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AbstRact. Recent developments in approximate counting have made startling progress in developing
fast algorithmic methods for approximating the number of solutions to constraint satisfaction problems
(CSPs) with large arities, using connections to the Lovász Local Lemma. Nevertheless, the boundaries of
these methods for CSPs with non-Boolean domain are not well-understood. Our goal in this paper is to
fill in this gap and obtain strong inapproximability results by studying the prototypical problem in this
class of CSPs, hypergraph colourings.

More precisely, we focus on the problem of approximately counting 𝑞-colourings on 𝐾-uniform hy-
pergraphs with bounded degree Δ. An efficient algorithm exists if Δ ≲ 𝑞𝐾/3−1

4𝐾𝐾2 (Jain, Pham, and Vuong,
2021; He, Sun, and Wu, 2021). Somewhat surprisingly however, a hardness bound is not known even for
the easier problem of finding colourings. For the counting problem, the situation is even less clear and
there is no evidence of the right constant controlling the growth of the exponent in terms of 𝐾 .

To this end, we first establish that for general 𝑞 computational hardness for finding a colouring on
simple/linear hypergraphs occurs at Δ ≳ 𝐾𝑞𝐾 , almost matching the algorithm from the Lovász Local
Lemma. Our second andmain contribution is to obtain a far more refined bound for the counting problem
that goes well beyond the hardness of finding a colouring andwhich we conjecture is asymptotically tight
(up to constant factors). We show in particular that for all even 𝑞 ≥ 4 it is NP-hard to approximate the
number of colourings when Δ ≳ 𝑞𝐾/2. Our approach is based on considering an auxiliary weighted
binary CSP model on graphs, which is obtained by “halving” the 𝐾-ary hypergraph constraints. This
allows us to utilise reduction techniques available for the graph case, which hinge upon understanding
the behaviour on random regular bipartite graphs that serve as gadgets in the reduction. The major
challenge in our setting is to analyse the induced matrix norm of the interaction matrix of the new CSP
which captures the most likely solutions of the system. In contrast to previous analyses in the literature,
the auxiliary CSP demonstrates both symmetry and asymmetry, making the analysis of the optimisation
problem severely more complicated and demanding the combination of delicate perturbation arguments
and careful asymptotic estimates.

1. IntRoduction

Constraint satisfaction problems (CSPs), such as 𝑞-colourings and 𝑘-SAT, are perhaps the most-well
studied problems in computer science. We consider the case where the number of appearances of
variables (also called degrees) is bounded by some absolute constant. For this class of CSPs, the Lovász
local lemma [EL75] is a classical tool in combinatorics that provides sharp degree thresholds under
which the existence of solutions to CSPs is guaranteed. After a long line of research [Bec91, Alo91,
MR98, CS00, Sri08, Mos09], Moser and Tardos [MT10] showed that, under the same conditions as the
local lemma, an efficient algorithm exists to find a solution. One remarkable aspect of this algorithm
in the case of the bounded-degree 𝑘-SAT problem is that it gives up to lower order terms [GST16] the
location of the algorithmic threshold for finding solutions [KST93], as the degree varies.
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A related computational problem that has been intensively studied recently is to efficiently sam-
ple or approximately count solutions,1 instead of merely finding one. Under local lemma type condi-
tions, there are some barriers, such as the connectivity barrier, for traditional approaches to approx-
imate counting and sampling. Recently, there have been some surprising developments that man-
aged to bypass these barriers, making great progress towards a sampling version for the local lemma
[Moi19, GJL19, GLLZ19, FGYZ21, FHY20, JPV21b, JPV21a, HSW21]. However, there is no sharp thresh-
old established in the sampling setting yet.

A major difference between searching and sampling is that sampling can be computationally harder
in the local lemma settings. For example, for 𝐾-CNF formulas where each variable appears at most Δ
times, if Δ ≤ 2𝐾

𝑒𝐾 + 1, then there must be a satisfying assignment, and it can be efficiently found; yet
if Δ ≥ 5 · 2𝐾/2, there is no algorithm to sample or approximately count satisfying assignments unless
NP = RP [BGG+19], even when all variables appear positively (the monotone case). For monotone 𝐾-
CNFs, the threshold 2𝐾/2 is sharp up to constants, because Hermon, Sly, and Zhang [HSZ19] showed
a complementary efficient algorithm for Δ ≤ 𝑐2𝐾/2 where 𝑐 is a constant.

Our goal in this paper is to detail how this “sampling-is-computationally-harder” phenomenon man-
ifests into local-lemma-type hypergraph problems with non-boolean domain and which are not nec-
essarily monotone, and to make progress towards carving the computational thresholds for sampling
problems in the local lemma setting. Among the more recent algorithmic developments, the most
promising one to establish a computational transition is the problem of counting hypergraph colour-
ings, which was the original setting where the local lemma was developed [EL75]. For a hypergraph
𝐻 = (𝑉 , 𝐸), a proper 𝑞-colouring 𝜎 : 𝑉 → {1, 2, . . . , 𝑞} assigns a colour to each vertex, such that no
hyperedge is monochromatic under 𝜎 . Suppose further that 𝐻 is 𝐾-uniform and Δ is the maximum
degree of 𝐻 . In this setting, an efficient sampling algorithm exists if Δ ≲ 𝑞𝐾/3−1

