 bc
0 b2 b2 bc
0 bc bc 3b2 + c2

 ,

which is redundant. Its compressed form is nonsingular since its determinant is 6a2b4 ̸= 0. Thus,
Pl-Holant(f) is #P-hard by Corollary 3.8, so Pl-Holant(F) is also #P-hard.

4 An Improved Interpolation Technique
In the previous section, we used interpolation to show that counting Eulerian orientations is #P-
hard over planar 4-regular graphs. Polynomial interpolation is a powerful tool in the study of
counting problems that was initiated by Valiant [48]. In this section, we discuss a common interpo-
lation method called the unary recursive construction and obtain a tight characterization of when
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M M · · · M M s

Figure 6: unary recursive construction (M, s).

it succeeds. The goal of this construction is to interpolate a unary signature and is based on work
by Vadhan [46] and further developed by others [22, 20, 13].

There are two gadgets in the unary recursive construction: a starter gadget of arity 1 and a
recursive gadget of arity 2. The signature of the starter gadget is represented by a two-dimensional
column vectors s and the signature of the recursive gadget is represented by a 2-by-2matrixM . The
construction begins with the starter gadget and proceeds by connecting k ≥ 0 recursive gadgets, one
at a time, to the only available edge (see Figure 6). The signature of this gadget can be expressed
as Mks. This construction is denoted by (M, s).

The essential difficulty in using polynomial interpolation is constructing an infinite set of sig-
natures that are pairwise linearly independent [13]. The pairwise linear independence of signatures
translates into distinct evaluation points for the polynomial being interpolated. Thus, the essence
of this interpolation technique can be stated as follows.

Lemma 4.1 (Lemma 5.2 in [20]). Suppose M ∈ C2×2 and s ∈ C2×1. If the following three
conditions are satisfied,

1. det(M) ̸= 0;
2. s is not a column eigenvector of M (nor the zero vector);
3. the ratio of the eigenvalues of M is not a root of unity;

then the vectors in the set V = {Mks}k≥0 are pairwise linearly independent.

Clearly the first condition is necessary. The second condition is equivalent to det([s Ms]) ̸= 0,
which is necessary since it checks the linear dependence of the first two vectors in V .

The unary recursive construction can be generalized to larger dimensions, where the starter
gadget has arity d and the recursive gadget has arity 2d [38]. In this generalized construction, the
starter gadget is represented by a column vector in C2d and the recursive gadget is represented by
a matrix in C2d×2d .

For dimensions larger than one, the second condition in Lemma 4.1 must be replaced by a
stronger assumption, such as “s is not orthogonal to any row eigenvector of M” [22]. Previous
work (Lemma 4.10 in [39], the full version of [38]) satisfied this stronger condition by showing that
it follows from det([s Ms . . . Mn−1s]) ̸= 0. For completeness, we show that these two conditions
are equivalent. The use of n instead of 2d in the next two lemmas is not overly general. Sometimes
degeneracies or redundancies in the starter and recursive gadgets warrant the consideration of such
cases.

Lemma 4.2. Suppose M ∈ Cn×n and s ∈ Cn×1. Then s is not orthogonal to any row eigenvector
of M iff det([s Ms . . . Mn−1s]) ̸= 0.

Proof. Suppose that s is not orthogonal to any row eigenvector of M and assume for a con-
tradiction that det([s Ms . . . Mn−1s]) = 0. Then there is a nonzero row vector v such that
v[s Ms . . . Mn−1s] = 0 is the zero vector. Consider the linear span S by row vectors in the set
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{v, vM, . . . , vMn−1}. We claim that S is an invariant subspace of row vectors under the action of
multiplication by M from the right.

By the Cayley-Hamilton theorem, M satisfies its own characteristic polynomial, which is a
monic polynomial of degree n. Thus, Mn is a linear combination of In,M, . . . ,Mn−1. This shows
that for any u ∈ S, uM still belongs to S.

Therefore, there exists a u ∈ S such that u is a row eigenvector of M . By the definition of S,
this u is orthogonal to s, which is a contradiction.

In the other direction, suppose det([s Ms . . . Mn−1s]) ̸= 0 and assume for a contradiction that
s is orthogonal to some row eigenvector v of M with eigenvalue λ. Then v[s Ms . . . Mn−1s] = 0
is the zero vector because vM is = λivs = 0. Since v ̸= 0, this a contradiction.

Another necessary condition, even for the d-dimensional case, is that M has infinite order
modulo a scalar. Otherwise, Mk = βIn for some k and any vector of the form M ℓs for ℓ ≥ k
is some multiple of a vector in the set {M is}0≤i<k. We improve the d-dimensional version of
Lemma 4.1 by replacing the third condition with this necessary condition.

Lemma 4.3. Suppose M ∈ Cn×n and s ∈ Cn×1. If the following three conditions are satisfied,
1. det(M) ̸= 0;
2. s is not orthogonal to any row eigenvector of M ;
3. M has infinite order modulo a scalar;

then the vectors in the set V = {Mks}k≥0 are pairwise linearly independent.

Proof. Since det(M) ̸= 0, M is nonsingular and the eigenvalues λi of M , for 1 ≤ i ≤ n, are
nonzero. Let M = P−1JP be the Jordan decomposition of M and let p = Ps ∈ Cn×1. Suppose
for a contradiction that the vectors in V are not pairwise linearly independent. This means that
there exists integers k > ℓ ≥ 0 such that Mks = βM ℓs for some nonzero complex value β. Let
t = k − ℓ > 0. Then we have P−1J tPs = M ts = βs and J tp = βp.

Suppose that J contains some nontrivial Jordan block and consider the 2-by-2 submatrix in the
bottom right corner of this block. From this portion of J , the two equations given by J tp = βp are
λt
ipi−1 + tλt−1

i pi = βpi−1 and λt
ipi = βpi. Since s is not orthogonal to any row eigenvector of M ,

pi ̸= 0. But then these equations imply that tλt−1
i pi = 0, a contradiction.

Otherwise, J contains only trivial Jordan blocks. From J tp = βp, we get the equations λt
ipi =

βpi for 1 ≤ i ≤ n. Since s is not orthogonal to any row eigenvector of M , pi ̸= 0 for 1 ≤ i ≤ n. But
then M t = βIn, which contradicts that fact that M has infinite order modulo a scalar.

With this lemma, we obtain a tight characterization for the success of interpolation by a unary
recursive construction. For example, the construction using a recursive gadget with signature
matrix M = [ 1 1

0 1 ] and a starter gadget with signature s = [ 01 ] is successful because M and s satisfy
our conditions but do not satisfy previous sufficient conditions.

Lemma 4.4. Let F be a set of signatures. If there exists a planar F-gate with signature matrix
M ∈ C2×2 and a planar F-gate with signature s ∈ C2×1 satisfying the following conditions,

1. det(M) ̸= 0;
2. det([s Ms]) ̸= 0;
3. M has infinite order modulo a scalar;

then Pl-Holant(F ∪ {[a, b]}) ≤T Pl-Holant(F) for any a, b ∈ C.
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Proof. Consider an instance Ω = (G,F , π) of Pl-Holant(F∪{[a, b]}). Let V ′ be the subset of vertices
assigned [a, b] by π and suppose that |V ′| = n. We construct from Ω a sequence of instances Ωk of
Pl-Holant(F) indexed by k ≥ 1. We obtain Ωk from Ω by replacing each occurrence of [a, b] with
the unary recursive construction (M, s) in Figure 6 containing k copies of the recursive gadget.
This unary recursive construction has the signature [xk, yk] = Mks.

By applying our assumptions to Lemmas 4.2 and 4.3, we know that the signatures in the set
V = {[xk, yk] | 0 ≤ k ≤ n+ 1} are pairwise linearly independent. In particular, at most one yk can
be 0, so we may assume that yk ̸= 0 for 0 ≤ k ≤ n, renaming variables if necessary.

We stratify the assignments in Ω based on the assignment to [a, b]. Let cℓ be the sum over all
assignments of products of evaluations at all v ∈ V (G)−V ′ such that exactly ℓ occurrences of [a, b]
have their incident edge assigned 0 (and n− ℓ have their incident edge assigned 1). Then

HolantΩ =
∑

0≤ℓ≤n

aℓbn−ℓcℓ

and the value of the Holant on Ωk, for k ≥ 1, is

HolantΩk
=

∑
0≤ℓ≤n

xℓky
n−ℓ
k cℓ

= ynk
∑

0≤ℓ≤n

(
xk
yk

)ℓ

cℓ.