4𝐾𝐾2
2 [JPV21a, HSW21],

where ≲ (and similarly, ≳, ≍) hides logarithm or other lower order terms.
Somewhat surprisingly, despite being a canonical and well-studied problem, not much is known

regarding the computational hardness for bounded-degree hypergraph colourings, even for the search
version. Thus we first show that it is NP-hard to find a proper hypergraph colouring if 𝑞 ≥ 2, 𝐾 ≥ 2
(but not 𝑞 = 𝐾 = 2), and Δ ≳ 𝐾𝑞𝐾 (see Theorem 2.2), and to approximately count if 𝑞 ≥ 2, 𝐾 ≥ 4,
and Δ ≳ 𝐾𝑞𝐾−1 (see Theorem 2.4). These bounds almost match the algorithmic Local Lemma thresh-
old. In fact, Theorem 2.2 and Theorem 2.4 still hold when restricting to simple3 hypergraphs. If we
restrict monotone 𝐾-CNFs to simple hypergraphs, the condition of the aforementioned algorithmic
result [HSZ19] improves to Δ ≲ 2𝐾

𝐾2 . In view of this result and the searching algorithm [MT10], it
seems reasonable to conjecture that the sharp hardness threshold (for both approximate counting and
searching) in simple hypergraphs is Δ ≳ 𝑞𝐾−1, up to some polynomial factors in 𝐾 . Our hardness
result almost matches it.

Our second and main contribution is a more refined hardness result for approximate counting and
sampling, stated as follows.

Theorem 1.1. Let 𝑞 ≥ 4 be even,𝐾 ≥ 4 be even, and Δ ≥ 5𝑞𝐾/2. It isNP-hard to approximate the number
of proper 𝑞-colourings in 𝑛-vertex 𝐾-uniform hypergraphs of maximum degree at most Δ, even within a
factor of 2𝑐𝑛 for some constant 𝑐 (𝑞, 𝐾) > 0.

A few remarks are in order.
• First, the threshold in Theorem 1.1 is far more refined than the corresponding theorem (The-
orem 2.2) for the searching problem. The exponent of the sampling threshold we achieve is
roughly half of that of the threshold for the searching problem, which is analogous to the afore-
mentioned (monotone) 𝐾-CNF example [BGG+19]. Interestingly, and in contrast to the 𝐾-CNF

1Approximate counting and sampling are often computationally equivalent, for example in the so-called “self-reducible”
settings [JVV86]. The local lemma setting is typically not self-reducible. However, reductions still exist [FGYZ21, JPV21b]
between approximate counting and sampling without degradation of the parameters.

2Note that in [JPV21a, HSW21], their Δ is the degree bound for the dependency graph, which is at most Δ(𝐾 − 1) in our
setting.

3A hypergraph is called simple (or linear) if the intersection of any two hyperedges has size at most 1.
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case, our colourings threshold is getting close to matching the constant in the exponent in the
algorithmic threshold of Δ ≲ 𝑞𝐾/3−1

4𝐾𝐾2 [JPV21a, HSW21]. We conjecture that our hardness thresh-
old is asymptotically tight (up to constant factors), namely that for all 𝑞 ≥ 2 and 𝐾 ≥ 2, there is
an efficient algorithm to approximately count the number of proper 𝑞-colourings in 𝐾-uniform
hypergraphs whenever Δ ≲ 𝑞𝐾/2.

• Second, our result applies to only even 𝐾 for 𝐾-uniform hypergraphs. This is due to a par-
ticular halving construction we use in the reduction. The hardness results for (monotone)
𝐾-CNF [BGG+19] allow hyperedges with sizes at least 𝐾 . This is a stronger assumption and
our hardness bound would still apply without changing the order. In fact, we expect a slight
variant of our construction to work for odd 𝐾 to achieve a threshold of the same order. (See
Remark 3.2.) As we explain soon, the details for even 𝐾 are already very complicated, so for
clarity and simplicity we did not pursue the odd 𝐾 case.

• Lastly, our result applies to an even number of colours 𝑞, which is analogous to hardness results
for counting in the graph colouring setting [GŠV15]. It was left as an open problem in [GŠV15]
to handle odd 𝑞 (see also the recent work [CGSV21]), and we met the same difficulty in our
setting as well. Our hardness proof for counting builds on ideas from [GŠV15], and we focus
on the challenges needed to refine them in the hypergraph setting (rather than addressing the
parity of 𝑞). We expect that substantial new ideas are required to resolve the parity of 𝑞, even
in the graph setting.

In order to show Theorem 1.1, we first reduce from an auxiliary weighted binary CSP, namely a
“spin system” in graphs. Basically, we replace each vertex of the graph by a cluster of 𝐾/2 vertices
in the hypergraph, and an edge by a hyperedge of size 𝐾 . This construction is identical to the one in
[BGG+19], via which one reduces fromweighted independent set in graphs to hypergraph independent
sets. However, in order to reduce to the hypergraph 𝑞-colouring problem, the variables of the weighted
binary CSP take 𝑞 + 1 possible values. There are 𝑞 values that correspond to “pure” colours, and one
special value that corresponds to a “mixed” state. The interactions among these 𝑞+1 states are dictated
by the hypergraph colouring problem, and the mixed state behaves very differently from the pure
colours; roughly, the pure colours behave symmetrically (as in the graph case) but the mixed state
causes asymmetry.

Our next and main step is to show the desired hardness result for this spin system. We follow an
established route of establishing inapproximability for spin systems [DFJ02, MWW09, Sly10, CCGL12,
SS14, GŠV16], and in particular [GŠV15], where the key is to understand the system on random regular
bipartite graphs which are used as gadgets in the reduction. More precisely, we need to analyze what
are the most likely configurations of the system on random regular bipartite graphs, the so-called
dominant phases (given by the normalised counts of the colours on each side of the graph). It was
shown in [GŠV15] that these are captured by a certain matrix norm of the interaction matrix. These
norms are in general very hard to penetrate analytically and it was already a major difficulty in the
perfectly symmetric setting of [GŠV15]. For us, the presence of a special spin togetherwith𝑞 symmetric
spins makes our spin system very different from all of the spin systems analyzed before and themixture
of symmetry and asymmetry make the analysis substantially harder. For example, in [GŠV15], to show
that the two parts of the graph are unbalanced, a simple Hessian calculation suffices, whereas in our
setting, there are Hessian stable balanced phases due to the presence of this special spin (that can
be favoured against the others). Also, being Hessian stable means that this phase is locally maximal,
making perturbation arguments hard to carry out. What we do instead is to directly compare this
phase with the dominant phase via a careful interpolation path and a sequence of delicate estimates.
This reflects the main difference between our work and previous works, namely that our estimates and
perturbation arguments are significantly more delicate in order to rule out the local-maxima.

The main open problem left is to close the gap between the algorithm of [JPV21a, HSW21] and
our hardness threshold, Theorem 1.1, although we expect that any progress towards a computational
transition threshold now would come from the algorithmic side. Another open problem is to handle
the odd 𝑞 case inTheorem 1.1 and similarly in [GŠV15]. When 𝑞 is odd, the current perturbation-based
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analysis cannot determine, among a few candidates, which phases are dominant. New ideas would be
required to handle the odd 𝑞 case.

2. HaRdness foR finding colouRings in simple hypeRgRaphs

In this section we show hardness results for finding hypergraph colourings for parameters beyond
the local lemma condition. The key is to find instances that do not have proper colourings.

We will use a configuration model to construct random regular hypergraphs. With constant proba-
bility, the resulting hypergraph is simple [CFMR96, PP19]. Frieze and Mubayi [FM13] showed that if

𝑞 > 𝑐
(

Δ
logΔ

) 1
𝐾−1 for some constant 𝑐 = 𝑐 (𝐾) that only depends on𝐾 , then any simple𝐾-uniform hyper-

graph with maximum degree Δ is 𝑞-colourable. In particular, their condition holds if Δ ≤ 𝑐𝐾𝑞𝐾−1 ln𝑞
for some constant 𝑐 = 𝑐 (𝐾). Our next lemma complements their result by showing as an intermediate
result that if Δ > 𝐾𝑞𝐾−1 ln𝑞 + 1, we can find a 𝐾-uniform hypergraph with maximum degree Δ which
is not 𝑞-colourable. For our reductions, we use such hypergraphs to obtain a “disequality” gadget, as
detailed in the lemma below.
Lemma 2.1. Let 𝑞, 𝐾 ≥ 2 be integers. Then, for all integers Δ > 𝐾𝑞𝐾−1 ln𝑞+1, there exists a 𝑞-colourable
𝐾-uniform simple hypergraph 𝐻 with maximum degree Δ and two distinct vertices 𝑢, 𝑣 such that the
degree of 𝑢 is 1, the degree of 𝑣 is at most Δ, and for every 𝑞-colouring 𝜎 of 𝐻 it holds that 𝜎 (𝑢) ≠ 𝜎 (𝑣).
Proof. Wefirst argue that for allΔ > 𝐾𝑞𝐾−1 ln𝑞 there is aΔ-regular hypergraph𝐻0 such that𝑍𝑐𝑜𝑙 (𝐻0) =
0, where 𝑍𝑐𝑜𝑙 (𝐻 ) denotes the number of 𝑞-colourings in 𝐻 .

Let 𝑛 be such that𝑚 = 𝑛Δ/𝐾 is an integer. We sample a 𝐾-uniform Δ-regular hypergraph 𝐻 accord-
ing to the following pairing model (see [PP19]). Start with a bipartite graph with the points [𝑛] × [Δ]
on the left and the points [𝑚] × [𝐾] on the right, and pair the two sides using a uniformly random
perfect matching; the vertex set of the final hypergraph 𝐻 is obtained in the natural way by projecting
the set [𝑛] × [Δ] onto [𝑛]. Note that it will be convenient to view the hyperedges of 𝐻 for now as
ordered tuples rather than sets; this does not make any difference when considering colourings of 𝐻
due to the symmetry among possible ordering of the colours within the hyperedge. It is a well-known
fact, see for example [CFMR96, Lemma 2] or [PP19, Theorem 2.4 & Appendix A.4], that the probability
that 𝐻 is simple is bounded away from zero for all sufficiently large 𝑛.4