The coefficient matrix of this linear system is Vandermonde. Since the signatures in V are pairwise
linearly independent, the ratios xk/yk are distinct (and well-defined since yk ̸= 0), which means
that the Vandermonde matrix has full rank. Therefore, we can solve the linear system for the
unknown cℓ’s and obtain the value of HolantΩ.

The first two conditions of Lemma 4.4 are easy to check. The third condition holds in one of
these two cases: either the eigenvalues are the same but M is not a multiple of the identity matrix,
or the eigenvalues are different but their ratio is not a root of unity.

Our refined conditions work well with the anti-gadget technique [15]. The power of this lemma
is that when the third condition fails to hold, there exists an integer k such that Mk = I2, where
I2 is the 2-by-2 identity matrix. Therefore we can construct Mk−1 = M−1 and use this in other
gadget constructions.

The anti-gadget technique is used in combination with Lemma 4.4 to give a succinct proof
of Lemma 5.1. The construction in this proof is actually not a unary recursive construction,
but a binary recursive construction. However, degeneracies in the starter and recursive gadgets
permit analysis equivalent to that of the unary recursive construction. We also use the anti-gadget
technique and the power of Lemma 4.4 (via Lemma 6.4) in the proof of Theorem 8.8 to handle a
difficult case.

5 Pl-Holant Dichotomy for a Symmetric Arity 4 Signature
With Corollary 3.9 in hand, only one obstacle remains in proving a dichotomy for a symmetric
arity 4 signature in the Pl-Holant framework: the case [v, 1, 0, 0, 0] when v is different from 0. Over
the next two lemmas, we prove that this problem is#P-hard by reducing from Pl-Holant([v, 1, 0, 0]).
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N0 N1

Nℓ

Nℓ+1

Figure 7: Binary recursive construction with starter gadget used to interpolate [1, 0, 0].
The vertices are assigned [v, 1, 0, 0, 0].

These problems are weighted versions of counting matchings over planar k-regular graphs for k = 4
and k = 3 respectively.

In the first lemma, we show how to use either the anti-gadget technique from [15] or interpolation
by our tight characterization of the unary recursive construction from Section 4 to effectively obtain
[1, 0, 0].

Lemma 5.1. For any v ∈ C and signature set F containing [v, 1, 0, 0, 0],

Pl-Holant(F ∪ {[1, 0, 0]}) ≤T Pl-Holant(F).

Proof. Consider the gadget construction in Figure 7. For k ≥ 0, the signature of Nk is of the form
[ak, bk, 0], and N0 = [v, 1, 0]. Since Nk is symmetric and always ends with 0, we can analyze this
construction as though it were a unary recursive construction. Let sk =

[ ak
bk

]
, so s0 = [ v1 ]. It is

clear that sk = Mks0, where M = [ v 2
1 0 ].

Since det(M) = −2, M is nonsingular. If M has finite order modulo a scalar, then M ℓ = βI2
for some positive integer ℓ and some nonzero complex value β. Thus, the signature of Nℓ−1, which
contains the anti-gadget of M , is M ℓ−1s0 = βM−1s0 = β [ 10 ]. After normalizing, we directly realize
[1, 0, 0].

Now assume that M has infinite order modulo a scalar. Since det([s0 Ms0]) = −2, we can
interpolate any signature of the form [x, y, 0] by Lemma 4.4, including [1, 0, 0].

For the next lemma, we use a well-known and easy generalization of a classic result of Pe-
tersen [43]. Petersen’s theorem considers 3-regular, bridgeless, simple graphs (i.e. graphs without
self-loops or parallel edges) and concludes that there exists a perfect matching. The same conclusion
holds even if the graphs are not simple. We provide a proof for completeness.

Theorem 5.2. Any 3-regular bridgeless graph G has a perfect matching.

Proof. We may assume that G is connected. If G has a vertex v with a self-loop, then the other
edge of v is a bridge since G is 3-regular, which is a contradiction. If there exists some pair of
vertices of G joined by exactly three parallel edges, then G has only these two vertices since it is
connected and the theorem holds.

In the remaining case, there exists some pair of vertices joined by exactly two parallel edges.
We build a new graph G′ without any parallel edges. For vertices u and v joined by exactly two
parallel edges, we remove these two parallel edges and introduce two new vertices w1 and w2. We
also introduce the new edges (u,w1), (u,w2), (v, w1), (v, w2), and (w1, w2). Then G′ is a 3-regular,
bridgeless, simple graph.

By Petersen’s theorem, G′ has a perfect matching P ′. Now we construct a perfect matching P
in G using P ′. We put any edge in both G and P ′ into P . If u is matched by a new edge in G′,
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(b) The same neighborhood in H.

Figure 8: The neighborhood around u and v both before and after they are removed.

then v must be matched by a new edge in G′ as well and we put the edge (u, v) into P . If u and
v are not matched by a new edge, then we do not add anything to P . It is easy to see that P is a
perfect matching in G.

We use this result to show the existence of what we call a planar pairing for any planar 3-regular
graph, which we use in our proof of #P-hardness.

Definition 5.3 (Planar pairing). A planar pairing in a graph G = (V,E) is a set of edges P ⊂ V ×V
such that P is a perfect matching in the graph (V, V × V ), and the graph (V,E ∪ P ) is planar.

Obviously, a perfect matching in the original graph is a planar pairing.

Lemma 5.4. For any planar 3-regular graph G, there exists a planar pairing that can be computed
in polynomial time.

Proof. We efficiently find a planar pairing in G by induction on the number of vertices in G. Since
G is a 3-regular graph, it must have an even number of vertices. If there are no vertices in G,
then there is nothing to do. Suppose that G has n = 2k vertices and that we can efficiently find
a planar pairing in graphs containing fewer vertices. If G is not connected, then we can already
apply our inductive hypothesis on each connected component of G. The union of planar pairings
in each connected component of G is a planar pairing in G, so we are done. Otherwise assume that
G is connected.

Suppose that G contains a bridge (u, v). Let the three (though not necessarily distinct) neigh-
bors of u be v, u1, and u2, and let the three (though not necessarily distinct) neighbors of v be
u, v1, and v2 (see Figure 8a). Furthermore, let Hu be the connected component in G − {(u, v)}
containing u and let Hv be the connected component in G − {(u, v)} containing v. Consider the
induced subgraph H ′

u of Hu after adding the edge eu = (u1, u2) (which might be a self-loop on
u = u1 = u2) and then removing u. Similarly, consider the induced subgraph H ′

v of Hv after
adding the edge ev = (v1, v2) (which might be a self-loop on v = v1 = v2) and then removing v.
Both H ′

u and H ′
v are 3-regular graphs and their disjoint union gives a graph H ′ with n−2 = 2(k−1)

vertices (see Figure 8b).
By induction on both H ′

u and H ′
v, we have planar pairings Pu and Pv in H ′

u and H ′
v respectively.

Let H ′′ be the graph H ′ including the edges Pu∪Pv. If H ′′ contains both eu and ev, then embed H ′′

in the plane so that both eu and ev are adjacent to the outer face. Otherwise, any planar embedding
will do. Then the graph G including the edges Pu ∪ Pv is also planar, so Pu ∪ Pv ∪ {(u, v)} is a
planar pairing in G.
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Otherwise, G is bridgeless. Then by Theorem 5.2, G has a perfect matching, which is also
a planar pairing in G. Since a perfect matching can be found in polynomial time by Edmond’s
blossom algorithm [28], the whole procedure is in polynomial time.

After publishing a preliminary version of this paper [31], we realized that a previous construction
by Cai and Kowalczyk uses a planar pairing to show that counting vertex covers over k-regular
graphs is #P-hard for even k ≥ 4 (see the proof of Lemma 15 in [14]). Their algorithm to find a
planar pairing starts by taking a spanning tree and then pairing up the vertices on this tree, which
is simpler than our approach. We believe that it is worth emphasizing the importance of a planar
pairing. Most gadget constructions in hardness proofs for Holant problems are local but the planar
pairing technique is a global argument, which permits reductions that are not otherwise possible.

Now we use the planar pairing technique to show the following.

Lemma 5.5. Let v ∈ C. If v ̸= 0, then Pl-Holant([v, 1, 0, 0, 0]) is #P-hard.

Proof. We reduce from Pl-Holant([v, 1, 0, 0]) to Pl-Holant([v, 1, 0, 0, 0]). Since Pl-Holant([v, 1, 0, 0])
is #P-hard when v ̸= 0 by Theorem 2.9, this shows that Pl-Holant([v, 1, 0, 0, 0]) is also #P-hard
when v ̸= 0.