For a colouring 𝜎 : [𝑛] → [𝑞], a colour 𝑖 ∈ [𝑞] and a 𝐾-tuple of colours 𝒊 = (𝑖1, . . . , 𝑖𝐾 ) ∈ [𝑞]𝐾 , let
𝑛𝛼𝑖 be the number of vertices with colour 𝑖 , and𝑚𝛽𝒊 be the number of hyperedges whose vertices are
coloured according to 𝒊 (i.e., the 𝑗-th vertex of the hyperedge takes the colour 𝑖 𝑗 ). Let 𝜶 = {𝛼𝑖}𝑖∈[𝑞 ]
and 𝜷 = {𝛽𝒊}𝒊∈[𝑞 ]𝐾 , and note that (𝜶 , 𝜷) ∈ 𝑆𝑞 , where 𝑆𝑞 is the space of all pairs of vectors in R𝑞 ×R𝑞

𝐾

satisfying

(1)
∑
𝑖∈[𝑞 ]𝛼𝑖 = 1,

∑
𝒊∈[𝑞 ]𝐾 𝑡𝑖,𝒊𝛽𝒊 = 𝐾𝛼𝑖 for 𝑖 ∈ [𝑞]

𝛼𝑖 ≥ 0 for 𝑖 ∈ [𝑞], 𝛽𝒊 ≥ 0 for 𝒊 ∈ [𝑞]𝐾 , 𝛽 (𝑖,𝑖,...,𝑖 ) = 0 for 𝑖 ∈ [𝑞],
where for 𝑖 ∈ [𝑞] and 𝒊 ∈ [𝑞]𝐾 we denote by 𝑡𝑖,𝒊 the number of occurrences of colour 𝑖 in the tuple 𝒊.
Then, we have

E[𝑍𝑐𝑜𝑙 (𝐻 )] =
1

(Δ𝑛)!
∑

(𝜶 ,𝜷 ) ∈𝑆𝑞 ;𝑛𝜶 ∈Z𝑞,𝑚𝜷∈Z𝑞𝐾

(
𝑛

𝛼1𝑛, . . . , 𝛼𝑞𝑛

) (
𝑚

𝛽1𝑚, . . . , 𝛽𝑞𝐾𝑚

) ∏
𝑖∈[𝑞 ]

(Δ𝛼𝑖𝑛)!,

since a term in the sum corresponding to (𝜶 , 𝜷) accounts for the number of ways to choose 𝜎 and 𝐻
with vertex-colour frequencies given by the vector 𝜶 and edge-colour frequencies given by the vector
𝜷 . Using Stirling’s approximation (2𝜋𝑘)1/2(𝑘/e)𝑘 ≤ 𝑘! ≤ e𝑘1/2(𝑘/e)𝑘 that holds for all integers 𝑘 ≥ 1,
we obtain by expanding the terms inside the sum (note that there are at most 𝑛𝑞𝐾+𝑞 of them) that

(2) E[𝑍𝑐𝑜𝑙 (𝐻 )] ≤ 𝑛𝑂 (1) exp
(
𝑛 max

(𝜶 ,𝜷 ) ∈𝑆𝑞
𝐹 (𝜶 , 𝜷)

)
,

4We remark that the term “simple” has different meanings across the literature. A simple hypergraph in this paper actually
corresponds to a configuration without 4-cycles in the context of [PP19, Theorem 2.4] (where one should plug in ℓ = 2), or a
hypergraph without 2-cycles in [CFMR96].
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where 𝐹 (𝜶 , 𝜷) = −(Δ − 1)ℎ(𝜶 ) + Δ
𝐾ℎ(𝜷) and ℎ(·) is the entropy function (here, we adopt the usual

convention that 0 ln 0 = 0 which makes ℎ and 𝐹 continuous and therefore the maximum in (2) well-
defined).

For (𝜶 , 𝜷) ∈ 𝑆𝑞 , we have that 𝛼𝑖 = 1
𝐾

∑
𝒊∈[𝑞 ]𝐾 𝑡𝑖,𝒊𝛽𝒊 for 𝑖 ∈ [𝑞], and hence

𝐹 (𝜶 , 𝜷) = ℎ(𝜶 ) + Δ
𝐾𝐺 (𝜶 , 𝜷) where 𝐺 (𝜶 , 𝜷) = ℎ(𝜷) − ∑

𝑖∈[𝑞 ] ln(𝛼𝑖)
∑

𝒊∈[𝑞 ]𝐾 𝑡𝑖,𝒊𝛽𝒊 .

Note that for a fixed vector 𝜶 , the function𝐺𝜶 (𝜷) := 𝐺 (𝜶 , 𝜷) is concave and the method of Lagrange
multipliers yields that the maximum of 𝐺𝜶 happens at 𝜷∗ = {𝛽∗𝒊 }𝒊∈[𝑞 ]𝐾 that satisfies

𝛽∗𝒊 =

∏
𝑖∈[𝑞 ] (𝛼𝑖)𝑡𝑖,𝒊

∏
𝑖∈[𝑞 ] 1𝒊∗≠(𝑖,𝑖,...,𝑖 )

1 − ∥𝜶 ∥𝐾𝐾
for 𝒊 ∈ [𝑞]𝐾 , 𝐺𝜶 (𝜷∗) = ln(1 − ∥𝜶 ∥𝐾𝐾 ).

It follows that

(3) 𝐹 (𝜶 , 𝜷) ≤ ℎ(𝜶 ) + Δ
𝑘 ln(1 − ∥𝜶 ∥𝐾𝐾 ) ≤ ln

(
𝑞
(
1 − 1

𝑞𝐾−1
)Δ/𝐾 )

,

where the last inequality follows from ℎ(𝜶 ) ≤ ln𝑞 and ∥𝜶 ∥𝐾𝐾 ≥ 1/𝑞𝐾−1, both of which are simple
applications of Jensen’s inequality. For Δ > 𝐾𝑞𝐾−1 ln𝑞, the r.h.s. of (3) is negative and therefore
max(𝜶 ,𝜷 ) ∈𝑆𝑞 𝐹 (𝜶 , 𝜷) < 0. From (2), we conclude that 𝑍𝑐𝑜𝑙 (𝐻 ) = 0 with probability 1− exp(−Ω(𝑛)). By
a union bound, we obtain a simple Δ-regular hypergraph 𝐻0 with 𝑍𝑐𝑜𝑙 (𝐻0) = 0, as claimed.

To obtain the final hypergraph 𝐻 with the desired property, we invoke an argument in [GG16,
Lemma 28] (which in turn was inspired by [KST93]). We give the details here for completeness. Given
𝐻0 = (𝑉 , E) with 𝑍𝑐𝑜𝑙 (𝐻0) = 0, we can remove hyperedges from E one by one until removing any
more hyperedge makes 𝑍𝑐𝑜𝑙 (𝐻 ) > 0. Call the resulting hypergraph 𝐻 ′

0 = (𝑉 , E′
0). Clearly 𝐻 ′

0 is simple
and has at least one hyperedge.

Choose an arbitrary hyperedge 𝑒 ∈ E′
0. Let 𝑆 ⊆ 𝑒 be the set of vertices with non-zero degree in

𝐻 ′
0 − 𝑒 . If 𝑆 = ∅, then 𝑒 is disconnected from the rest of the graph. Thus as 𝐻 ′

0 is not 𝑞-colourable,
removing 𝑒 would not make the hypergraph 𝑞-colourable. This contradicts to the minimality of𝐻 ′

0 and
thus 𝑆 ≠ ∅. Denote the vertices in 𝑆 by 𝑣1, . . . , 𝑣𝑖 , and the vertices in 𝑒 \ 𝑆 by 𝑣𝑖+1, . . . , 𝑣𝐾 . We construct
𝑖 simple hypergraphs 𝐻1, . . . , 𝐻𝑖 where for 1 ≤ 𝑗 ≤ 𝑖 , in 𝐻 𝑗 we introduce new vertices 𝑢1, . . . , 𝑢 𝑗 and
replace the hyperedge 𝑒 by 𝑒 𝑗 := {𝑢1, . . . , 𝑢 𝑗 , 𝑣 𝑗+1, . . . , 𝑣𝐾 }. By minimality of 𝐻 ′

0 again, 𝑍𝑐𝑜𝑙 (𝐻𝑖) > 0 as
𝑒𝑖 is disconnected from the rest of 𝐻𝑖 . Thus we can find the smallest 𝑗 ≥ 1 such that 𝑍𝑐𝑜𝑙 (𝐻 𝑗 ) > 0 and
𝑍𝑐𝑜𝑙 (𝐻 𝑗−1) = 0 (or 𝑍𝑐𝑜𝑙 (𝐻 ′

0) = 0 if 𝑗 = 1). For any proper colouring 𝜎 of 𝐻 𝑗 , if 𝜎 (𝑢 𝑗 ) = 𝜎 (𝑣 𝑗 ), 𝜎 would
be a proper colouring of 𝐻 𝑗−1, contradicting to the above. Thus it must hold that for any colouring 𝜎
of 𝐻 𝑗 , 𝜎 (𝑢 𝑗 ) ≠ 𝜎 (𝑣 𝑗 ). This is the hypergraph required by the lemma, with 𝑢 = 𝑢 𝑗 and 𝑣 = 𝑣 𝑗 . Moreover,
the degree of 𝑢 𝑗 is 1, and the degree of 𝑣 𝑗 is at most Δ. □

Lemma 2.1 leads to the following hardness result, where we lose a factor 2𝑞 in the degree bound
due to the reduction. We note that for 𝑞 = 2, 𝐾 = 3, Δ = 4, and simple hypergraphs, NP-hardness
is known [DD20]. However, the main point of the next theorem is that there is a degree bound that
scales roughly as 𝑞𝐾 and makes the problem NP-hard.

Theorem 2.2. Let 𝑞, 𝐾 ≥ 2 be integers with (𝑞, 𝐾) ≠ (2, 2). Then, it is NP-hard to find a 𝑞-colouring on
a 𝐾-uniform simple hypergraph of maximum degree at most Δ, when Δ ≥ 2𝐾𝑞𝐾 ln𝑞 + 2𝑞.

Proof. For 𝑞 > 2, we reduce from the problem of finding 𝑞-colourings in graphs whose degrees are
bounded by 2𝑞. The latter problem is shown to be NP-hard by [EHK98]. Given a graph 𝐺 , we replace
each edge (𝑢, 𝑣) of 𝐺 by the hypergraph in Lemma 2.1, where 𝑢 and 𝑣 are identified with the special
vertices in the hypergraph. Then each such hypergraph is effectively a disequality for the colours of
𝑢 and 𝑣 . Call the resulting hypergraph 𝐻 . Thus 𝐺 is 𝑞-colourable if and only if 𝐻 is 𝑞-colourable. The
maximum degree of 𝐻 is 2𝑞(𝐾𝑞𝐾−1 ln𝑞 + 1).