An instance of Pl-Holant([v, 1, 0, 0]) is a signature grid Ω with underlying graph G = (V,E)
that is planar and 3-regular. By Lemma 5.4, there exists a planar pairing P in G and it can be
found in polynomial time. Then the graph G′ = (V,E ∪ P ) is planar and 4-regular. We assign
[v, 1, 0, 0, 0] to every vertex in G′. By Lemma 5.1, we can assume that we have [1, 0, 0]. We replace
each edge in P with a path of length 2 to form a graph G′′ and assign [1, 0, 0] = [1, 0]⊗2 to each of
the new vertices. Then the signature grid Ω′′ with underlying graph G′′ has the same Holant value
as the original signature grid Ω.

Note that our proof of Lemma 5.5 reduces Pl-Holant([v, 1, 0, 0]) to Pl-Holant([v, 1, 0, 0, 0]) for
all v ∈ C. Neither Lemma 5.1 nor Lemma 5.5 ever considers the value of v. This is consistent
because both signatures are in M when v = 0, thus tractable, and both signatures are #P-hard
when v is different from 0.

Now we are ready to prove our Pl-Holant dichotomy for a symmetric arity 4 signature. A
signature is called vanishing if the Holant of any signature grid using only that signature is zero [11].

Theorem 5.6. If f is a non-degenerate, symmetric, complex-valued signature of arity 4 in Boolean
variables, then Pl-Holant(f) is #P-hard unless f is A -transformable or P-transformable or van-
ishing or M -transformable, in which case the problem is computable in polynomial time.

Proof. Let f = [f0, f1, f2, f3, f4]. If there do not exist a, b, c ∈ C, not all zero, such that for all
k ∈ {0, 1, 2}, afk + bfk+1 + cfk+2 = 0, then Pl-Holant(f) is #P-hard by Corollary 3.9. Otherwise,
there do exist such a, b, c. If a = c = 0, then b ̸= 0, so f1 = f2 = f3 = 0. In this case, f ∈ P is a
generalized equality signature, so f is P-transformable. Now suppose a and c are not both 0. If
b2 − 4ac ̸= 0, then fk = α4−k

1 αk
2 + β4−k

1 βk
2 , where α1β2 − α2β1 ̸= 0. A holographic transformation

by
[
α1 β1

α2 β2

]
transforms f to =4 and we can use Theorem 2.10 to show that f is either A -, P-, or

M -transformable unless Pl-Holant(f) is #P-hard. Otherwise, b2−4ac = 0 and there are two cases.
In the first, for any 0 ≤ k ≤ 2, fk = ckαk−1 + dαk, where c ̸= 0. In the second, for any 0 ≤ k ≤ 2,
fk = c(4− k)α3−k + dα4−k, where c ̸= 0. These cases map between each other under a holographic
transformation by [ 0 1

1 0 ], so assume that we are in the first case. If α = ±i, then f is vanishing.
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Otherwise, a further holographic transformation by 1√
1+α2

[
1 α
α −1

]
transforms f to f̂ = [v, 1, 0, 0, 0]

for some v ∈ C after normalizing the second entry. (See Appendix B in [11] for details.) If v = 0,
then the problem is counting perfect matchings over planar 4-regular graphs, so f̂ ∈ M and f is
M -transformable. Otherwise, v ̸= 0 and we are done by Lemma 5.5.

6 Domain Pairing
Now we turn our attention to our main result, a dichotomy for the Pl-#CSP framework. In this
section, we discuss a technique called domain pairing, which pairs input variables to simulate a
problem on a domain of size four and then reduces a problem in the Boolean domain to it. As
explained in the introduction, we work in the Hadamard basis instead of the standard basis. The
goal then becomes a dichotomy for Pl-Holant(F ∪ ÊQ).

In [11], a simple interpolation lemma for non-degenerate, generalized equality signatures of arity
at least 3 was proved. Although the lemma was only for general graphs, it was mentioned that it
also holds for planar graphs.

Lemma 6.1 (Lemma A.2 in [11]). Let a, b ∈ C. If ab ̸= 0, then for any set F of complex-weighted
signatures containing [a, 0, . . . , 0, b] of arity at least 3,

Pl-Holant(F ∪ {=4}) ≤T Pl-Holant(F).

By a simple parity argument, gadgets constructed with signatures of even arity can only realize
other signatures of even arity. In particular, this means that =4 cannot by itself be used to construct
=3. Nevertheless, there is a clever argument that can realize =3 using =4. The catch is the domain
changes from individual elements to pairs of elements. Thus, we call this reduction technique
domain pairing. This technique was first used in the proof of Lemma III.2 in [19] with real weights.
It was also used in the proof of Lemma 4.6 in [30] in the parity case and in Lemma IV.5 in [32] with
real weights as well as grouping more than just two domain elements. We prove a generalization
of the domain pairing lemma for complex weights.

Lemma 6.2 (Domain pairing). Let a, b, x, y ∈ C. If aby ̸= 0 and x2 ̸= y2, then for any set F
of complex-valued symmetric signatures containing [x, 0, y, 0] and [a, 0, . . . , 0, b] of arity at least 3,
Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. We reduce from Pl-Holant([x, y, y] | EQ) to Pl-Holant(F ∪ ÊQ). Since Pl-Holant([x, y, y] |
EQ) is #P-hard when y ̸= 0 and x2 ̸= y2 by Theorem 2.10, this shows that Pl-Holant(F ∪ ÊQ) is
also #P-hard.

An instance of Pl-Holant([x, y, y] | EQ) is a signature grid Ω with underlying graph G =
(U, V,E). In addition to G being bipartite and planar, every vertex in U has degree 2. We replace
every vertex in V of degree k (which is assigned =k ∈ EQ) with a vertex of degree 2k, and bundle
two adjacent variables to form k bundles of 2 edges each. The k bundles correspond to the k
incident edges of the original vertex with degree k. By Lemma 6.1, we have =4, which we use to
construct =2k for any k. Then we assign =2k to the new vertices of degree 2k.

If the inputs to these equality signatures are restricted to {(0, 0), (1, 1)} on each bundle, then
these equality signatures take value 1 on ((0, 0), . . . , (0, 0)) and ((1, 1), . . . , (1, 1)) and take value 0
elsewhere. Thus, if we restrict the domain to {(0, 0), (1, 1)}, it is the equality signature =k.
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a1

a2

b1

b2

c

Figure 9: Gadget designed for the paired domain. One vertex is assigned [1, 0, 1, 0] and
the other is assigned [x, 0, y, 0].

To simulate [x, y, y], we connect f = [x, 0, y, 0] to g = [1, 0, 1, 0] ∈ ÊQ by a single edge as shown
in Figure 9 to form a gadget with signature

h(a1, a2, b1, b2) =
∑
c=0,1

f(a1, b1, c)g(a2, b2, c).

We replace every (degree 2) vertex in U (which is assigned [x, y, y]) by a degree 4 vertex assigned
h, where the variables of h are bundled as (a1, a2) and (b1, b2).

The vertices in this new graph G′ are connected as in the original graph G, except that every
original edge is replaced by two edges that connect to the same side of the gadget in Figure 9.
Notice that h is only connected by (a1, a2) and (b1, b2) to some bundle of two incident edges of an
equality signature. Since this equality signature enforces that the value on each bundle is either
(0, 0) or (1, 1), we only need to consider the restriction of h to the domain {(0, 0), (1, 1)}. On this
domain, h = [x, y, y] is a symmetric signature of arity 2. Therefore, the signature grid Ω′ with
underlying graph G′ has the same Holant value as the original signature grid Ω.

There are two scenarios that lead to Lemma 6.2. The proof of the first is immediate.

Corollary 6.3. Let a, b, x, y ∈ C. If abxy ̸= 0 and x4 ̸= y4, then for any set F of complex-weighted
symmetric signatures containing [x, 0, y] and [a, 0, . . . , 0, b] of arity at least 3, Pl-Holant(F ∪ ÊQ)
is #P-hard.

Proof. Connect three copies of [x, 0, y] to [1, 0, 1, 0], with one on each edge, to get x[x2, 0, y2, 0] and
apply Lemma 6.2.

The second scenario that leads to Lemma 6.2 is Lemma 6.5. The proof of Lemma 6.5 applies
Corollary 6.3 after interpolating a unary signature in one of two ways. The next lemma considers
one of those ways.

Lemma 6.4. Suppose x ∈ C and let f = [1, x, 1]. If x ̸∈ {0,±1} and Mf has infinite order modulo
a scalar, then for any set F of complex-weighted symmetric signatures containing f and for any
a, b ∈ C, we have

Pl-Holant(F ∪ {[a, b]} ∪ ÊQ) ≤T Pl-Holant(F ∪ ÊQ).