For 𝑞 = 2 and 𝐾 > 2, using two copies of the hypergraph from Lemma 2.1, we build an “equality”
gadget, i.e., a simple hypergraph 𝐻 of maximum degree Δ ≤ 2(𝐾𝑞𝐾−1 ln𝑞 + 1) = 𝐾2𝐾 ln 2 + 2 with
distinct vertices 𝑢, 𝑣 which both have degree 1 such that for every 𝑞-colouring 𝜎 it holds that 𝜎 (𝑢) =
𝜎 (𝑣). It is well-known that finding 2-colourings of 𝐾-uniform simple hypergraphs is NP-hard (or we
can use for example [DD20]), and using the equality gadget𝐻 , for any𝐾-uniform simple hypergraph 𝐹 ,
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we can construct a 𝐾-uniform simple hypergraph 𝐹 ′ of maximum degree Δ such that 𝐹 is 2-colourable
if and only if 𝐹 ′ is 2-colourable. One possible way to do so is replacing each degree-𝑑 vertex𝑤 of 𝐹 with
a cycle of length 𝑑 and then replacing each edge 𝑒 of the cycle with a distinct copy of the hypergraph
𝐻 using 𝑢, 𝑣 for the endpoints of the edge 𝑒; then, for each hyperedge of 𝐹 that uses 𝑤 , in 𝐹 ′ we use
instead one of the 𝑑 vertices of the cycle. □

Note that the result of Frieze and Mubayi [FM13] is also algorithmic. Thus Theorem 2.2 is sharp for
simple hypergraphs up to a factor 𝑐𝑞 where 𝑐 = 𝑐 (𝐾) is a constant depending only on 𝐾 . For general
hypergraphs, the algorithm of Moser and Tardos [MT10] applies in this setting when Δ ≤ 𝑞𝐾−1

𝑒 (𝐾−1) , in
which case Theorem 2.2 almost matches the algorithmic result, up to a factor of 𝑐𝐾2𝑞 ln𝑞 where 𝑐 is a
constant.

For approximate counting, we can avoid the loss of the factor 𝑞 when 𝑞 ≥ 2 and 𝐾 ≥ 4. For a 𝑞-by-𝑞
matrix 𝑩 = {𝐵𝑖 𝑗 }𝑖, 𝑗∈[𝑞 ] , the partition function for the 𝑞-spin system with interaction matrix 𝐵 in a
graph 𝐺 = (𝑉 , 𝐸) is given by

𝑍𝐵 (𝐺) :=
∑

𝜎 :𝑉→{1,...,𝑞}
wt(𝜎),(4)

where wt(𝜎) :=
∏

(𝑢,𝑣) ∈𝐸 𝐵𝜎 (𝑢 )𝜎 (𝑣) is the weight of an assignment 𝜎 : 𝑉 → {1, . . . , 𝑞} of the 𝑞 spins
to the vertices of 𝐺 . In particular, the 𝑞-state antiferromagnetic Potts model corresponds to the case
where 𝑩 is the matrix whose off-diagonal entries are equal to 1, whereas the diagonal entries equal to
some parameter 𝐵 < 1 (note, 𝐵 = 0 corresponds to 𝑞-colourings).

Wewill use the following hardness result about the Pottsmodel. A fully polynomial-time randomized
approximation scheme (FPRAS) is an algorithm that takes the accuracy 𝜀 as an extra input, outputs an
𝜀-approximation, and runs in time polynomially bounded by both the instance size and 1/𝜀.

Lemma 2.3. There is a constant 𝐶1 > 5 such that, for any integers 𝑞 ≥ 2, Δ ≥ 2𝐶1𝑞 ln𝑞, and 𝐵 <

1 − 𝐶1𝑞 ln𝑞
Δ , there is no FPRAS to approximate the 𝑞-state antiferromagnetic Potts partition function 𝑍𝐵 in

graphs with bounded degree Δ, unless NP = RP.

The proof of Lemma 2.3 is quite a detour from the problems we focus on, so we postpone it to
Section 5.1. We note that Lemma 2.3 is weaker than the inapproximability result in [GŠV15, Theorem
1.2], which achieves 𝐵 < 1 − 𝑞

Δ but only holds for even 𝑞. We want to deal with general 𝑞, and thus
settle with this weaker version.

Theorem 2.4. There is a constant𝐶1 > 5 such that, for any integers 𝑞 ≥ 2, 𝐾 ≥ 4, and Δ ≥ 𝐶1𝐾𝑞
𝐾−1 ln𝑞,

unless NP = RP, there is no FPRAS for the number of 𝑞-colourings in 𝐾-uniform simple hypergraphs of
maximum degree at most Δ.