Proof. Consider the unary recursive construction (Mf , s), where s = [ 10 ]. The determinant of Mf

is 1− x2 ̸= 0. The determinant of [s Mfs] is x ̸= 0. By assumption, Mf has infinite order modulo
a scalar. Therefore, we can interpolate any unary signature by Lemma 4.4.

Lemma 6.5. Let a, b ∈ C. If ab ̸= 0 and a4 ̸= b4, then for any set F of complex-weighted symmetric
signatures containing f = [a, 0, . . . , 0, b] of arity at least 3, Pl-Holant(F ∪ ÊQ) is #P-hard.
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Proof. Since a ̸= 0, we normalize f to [1, 0, . . . , 0, x], where x ̸= 0 and x4 ̸= 1. If the arity of
f is even, then after some number of self-loops, we have [1, 0, x] and are done by Corollary 6.3.
Otherwise, the arity of f is odd. After some number of self-loops, we have g = [1, 0, 0, x]. If we had
the signature [1, 1], then we could connect this to g to get [1, 0, x] and be done by Corollary 6.3. We
now show how to interpolate [1, 1] in one of two ways. In either case, we use the signature [1, x],
which we obtain via a self-loop on g.

Suppose ℜ(x), the real part of x, is not 0. Connecting [1, x] to [1, 0, 1, 0] gives h = [1, x, 1]. The
eigenvalues of Mh are λ± = 1 ± x. Since ℜ(x) ̸= 0 iff |λ+

λ−
| ̸= 1, the ratio of the eigenvalues is not

a root of unity, so Mh has infinite order modulo a scalar. Therefore, we can interpolate [1, 1] by
Lemma 6.4.

Otherwise, ℜ(x) = 0 but x is not a root of unity since x ̸= ±i. Connecting [1, x] to g gives
h = [1, 0, x2]. Clearly

(
x2

)4 ̸= 1. Hence we apply Corollary 6.3 on h and f , implying that
Pl-Holant(F ∪ ÊQ) is #P-hard.

7 Mixing of Tractable Signatures
In this section, we determine which tractable signatures combine to give #P-hardness. To help
understand the various cases considered in the lemmas, there is a Venn diagram of the signatures
in A , P̂, and M in Figure 12 of Appendix A.

The first two lemmas consider the case when one of the signatures is unary.

Lemma 7.1. Suppose f ∈ A − P̂. If ab ̸= 0 and a4 ̸= b4, then for any set F of complex-weighted
symmetric signatures containing f and [a, b], Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Up to a nonzero scalar, the possibilities for f are
• [1, 0,±i];
• [1, 0, . . . , 0, x] of arity at least 3 with x4 = 1;
• [1,±1,−1,∓1, 1,±1,−1,∓1, . . . ] of arity at least 2;
• [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)] of arity at least 3;
• [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)] of arity at least 3.

We handle these cases below.
1. Suppose f = [1, 0,±i]. Connecting [a, b] to [1, 0, 1, 0] gives [a, b, a] and connecting two copies

of [1, 0,±i] to [a, b, a], one on each edge, gives g = [a,±ib,−a]. Since ab ̸= 0 and a4 ̸= b4,
Pl-Holant(g | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

2. Suppose f = [1, 0, . . . , 0, x] of arity at least 3 with x4 = 1. Connecting [a, b] to f gives
g = [a, 0, . . . , 0, bx] of arity at least 2. Note that (bx)4 = b4 ̸= a4. If the arity of g is
exactly 2, then Pl-Holant({f, g} ∪ ÊQ) is #P-hard by Corollary 6.3, so Pl-Holant(F ∪ ÊQ) is
also #P-hard. Otherwise, the arity of g is at least 3 and Pl-Holant({g} ∪ ÊQ) is #P-hard by
Lemma 6.5, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

3. Suppose f = [1,±1,−1, . . . ] of arity at least 2. Connecting some number of [1, 0] gives
[1,±1,−1] of arity exactly 2. Connecting [a, b] to [1, 0, 1, 0] gives [a, b, a] and connecting two
copies of [a, b, a] to [1,±1,−1], one on each edge, gives g = [a2 ± 2ab− b2,±(a2 + b2),−a2 ±
2ab+ b2]. This is easily verified by[

a b
b a

] [
1 ±1
±1 −1

] [
a b
b a

]
=

[
a2 ± 2ab− b2 ±(a2 + b2)
±(a2 + b2) −a2 ± 2ab+ b2

]
.
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Since ab ̸= 0 and a4 ̸= b4, Pl-Holant(g | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant(F ∪
ÊQ) is also #P-hard.

4. Suppose f = [1, 0,−1, 0, . . . ] of arity at least 3. Connecting some number of [1, 0] gives
g = [1, 0,−1, 0] of arity exactly 3. Connecting [a, b] to g gives h = [a,−b,−a]. Since ab ̸= 0

and a4 ̸= b4, Pl-Holant(h | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also
#P-hard.

5. The argument for f = [0, 1, 0,−1, . . . ] is similar to the previous case.

Lemma 7.2. Suppose f ∈ M − A . If ab ̸= 0, then for any set F of complex-weighted symmetric
signatures containing f and [a, b], Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Up to a nonzero scalar, the possibilities for f are
• [1, 0, r] with r ̸= 0 and r4 ̸= 1;
• [1, 0, r, 0, r2, 0, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1;
• [0, 1, 0, r, 0, r2, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1;
• [0, 1, 0, . . . , 0] of arity at least 3;
• [0, . . . , 0, 1, 0] of arity at least 3.

We handle these cases below.
1. Suppose f = [1, 0, r] with r4 ̸= 1 and r ̸= 0. Connecting [a, b] to [1, 0, 1, 0] gives [a, b, a] and

connecting two copies of [1, 0, r] to [a, b, a], one on each edge, gives g = [a, br, ar2]. If a2 ̸= b2,
then Pl-Holant(g | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise, a2 = b2 and we begin by connecting [a, b] to [1, 0, r] to get [a, br]. Then
by the same construction, we have g = [a, br2, ar2] and Pl-Holant(g | ÊQ) is #P-hard by
Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

2. Suppose f = [1, 0, r, 0, . . . ] of arity at least 3 with r2 ̸= 1 and r ̸= 0. Connecting some number
of [1, 0] gives g = [1, 0, r, 0] of arity exactly 3. Connecting [a, b] to g gives h = [a, br, a]. If
a2 ̸= b2r, then Pl-Holant(h | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also
#P-hard.

Otherwise, a2 = b2r and we begin by connecting [1, 0] and [a, b] to [1, 0, r, 0] to get [a, br].
Then by the same construction, we have g = [a, br2, ar] and Pl-Holant(g | ÊQ) is #P-hard by
Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

3. The argument for f = [0, 1, 0, r, . . . ] is similar to the previous case.
4. Suppose f = [0, 1, 0, . . . , 0] of arity k ≥ 3. Connecting k − 2 copies of [a, b] to f gives

g = ak−3[(k − 2)b, a, 0]. Since ab ̸= 0, Pl-Holant(g | ÊQ) is #P-hard by Theorem 2.11, so
Pl-Holant(F ∪ ÊQ) is also #P-hard.

5. The argument for f = [0, . . . , 0, 1, 0] is similar to the previous case.

Now we consider the general case of two signatures from two different tractable sets. The three
tractable sets give rise to three pairs of tractable sets to consider, each of which is covered in one
of the next three lemmas.

Lemma 7.3. If f ∈ A − P̂ and g ∈ P̂ − A , then for any set F of complex-weighted symmetric
signatures containing f and g, Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. The only possibility for g is [a, b, a, b, . . . ], where ab ̸= 0 and a4 ̸= b4. Connecting some
number of [1, 0] to g gives [a, b] and we are done by Lemma 7.1.
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Lemma 7.4. If f ∈ A − M and g ∈ M − A , then for any set F of complex-weighted symmetric
signatures containing f and g, Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. If f does not contain a 0 entry, then after connecting some number of [1, 0] to f , we have a
unary signature [a, b] with ab ̸= 0. Then we are done by Lemma 7.2.

Otherwise, f contains a 0 entry. Then f = [x, 0, . . . , 0, y] of arity at least 3 with xy ̸= 0 (and
x4 = y4). Up to a nonzero scalar, the possibilities for g are
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...

Figure 10: The vertices are assigned g = [0, 1, 0, . . . , 0].

• [1, 0, r] with r ̸= 0 and r4 ̸= 1;
• [1, 0, r, 0, r2, 0, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1;
• [0, 1, 0, r, 0, r2, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1;
• [0, 1, 0, 0, . . . , 0] of arity at least 3;
• [0, . . . , 0, 0, 1, 0] of arity at least 3.