Proof. We reduce the partition function of the 𝑞-state antiferromagnetic Potts model with 𝐵 = 1 −
1

𝑞2−3𝑞+3 in graphs with bounded degree Δ to the problem of counting 𝑞-colourings in𝐾-uniform simple
hypergraphs of maximum degree at most Δ. Note that if 𝐾 ≥ 4 and Δ ≥ 𝐶1𝐾𝑞

𝐾−1 ln𝑞, where 𝐶1 is
from Lemma 2.3, then 𝐵 < 1 − 𝐶1𝑞 ln𝑞

Δ . Thus the reduction implies the theorem via Lemma 2.3.
The reduction goes as follows. For each edge (𝑢, 𝑣) in a Δ-regular graph𝐺 = (𝑉 , 𝐸), we replace it by

a gadget using the hypergraph𝐻 in Lemma 2.1, whose degree bound is Δ0 = 𝐾𝑞𝐾−1 ln𝑞+1. To be more
specific, we introduce new vertices𝑤1 and 𝑤2. We add three copies of the hypergraph 𝐻 with special
vertices (𝑢,𝑤1), (𝑤2,𝑤1), and (𝑣,𝑤2), respectively. Do this for all edges in 𝐺 . Then, the degrees of 𝑢
and 𝑣 are still Δ, the degrees of𝑤1’s are at most 2Δ0 < Δ, and the degrees of𝑤2’s are at most Δ0+1 < Δ.
All other newly introduced vertices have degrees at most Δ0 < Δ. Thus, the degree requirement is met.
Call the resulting hypergraph 𝐻𝐺 .

To finish the reduction, we claim that
𝑍𝑐𝑜𝑙 (𝐻𝐺 ) = 𝐶 |𝐸 |𝑍𝐵 (𝐺),

where 𝐶 is a constant depending only on 𝐻 . First notice that for any pair of colours 𝑖 and 𝑗 , the
number of colourings 𝜎 of 𝐻 such that 𝜎 (𝑢) = 𝑖 and 𝜎 (𝑣) = 𝑗 is a constant, due to the symmetry
among colours. Denote this constant by 𝐶0. Thus, in the gadget above, when the two endpoints 𝑢 and
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𝑣 have different colours, the number of possible colourings for the gadget is ((𝑞−2)2+ (𝑞−1))𝐶3
0 ; when

the two endpoints 𝑢 and 𝑣 have the same colour, the number of possible colourings for the gadget is
(𝑞 − 1)(𝑞 − 2)𝐶3

0 . The claim holds with 𝐶 = ((𝑞 − 2)2 + (𝑞 − 1))𝐶3
0 . □

InTheorem 2.4, we could avoid the large constant𝐶1 in the degree bound by using [GŠV15,Theorem
1.2] as the starting point of our reduction, but doing so will restrict the result to even 𝑞 only.

For 𝐾-CNFs on simple hypergraphs, Hermon, Sly, and Zhang [HSZ19] showed an efficient approx-
imate counting and sampling algorithm if Δ ≤ 𝑐2𝐾

𝐾2 , where 𝑐 is a constant. In view of their result,
Theorem 2.2 and Theorem 2.4 are potentially sharp for simple hypergraphs, up to some polynomial
factor in 𝐾 .

3. Refined inappRoximability foR appRoximate counting

In this section we show our main theorem, Theorem 1.1, namely a refined inapproximability result
for counting. As mentioned earlier, we will do this by first relating it to a multi-spin system on graphs
with “antiferromagnetic” interaction matrix 𝑩, and then establishing inapproximability results. It is
tempting to pursue a strategy similar to that of Lemma 2.3 to show hardness for the spin system
defined by 𝑩. However, that strategy relies on hardness of finding the maximum weight configuration,
and somewhat surprisingly, as we shall see soon, that problem for 𝑩 is trivial. Instead, we need sharper
tools from [GŠV15].

To define the spin system on graphs we will be interested in, we only need to specify its interaction
matrix 𝑩 (recall (4)). We use [𝑞] to denote {1, . . . , 𝑞} and [𝑞] to denote {0, 1, . . . , 𝑞} . Let 𝑡 := (𝑞𝑘 −𝑞)1/Δ,
where 𝑘 := 𝐾/2, and 𝑩 = {𝐵𝑖 𝑗 }𝑖, 𝑗∈[𝑞 ] be the matrix with block form

𝑩 =

[
𝑡2 𝑡1T

𝑡1 𝑱

]
,(5)

where 𝑱 is the 𝑞 × 𝑞 matrix with 0s on the diagonal and 1s elsewhere, and 1 is the 𝑞 × 1 vector with all
ones. In the language of [GŠV15], the matrix 𝑩 is antiferromagnetic and ergodic.5

Let 𝐻 be a 𝐾-uniform hypergraph, where 𝐾 = 2𝑘 is even, and recall that we use 𝑍𝑐𝑜𝑙 (𝐻 ) to denote
the number of proper 𝑞-colourings of 𝐻 . For any given Δ-regular graph 𝐺 = (𝑉 , 𝐸), let 𝐻𝐺 be the
hypergraph where every vertex 𝑣 ∈ 𝑉 is replaced by 𝑘 new vertices 𝑣1, . . . , 𝑣𝑘 , and each edge (𝑢, 𝑣) is
replaced by a hyperedge {𝑢1, . . . , 𝑢𝑘 , 𝑣1, . . . , 𝑣𝑘 } of size 2𝑘 . Then 𝐻𝐺 is 2𝑘-uniform and Δ-regular. This
construction has been used in [BGG+19], and yields the following lemma in our case.

Lemma 3.1. Let 𝐺 = (𝑉 , 𝐸) be a Δ-regular graph, and 𝐻𝐺 = (𝑉 ′, 𝐸′) be the 2𝑘-uniform hypergraph
constructed as above. Then, 𝑍𝑩 (𝐺) = 𝑍𝑐𝑜𝑙 (𝐻𝐺 ).