We handle these cases below.
1. Suppose g = [1, 0, r] with r ̸= 0 and r4 ̸= 1. Then we are done by Corollary 6.3.
2. Suppose g = [1, 0, r, 0, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1. After connecting some

number of [1, 0] to g, we have h = [1, 0, r, 0] of arity exactly 3. Then Pl-Holant({f, h} ∪ ÊQ)

is #P-hard by Lemma 6.2, so Pl-Holant(F ∪ ÊQ) is also #P-hard.
3. Suppose g = [0, 1, 0, r, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1. After connecting some

number of [1, 0] to g, we have h = [0, 1, 0, r] of arity exactly 3. Connecting two more copies
of [1, 0] to h gives [0, 1]. Then we apply a holographic transformation by T = [ 0 1

1 0 ], so f is
transformed to f̂ = [y, 0, . . . , 0, x] and h is transformed to ĥ = [r, 0, 1, 0]. Every even arity
signature in ÊQ remains unchanged after a holographic transformation by T . By attaching
[0, 1]T = [1, 0] to every even arity signature in T ÊQ, we obtain all of the odd arity signatures
in ÊQ again. Then Pl-Holant({f̂ , ĥ} ∪ ÊQ) is #P-hard by Lemma 6.2, so Pl-Holant(F ∪ ÊQ)
is also #P-hard.

4. Suppose g = [0, 1, 0, . . . , 0] of arity k ≥ 3. The gadget in Figure 10 with g assigned to
both vertices has signature h = [k − 1, 0, 1]. Then Pl-Holant({f, h} ∪ ÊQ) is #P-hard by
Corollary 6.3, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

5. The argument for g = [0, . . . , 0, 1, 0] is similar to the previous case.

Lemma 7.5. Suppose f ∈ M − P̂ and g ∈ P̂ −M such that {f, g} ̸⊆ A . Then for any set F of
complex-weighted symmetric signatures containing f and g, Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. The only possibility for g is [a, b, a, b, . . . ], where ab ̸= 0. Connecting some number of
[1, 0] to g gives h = [a, b]. If f ̸∈ A , then Pl-Holant({f, h} ∪ ÊQ) is #P-hard by Lemma 7.2, so
Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise, f ∈ A , so g ̸∈ A . Then Pl-Holant({f, g} ∪ ÊQ) is #P-hard by Lemma 7.3, so
Pl-Holant(F ∪ ÊQ) is also #P-hard.

We summarize this section with the following theorem, which says that the tractable signature
sets cannot mix. More formally, signatures from different tractable sets, when put together, lead
to #P-hardness.

Theorem 7.6 (Mixing). Let F be any set of symmetric, complex-valued signatures in Boolean
variables. If F ⊆ A ∪ P̂ ∪ M , then Pl-Holant(F ∪ ÊQ) is #P-hard unless F ⊆ A , F ⊆ P̂, or
F ⊆ M , in which case Pl-Holantc(F ∪ ÊQ) is tractable.
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Proof. If F is a subset of A , P̂, or M , then the tractability is given in Theorem 2.8. Otherwise
F is not a subset of A , P̂, or M . Then F contains a signature g ∈ (P̂ ∪ M )− A since F ̸⊆ A .
Suppose F contains a signature f ∈ A − P̂ − M . If g ∈ P̂ − A , then Pl-Holant(F ∪ ÊQ) is
#P-hard by Lemma 7.3. Otherwise, g ∈ M −A and Pl-Holant(F∪ÊQ) is #P-hard by Lemma 7.4.

Now assume that F ⊆ P̂ ∪ M . Since (P̂ ∩ M )− A is empty (see Figure 12 in Appendix A),
either g ∈ P̂ − M − A or g ∈ M − P̂ − A . If g ∈ P̂ − M − A , then there exists a signature
f ∈ M −P̂ since F ̸⊆ P̂. In which case, Pl-Holant(F∪ÊQ) is #P-hard by Lemma 7.5. Otherwise,
g ∈ M − P̂ − A and there exists a signature f ∈ P̂ − M since F ̸⊆ M . In which case,
Pl-Holant(F ∪ ÊQ) is #P-hard by Lemma 7.5.

8 Pinning for Planar Graphs
The idea of “pinning” is a common reduction technique between counting problems. For the #CSP
framework, pinning fixes some variables to specific values of the domain by means of the constant
functions [5, 26, 3, 32]. In particular, for counting graph homomorphisms, pinning is used when
the input graph is connected and the target graph is disconnected. In this case, pinning a vertex
of the input graph to a vertex of the target graph forces all the vertices of the input graph to map
to the same connected component of the target graph [27, 4, 29, 45, 6]. For the Boolean domain,
the constant 0 and constant 1 functions are the signatures [1, 0] and [0, 1] respectively.

From these works, the most relevant pinning lemma for the Pl-#CSP framework is by Dyer,
Goldberg, and Jerrum in [26], where they show how to pin in the #CSP framework. However, the
proof of this pinning lemma is highly nonplanar. Cai, Lu, and Xia [19] overcame this difficultly in
the proof of their dichotomy theorem for the real-weighted Pl-#CSP framework by first undergoing
a holographic transformation by the Hadamard matrix H =

[
1 1
1 −1

]
and then pinning in this

Hadamard basis.3 We stress that this holographic transformation is necessary. Indeed, if one were
able to pin in the standard basis of the Pl-#CSP framework, then P = #P would follow since
Pl-#CSP(M̂ ) is tractable but Pl-#CSP(M̂ ∪ {[1, 0], [0, 1]}) is #P-hard by our main dichotomy in
Theorem 9.3 (or, more specifically, by Lemma 7.2).

Since Pl-#CSP(F) is Turing equivalent to Pl-Holant(F ∪ EQ), the expression of Pl-#CSP(F)

in the Hadamard basis is Pl-Holant(HF ∪ ÊQ). Then we already have [1, 0] ∈ ÊQ, so pinning in
the Hadamard basis of Pl-#CSP(F) amounts to obtaining the missing signature [0, 1].

8.1 The Road to Pinning
We begin the road to pinning with a lemma that assumes the presence of [0, 0, 1] = [0, 1]⊗2, which
is the tensor product of two copies of [0, 1]. In our pursuit to realize [0, 1], this may be as close as we
can get, such as when every signature has even arity. Another roadblock to realizing [0, 1] is when
every signature has even parity. Recall that a signature has even parity if its support is on entries
of even Hamming weight. By a simple parity argument, gadgets constructed with signatures of
even parity can only realize signatures of even parity. However, if every signature has even parity
and [0, 0, 1] is present, then we can already prove a dichotomy.

3The pinning in [19], which is accomplished in Section IV, is not summarized in a single statement but is implied
by the combination of all the results in that section.
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Lemma 8.1. Suppose F is a set of symmetric signatures with complex weights containing [0, 0, 1].
If every signature in F has even parity, then either Pl-Holant(F ∪ ÊQ) is #P-hard or F is a subset
of A , P̂, or M , in which case Pl-Holantc(F ∪ ÊQ) is tractable.

Proof. The tractability is given in Theorem 2.8. If every non-degenerate signature in F is of arity
at most 3, then F ⊆ M since all signatures in F satisfy the (even) parity condition.

Otherwise F contains some non-degenerate signature of arity at least 4. For every signature
f ∈ F with f = [f0, f1, . . . , fm] and m ≥ 4, using [0, 0, 1] and [1, 0], we can obtain all subsignatures
of the form [fk−2, 0, fk, 0, fk+2] for any even k such that 2 ≤ k ≤ m − 2. If any subsignature g of
this form satisfies fk−2fk+2 ̸= f2

k and fk ̸= 0, then Pl-Holant(g) is #P-hard by Corollary 3.8, so
Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise all subsignatures of signatures in F of the above form satisfy fk−2fk+2 = f2
k or

fk = 0. There are two types of signatures with this property. In the first type, the signature entries
of even Hamming weight form a geometric progression. More specifically, the signatures of the first
type have the form

[αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn] or [αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn, 0]

for some α, β ∈ C, which are in M . In the second type, the signatures have arity at least 4 or 5
and are of the form [x, 0, . . . , 0, y] or [x, 0, . . . , 0, y, 0] respectively, with xy ̸= 0 and an odd number
of 0’s between x and y (since they have even parity). Note that we define the two types to be
exclusive. For example if x = 0 in type 2, then they are subcases of type 1 (with α = 0). If all of
the signatures in F are of the first type, then F ⊆ M .

Otherwise F contains a signature f of the second type. Suppose f = [x, 0, . . . , 0, y, 0] of arity at
least 5 with xy ̸= 0. After some number of self-loops, we have g = [x, 0, 0, 0, y, 0] of arity exactly 5.
Then Pl-Holant(g) is #P-hard by Lemma 3.10, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise f = [x, 0, . . . , 0, y] of arity at least 4 with xy ̸= 0. If x4 ̸= y4, then Pl-Holant(F ∪ÊQ)
is #P-hard by Lemma 6.5.

Otherwise x4 = y4. This puts every signature of the second type in A . Therefore F ⊆ A ∪M
and we are done by Theorem 7.6.

The conclusion of every result in the rest of this section states that we are able to pin (under
various assumptions on F). Formally speaking, we repeatedly prove that Pl-Holantc(F ∪ ÊQ) is
#P-hard (or in P) if and only if Pl-Holant(F ∪ ÊQ) is #P-hard (or in P). The difference between
these two counting problems is the presence of [0, 1] in Pl-Holantc(F ∪ ÊQ). We always prove this
statement in one of three ways:

1. either we show that Pl-Holantc(F ∪ ÊQ) is tractable (so Pl-Holant(F ∪ ÊQ) is as well);
2. or we show that Pl-Holant(F ∪ ÊQ) is #P-hard (so Pl-Holantc(F ∪ ÊQ) is as well);
3. or we show how to reduce Pl-Holantc(F ∪ ÊQ) to Pl-Holant(F ∪ ÊQ) by realizing [0, 1] using

signatures in F ∪ ÊQ.

Lemma 8.2. Let F be any set of complex-weighted symmetric signatures containing [0, 0, 1]. Then
Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) iff Pl-Holant(F ∪ ÊQ) is #P-hard (or in P).

Proof. If we had a unary signature [a, b] where b ̸= 0, then connecting [a, b] to [0, 0, 1] gives the
signature [0, b], which is [0, 1] after normalizing. Thus, in order to reduce Pl-Holantc(F ∪ ÊQ) to
Pl-Holant(F ∪ÊQ) by constructing [0, 1], it suffices to construct a unary signature [a, b] with b ̸= 0.
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Figure 11: The circles are assigned [1, 0, 1, 0] and the triangles are assigned [1, 0, x].

For every signature f ∈ F with f = [f0, f1, . . . , fm], using [0, 0, 1] and [1, 0], we can obtain all
subsignatures of the form [fk−1, fk] for any odd k such that 1 ≤ k ≤ m. If any subsignature satisfies
fk ̸= 0, then we can construct [0, 1].

Otherwise all signatures in F have even parity and we are done by Lemma 8.1.

There are two scenarios that lead to Lemma 8.2, which are the focus of the next two lemmas.

Lemma 8.3. For x ∈ C, let F be any set of complex-weighted symmetric signatures containing
[1, 0, x] such that x ̸∈ {0,±1}. Then Pl-Holantc(F∪ÊQ) is #P-hard (or in P) iff Pl-Holant(F∪ÊQ)
is #P-hard (or in P).

Proof. There are two cases. In either case, we realize [0, 0, 1] and finish by applying Lemma 8.2.
First we claim that the conclusion holds provided |x| ̸= 0, 1. Combining k copies of [1, 0, x]

gives [1, 0, xk]. Since |x| ̸∈ {0, 1}, x is neither zero nor a root of unity, so we can use polynomial
interpolation to realize [a, 0, b] for any a, b ∈ C, including [0, 0, 1].

Otherwise |x| = 1. The gadget in Figure 11 has signature [f0, f1, f2] = [1+x2, 0, 2x]. If x = ±i,
then we have [0, 0,±2i], which is [0, 0, 1] after normalizing.

Otherwise x ̸= ±i, so f0 ̸= 0. Since x ̸= 0, f2 ̸= 0. Since x ̸= ±1, |f0| < 2. However, |f2| = 2.
Therefore, after normalizing, the signature [1, 0, y] with y = 2x

1+x2 has |y| > 1, so it can interpolate
[0, 0, 1] by our initial claim since |y| ̸∈ {0, 1}.

Lemma 8.4. Let F be any set of complex-weighted symmetric signatures containing a signature
[f0, f1, . . . , fn] that is not identically 0 but has f0 = 0. Then Pl-Holantc(F ∪ ÊQ) is #P-hard (or
in P) iff Pl-Holant(F ∪ ÊQ) is #P-hard (or in P).

Proof. If f1 ̸= 0, then we connect n − 1 copies of [1, 0] to f to get [0, f1], which is [0, 1] after
normalizing. If f1 = 0, then n ≥ 2. If f2 ̸= 0, then we connect n − 2 copies of [1, 0] to f to get
[0, 0, f2], which is [0, 0, 1] after normalizing. Then we are done by Lemma 8.2. If f1 = f2 = 0,
then n ≥ 3. After some number of self-loops, we get a signature with exactly one or two initial 0’s,
which is one of the above scenarios.

As a significant step toward pinning for any signature set F , we show how to pin given any
binary signature. Some cases resist pinning and are excluded.

Lemma 8.5. Let F be any set of complex-weighted symmetric signatures containing a binary
signature f . Then Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) iff Pl-Holant(F ∪ ÊQ) is #P-hard (or
in P) unless f ∈ {[0, 0, 0], [1, 0,−1], [1, r, r2], [1, b, 1]}, up to a nonzero scalar, for any b, r ∈ C.

Proof. Let f = [f0, f1, f2]. If f0 = 0 and either f1 ̸= 0 or f2 ̸= 0, then we are done by Lemma 8.4.
Otherwise, f = [0, 0, 0] or f0 ̸= 0, in which case we normalize f0 to 1. If Pl-Holant(f | ÊQ) is
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#P-hard by Theorem 2.11, then Pl-Holant(F ∪ ÊQ) is also #P-hard. Otherwise, f is one of the
tractable cases, which implies that

f ∈ {[0, 0, 0], [1, r, r2], [1, 0, x], [1,±1,−1], [1, b, 1]}.

If f = [1,±1,−1], then we connect f to [1, 0, 1, 0] to get [0,±2], which is [0, 1] after normalizing.
If f = [1, 0, x], then we are done by Lemma 8.3 unless x ∈ {0,±1}. The remaining cases are all
excluded by assumption, so we are done.

8.2 Pinning in the Hadamard Basis
Before we show how to pin in the Hadamard basis, we handle two simple cases.

Lemma 8.6. For any set F of complex-weighted symmetric signatures containing [1,±i], we have
Pl-Holantc(F ∪ ÊQ) ≤T Pl-Holant(F ∪ ÊQ).

Proof. Connect two copies of [1,±i] to [1, 0, 1, 0] to get [0,±2i], which is [0, 1] after normalizing.

The next lemma considers the signature [1, b, 1, b−1], which we also encounter in Theorem 9.1,
the single signature dichotomy.

Lemma 8.7. Let b ∈ C. If b ̸∈ {0,±1}, then for any set F of complex-weighted symmetric
signatures containing f = [1, b, 1, b−1], Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Connect two copies of [1, 0] to f to get [1, b]. Connecting this back to f gives g = [1+b2, 2b, 2].
Then Pl-Holant(g | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Now we are ready to prove our pinning result.

Theorem 8.8 (Pinning). Let F be any set of complex-weighted symmetric signatures. Then
Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) iff Pl-Holant(F ∪ ÊQ) is #P-hard (or in P).

This theorem does not exclude the possibility that either framework can express a problem of in-
termediate complexity. It merely says that if one framework cannot express a problem of intermedi-
ate complexity, then neither can the other. Our goal is to prove a dichotomy for Pl-Holant(F∪ÊQ).
By Theorem 8.8, this is equivalent to proving a dichotomy for Pl-Holantc(F ∪ ÊQ).

Proof of Theorem 8.8. For simplicity, we normalize the first nonzero entry of every signature in F
to 1. If F contains the degenerate signature [0, 1]⊗n for some n ≥ 1, then we take self-loops on this
signature until we have either [0, 1] or [0, 0, 1] (depending on the parity of n). If we have [0, 1], we
are done. Otherwise, we have [0, 0, 1] and are done by Lemma 8.2.

Now assume that any degenerate signature in F is not of the form [0, 1]⊗n. Then we can
replace these degenerate signatures in F by their unary versions using [1, 0]. This does not change
the complexity of the problem. Hence we may assume all degenerate signatures in F are unary. If F
contains only unary signatures, then F ⊆ P̂ and Pl-Holantc(F ∪ ÊQ) is tractable by Theorem 2.8.

Otherwise F contains a non-degenerate signature f of arity k ≥ 2. We connect k − 2 copies
of [1, 0] to f until we obtain a signature with arity exactly 2. We call the resulting signature the
binary prefix of f . If this binary prefix is not one of the exceptional forms in Lemma 8.5, then we
are done, so assume that it is one of the exceptional forms.
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We do case analysis according to the exceptional forms in Lemma 8.5. There are five cases below
because we split the case of [1, r, r2] into [1, 0, 0] and [1, r, r2] with r ̸= 0 as two separate cases. In
each case, we either show that the conclusion of the theorem holds or that f ∈ A ∪ P̂ ∪ M , for
each non-degenerate f ∈ F . After the case analysis, we have that F ⊆ A ∪ P̂ ∪ M . Then we are
done by Theorem 7.6.

1. Suppose the binary prefix of f is [0, 0, 0]. Since f is not degenerate, then f is not identically 0,
and we are done by Lemma 8.4. Thus, in this case, the theorem holds.

2. Suppose the binary prefix of f is [1, 0,−1]. If f is not of the form

[1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)], (3)

then after one self-loop, we have a signature of arity at least one with 0 as its first entry but
is not identically 0, so we are done by Lemma 8.4.

Thus, in this case, we may assume f has the form given in (3).
3. Suppose the binary prefix of f is [1, 0, 0]. Since f is not degenerate, f is not of the form

[1, 0, . . . , 0]. Suppose the second non-zero entry is fi = x ̸= 0 where i ≥ 3. Then after
connecting k − i copies of [1, 0], where arity(f) = k, we have [1, 0, . . . , 0, x] of arity i. If
x4 ̸= 1, then Pl-Holant({f} ∪ ÊQ) is #P-hard by Lemma 6.5, so Pl-Holant(F ∪ ÊQ) is also
#P-hard.

Otherwise, x4 = 1. If f = [1, 0, . . . , 0, x] with x4 = 1, then f ∈ A . Suppose that x is not
the last entry in f . Connecting k − i− 1 copies of [1, 0] to f , we have g = [1, 0, . . . , 0, x, y] of
arity i+ 1.
• If i is odd, then doing i−3

2 many self-loops, we have h = [1, 0, 0, x, y]. The determinant
of the compressed signature matrix of h is −2x2 ̸= 0. Thus, Holant(h) is #P-hard by
Corollary 3.8, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

• Otherwise, i is even. After i−4
2 many self-loops on g, we have h = [1, 0, 0, 0, x, y]. Then

by Lemma 3.10, Holant(h) is #P-hard, so Pl-Holant(F ∪ ÊQ) is also #P-hard.
Thus, in this case, we may assume that f = [1, 0, . . . , 0, x] with x4 = 1.

4. Suppose the binary prefix of f is [1, r, r2], where r ̸= 0. Since f is non-degenerate, f is not
of the form [1, r, . . . , rn]. Suppose the first term that breaks the pattern is fm+1 = y ̸= rm+1

with m ≥ 2. Connecting k − m − 1 many copies of [1, 0], where arity(f) = k, we have
[1, r, . . . , rm, y]. Using [1, 0], we can get [1, r]. If r = ±i, then we are done by Lemma 8.6,
so assume that r ≠ ±i. Then we can attach [1, r] back to the initial signature k − 3 times
to get g = [1, r, r2, x] after normalization, where x ̸= r3. We connect [1, r] once more to get
h = [1+ r2, r(1+ r2), r2+ rx]. If h does not have one of the exceptional forms in Lemma 8.5,
then we are done, so assume that it does.

Since the second entry of h is not 0 and x ̸= r3, the only possibility is that h has the
form [1, b, 1] up to a scalar. This gives x = r−1. Note that r ̸= ±1 since x ̸= r3. A self-loop
on g = [1, r, r2, r−1] gives [1 + r2, r + r−1], which is [1, r−1] after normalization. Connecting
this back to g gives h′ = [2, 2r, r2 + r−2]. We assume that h′ has one of the exceptional forms
in Lemma 8.5 since we are done otherwise. If h′ has the form [1, r, r2] up to a scalar, then
r4 = 1, a contradiction, so it must have the form [1, b, 1] up to a scalar. But then r2 = 1,
which is also a contradiction.

Thus, in this case, the theorem holds.
5. Suppose the binary prefix of f is [1, b, 1]. If b = ±1, then this binary prefix is degenerate

and was considered in the previous case, so assume that b ̸= ±1. If f is not of the form
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[1, b, 1, b, . . . ], then let i be the index of the first entry in f to break the pattern. If i is even,
connecting k− i copies of [1, 0] to f , where k = arity(f), we have [1, b, 1, . . . , b, y] with y ̸= 1.
We do i−4

2 more self-loops. After normalization, we get g = [1, b, 1, b, x], where x ̸= 1. The
determinant of its compressed signature matrix is (b2 − 1)(1 − x) ̸= 0. Thus, Holant(g) is
#P-hard by Corollary 3.8, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise, i is odd. Then connect k− i many [1, 0] to f , and we get [1, b, 1, . . . , 1, y] with
y ̸= b. We do i−3

2 self-loops. After normalization, we get [1, b, 1, x], where x ̸= b. One more
self-loop gives us g′ = [2, b+ x].
• If b = 0, then connecting g′ to [1, 0, 1, x] gives [2, x, 2+x2]. We assume that [2, x, 2+x2]

has one of the exceptional forms in Lemma 8.5 since we are done otherwise. Because
x ̸= 0, the only possibility is that [2, x, 2+x2] has the form [1, r, r2] up to a scalar. Then
we get x2 = −4, so g = [2, x] = 2[1,±i] and we are done by Lemma 8.6.

• Otherwise, b ̸= 0. Using [1, 0], we can get h = [1, b, 1]. If the signature matrix Mh of
h has infinite order modulo a scalar, then we can interpolate [0, 1] by Lemma 6.4 since
b ̸∈ {0,±1}, and we are done.

Hence we may assume that Mh has finite order modulo a scalar. There exists positive
integer ℓ and β ̸= 0 such that M ℓ

h = βI2. Thus after normalization, we can construct
the anti-gadget [1,−b, 1] by connecting ℓ − 1 copies of h together. Connecting [1, 0] to
[1,−b, 1] gives [1,−b] and connecting this to [1, b, 1, x] gives [1− b2, 0, 1− bx].

If 1−bx
1−b2

̸∈ {0,±1}, then we are done by Lemma 8.3. Otherwise, y = 1−bx
1−b2

∈ {0,±1}.
For y = 0, we get x = b−1 and are done by Lemma 8.7 since b ̸∈ {0,±1}. For y = 1, we
get b = x, a contradiction. For y = −1, we get 2−b2−bx = 0. Then connecting [1,−b, 1]
to g = [2, b+ x] gives [2− b2 − bx, x− b] = [0, x− b], which is [0, 1] after normalization.

Thus, in this case, we may assume that f = [1, b, 1, b, . . . ].
To summarize, every non-degenerate signature in F must have one of the following forms:

• [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)], which is in A ∩ M ;
• [1, 0, . . . , 0, x], where x4 = 1, which is in A ;
• [1, b, 1, b, . . . , 1 or b], which is in P̂.

Moreover, as unary signatures are all in P̂, we have that F ⊆ A ∪ P̂ ∪ M . We are done by
Theorem 7.6.

9 Main Dichotomy
In this section, we prove our main dichotomy theorem. We begin with a dichotomy for a single
signature.

Theorem 9.1. If f is a non-degenerate symmetric signature of arity at least 2 with complex weights
in Boolean variables, then Pl-Holant({f} ∪ ÊQ) is #P-hard unless f ∈ A ∪ P̂ ∪M , in which case
the problem is computable in polynomial time.

Proof. When f ∈ A ∪P̂∪M , the problem is tractable by Theorem 2.8. When f ̸∈ A ∪P̂∪M , we
prove that Pl-Holantc({f}∪ ÊQ) is #P-hard, which is sufficient because of pinning (Theorem 8.8).
Using [1, 0] and [0, 1], we can obtain any subsignature of f .

Notice that once we have [0, 1] and ÊQ, we can realize every signature in T ÊQ, where T =

[ 0 1
1 0 ]. In fact, every even arity signature in ÊQ is also in T ÊQ, and we obtain all the odd arity
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signatures in T ÊQ by attaching [0, 1] to all the even arity signatures in ÊQ. Therefore, a holographic
transformation by T does not change the complexity of the problem. Furthermore, A ∪ P̂ ∪M is
closed under T . We use these facts later.

The possibilities for f can be divided into three cases:
• f satisfies the parity condition;
• f does not satisfy the parity condition but does contain a 0 entry;
• f does not contain a 0 entry.

We handle these cases below.
1. Suppose that f satisfies the parity condition. If f has even parity, then we are done by

Lemma 8.1.
Otherwise, f has odd parity. If f has odd arity, then under a holographic transformation

by T = [ 0 1
1 0 ], f is transformed to f̂ , which has even parity. Then either Pl-Holantc({f̂}∪ ÊQ)

is#P-hard by Lemma 8.1 (and thus Pl-Holantc({f}∪ÊQ) is also#P-hard), or f̂ ∈ A ∪P̂∪M

(and thus f ∈ A ∪ P̂ ∪ M ).
Otherwise, the arity of f is even. Connect [0, 1] to f to get a signature g with even

parity and odd arity. Then either Pl-Holantc({g} ∪ ÊQ) is #P-hard by Lemma 8.1 (and thus
Pl-Holantc({f} ∪ ÊQ) is also #P-hard), or g ∈ A ∪ P̂ ∪ M . In the latter case, it must
be that g ∈ M since non-degenerate generalized equality signatures cannot have both even
parity and odd arity. (See Figure 12 at the end of the Appendix, which contains a Venn
diagram of the signatures in A ∪ P̂ ∪ M , up to constant factors.) In particular, the even
parity entries of g form a geometric progression. Therefore f ∈ M since f has odd parity
and the same geometric progression among its odd parity entries.

2. Suppose that f contains a 0 entry but does not satisfy the parity condition. Since f does not
satisfy the parity condition, there must be at least two nonzero entries separated by an even
number of 0 entries. Thus, f contains a subsignature g = [a, 0, . . . , 0, b] of arity n = 2k+1 ≥ 1,
where ab ̸= 0.

If k = 0, then n = 1 and we can shift either to the right or to the left and find the 0 entry
in f and obtain a binary subsignature h of the form [c, d, 0] or [0, c, d], where cd ̸= 0. Then
Pl-Holant(h | ÊQ) is #P-hard by Theorem 2.11, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Otherwise k ≥ 1, so n ≥ 3. If a4 ̸= b4, then Pl-Holant({g}∪ÊQ) is#P-hard by Lemma 6.5,
so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Otherwise, a4 = b4, so g ∈ A . If f = g, then we are done, so assume that f ̸= g, which
implies that there is another entry just before a or just after b. If this entry is nonzero, then
f has a subsignature h of the form [c, a, 0] or [0, b, d], where cd ̸= 0. Then Pl-Holant(h | ÊQ)

is #P-hard by Theorem 2.11, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.
Otherwise, this entry is 0 and f has a subsignature h of the form [0, a, 0, . . . , 0, b] or

[a, 0, . . . , 0, b, 0] of arity at least 4. If the arity of h is even, then after some number of
self-loops, we have a signature h′ of the form [0, a, 0, 0, b] or [a, 0, 0, b, 0] of arity exactly 4.
Then Pl-Holant(h′) is #P-hard by Corollary 3.8 since ab ̸= 0, so Pl-Holant({f} ∪ ÊQ) is also
#P-hard.

Otherwise, the arity of h is odd. After some number of self-loops, we have a signature h′

of the form [0, a, 0, 0, 0, b] or [a, 0, 0, 0, b, 0] of arity exactly 5. Then Pl-Holant(h′) is #P-hard
by Lemma 3.10 since ab ̸= 0, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

3. Suppose f contains no 0 entry. If f has a binary subsignature g such that Pl-Holant(g | ÊQ)
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is #P-hard by Theorem 2.11, then Pl-Holant({f} ∪ ÊQ) is also #P-hard.
Otherwise every binary subsignature [a, b, c] of f satisfies the conditions of some tractable

case in Theorem 2.11. The three possible tractable cases are degenerate with condition ac = b2

(case 1), affine A with condition ac = −b2 ∧ a = −c (case 3), and a Hadamard-transformed
product type P̂ with condition a = c (case 4). If every binary subsignature [a, b, c] of f
satisfies ac = b2, then f is degenerate, a contradiction. If every binary subsignature [a, b, c]
of f satisfies ac = −b2 ∧ a = −c, then f = [1,±1,−1,∓1, 1,±1,−1,∓1, . . . ] ∈ A (up to a
scalar) and we are done. If every binary subsignature [a, b, c] of f satisfies a = c, then f ∈ P̂
and we are done.

Otherwise, there exists two binary subsignatures of f that do not satisfy the same tractable
case in Theorem 2.11. Hence f has arity n ≥ 3. Let hi = [fi, fi+1, fi+2] for all 0 ≤ i ≤ n− 2
be binary subsignatures of f . Suppose there exists an i such that hi satisfies the affine
condition (case 3). We claim that there must exist two successive signatures h = [a, b, c] that
is affine and h′ = [b, c, d] satisfying either the degenerate or the product-type condition, up to
a transformation of [ 0 1

1 0 ]. This is because we can start from hi and search in both directions
hi−1 and hi+1 until we found such h and h′. It is always successful because not all hi satisfies
the affine condition. Let g = [a, b, c, d] be the tenary subsignature of f . Then for either case of
h′, we have g = [1, ε,−1, ε] after normalization, where ε2 = 1. Connecting two copies of [0, 1]
to g gives [−1, ε]. Connecting this back to g gives g′ = [0,−2ε, 2]. Then Pl-Holant(g′ | ÊQ)

is #P-hard by Theorem 2.11, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.
Otherwise, up to the transformation [ 0 1

1 0 ], there exists a ternary subsignature g = [a, b, c, d]
of f such that h = [a, b, c] satisfies the product-type condition (but not the degenerate
condition) and h′ = [b, c, d] satisfies the degenerate condition. Then g = [1, b, 1, b−1] af-
ter normalization, where b2 ̸= 1. Then Pl-Holant(g | ÊQ) is #P-hard by Lemma 8.7, so
Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Now we are ready to prove our main dichotomy theorem.

Theorem 9.2. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
Then Pl-Holant(F ∪ ÊQ) is #P-hard unless F ⊆ A , F ⊆ P̂, or F ⊆ M , in which case the
problem is computable in polynomial time.

Proof. The tractability is given in Theorem 2.8. When F is not a subset of A , P̂, or M , we prove
that Pl-Holantc(F ∪ ÊQ) is #P-hard, which is sufficient because of pinning (Theorem 8.8).

For any degenerate signature f ∈ F , we connect some number of [1, 0] or [0, 1] to f to get its
corresponding unary signature. We replace f by this unary signature, which does not change the
complexity. Thus, assume that the only degenerate signatures in F are unary signatures.

If F ̸⊆ A ∪P̂∪M , then the problem is #P-hard by Theorem 9.1. Otherwise, F ⊆ A ∪P̂∪M
and we are done by Theorem 7.6.

We also have the corresponding theorem for the Pl-#CSP framework in the standard basis,
which is equivalent to Theorem 1.1.

Theorem 9.3. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆ P, or F ⊆ M̂ , in which case the problem is
computable in polynomial time.
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A Venn Diagram of the Tractable Signatures
This section contains a Venn diagram of the tractable Pl-#CSP signature sets in the Hadamard
basis. Each signature may also take an arbitrary constant multiple from C. This figure is partic-
ularly useful in Section 7, where we consider the complexity of multiple signatures from different
tractable sets. The definition of each tractable signature set is given in Section 2.

For a signature f , the notation “f≥k” is short for “arity(f) ≥ k”. Notice that M ∩ P̂ − A is
empty.

A P̂

M

[1, 0,−1]
[1, 0, 1, 0, . . . ]
[0, 1, 0, 1, . . . ]

[1,±1]
[1,±i, 1,±i, . . . ]

[1, 0,±i]
[1, 0,−1, 0, 1, 0, . . . ]≥3

[0, 1, 0,−1, 0, 1, . . . ]≥3

[1, 0, . . . , 0,±1]≥3

[1, 0, . . . , 0,±i]≥3

[1,±1,−1,∓1, 1,±1, . . . ]≥2

[1, b, 1, b, . . . ]
with b ̸= 0 ∧ b4 ̸= 1

[1, 0, r] with r ̸= 0 ∧ r4 ̸= 1
[1, 0, r, 0, r2, 0, . . . ]≥3 with r ̸= 0 ∧ r2 ̸= 1
[0, 1, 0, r, 0, r2, . . . ]≥3 with r ̸= 0 ∧ r2 ̸= 1
[0, 1, 0, . . . , 0]≥3

[0, . . . , 0, 1, 0]≥3

Figure 12: Venn diagram of the tractable Pl-#CSP signature sets in the Hadamard ba-
sis. Each signature has been normalized for simplicity of presentation. For a signature
f , the notation “f≥k” is short for “arity(f) ≥ k”.
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