Proof. Let Ω𝑩 be the set of all assignments 𝜎 of 𝐺 whose weights are non-zero. Let Ω𝑐𝑜𝑙 be the set of
all proper 𝑞-colourings 𝜏 of 𝐻 . We will construct a surjective mapping 𝜑 between Ω𝑐𝑜𝑙 and Ω𝐵 , such
that for any 𝜎 ,

��𝜑−1(𝜎)
�� = wt(𝜎). This implies the lemma.

The mapping 𝜑 is as follows. Given 𝜏 : 𝑉 ′ → {1, 2, . . . , 𝑞}, let

𝜑 (𝜏) (𝑣) :=
{
𝑖 if 𝜏 (𝑣1) = 𝜏 (𝑣2) = · · · = 𝜏 (𝑣𝑘 ) = 𝑖 for some 1 ≤ 𝑖 ≤ 𝑞,
0 otherwise.

We first show that 𝜑 is surjective. Let 𝜎 ∈ Ω𝐵 and we construct 𝜏 ∈ Ω𝑐𝑜𝑙 such that 𝜑 (𝜏) = 𝜎 . For any 𝑣
such that 𝜎 (𝑣) ≠ 0, 𝜏 (𝑣𝑖) = 𝜎 (𝑣) for any 1 ≤ 𝑖 ≤ 𝑘 . If 𝜎 (𝑣) = 0, then let 𝜏 (𝑣𝑖) = 1 for any 1 ≤ 𝑖 ≤ 𝑘 − 1,
and 𝜏 (𝑣𝑘 ) = 2. It is easy to verify that 𝜏 is a proper 𝑞-colouring and 𝜑 (𝜏) = 𝜎 for this construction.

Next we calculate
��𝜑−1(𝜎)

��. Let 𝑛0(𝜎) be the number of vertices assigned 0 under 𝜎 . Then��𝜑−1(𝜎)
�� = (

𝑞𝑘 − 𝑞
)𝑛0 (𝜎 )

.

5Antiferromagnetism amounts to checking that 𝑩 has all but one of its eigenvalues negative; it is not hard to see that 𝑩
has −1 as an eigenvalue by multiplicity 𝑞 − 1, and therefore using trace/determinant we see that the other two eigenvalues
have sum equal to 𝑞 − 1 + 𝑡2 and product −𝑡2. Ergodicity amounts to the fact that 𝑩 is irreducible and aperiodic.
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On the other hand, since 𝐺 is Δ-regular,

wt(𝜎) = 𝑡Δ𝑛0 (𝜎 ) =
(
𝑞𝑘 − 𝑞

)𝑛0 (𝜎 )
=

��𝜑−1(𝜎)
�� ,

which verifies the properties of 𝜑 . □

Remark 3.2. For odd 𝐾 , we may consider a similar construction, but in addition to clustering half of
each hyperedge as a single vertex, we leave one vertex in the middle which appears only in this single
hyperedge. The resulting spin system would have a different matrix 𝑩′, but the difference between 𝑩′

and the current 𝑩 is not too much in the sense that the zeros would be replaced by small constants. We
expect that we may obtain a hardness result for 𝑩′ for Δ of a similar order. However, since the details
are already getting very complicated, we will only handle 𝑩 in the rest of this paper.

Given Lemma 3.1, all we need to show is that the spin system with interaction matrix 𝑩 is hard to
approximate on Δ-regular graphs, with Δ in the desired range. For this, we will use a result by Galanis,
Vigoda, and Štefankovič [GŠV15, Theorem 1.5] which gives a sufficient condition in terms of studying
a certain function (that can be formulated in terms of an induced norm of 𝑩). Note that since 𝑡 > 1 the
corresponding optimization problem related to 𝑩 is trivial. Thus, we cannot use a strategy similar to
that of Lemma 2.3 to show hardness for the spin system defined by 𝑩.

The main construction in the gadget to show the hardness is the bipartite random Δ-regular graph.
Let (𝜶 , 𝜷) be a pair of vectors such that for 𝑖 ∈ [𝑞], 𝛼𝑖 and 𝛽𝑖 denotes the fraction of vertices with colour
𝑖 on the left and right sides of the bipartite random regular graph. If we draw a sample 𝜎 proportional
to its weight wt(𝜎), then with high probability over the choice of the random graph, the fraction of
colours (𝜶 , 𝜷) will be from one of the dominant phases, for all but an exponentially small probability.
Analyzing these dominant phases lies in the heart of [GŠV15, Theorem 1.5].

Let G𝑛 denote the family of Δ-regular bipartite graphs with 𝑛 vertices on each side. For a bipartite
graph𝐺 uniformly drawn fromG𝑛 and probability vectors𝜶 = {𝛼𝑖}𝑖∈[𝑞 ], 𝜷 = {𝛽𝑖}𝑖∈[𝑞 ] , we use𝑍𝜶 ,𝜷

𝑩 (𝐺)
to denote the total weights of assignments whose fractions of colours on the two sides are given by
𝜶 , 𝜷 respectively. Consider the function Ψ1 that captures the exponential growth of the expectation of
𝑍
𝜶 ,𝜷
𝑩 (𝐺), i.e.,

(6) Ψ1(𝜶 , 𝜷) := lim
𝑛→∞

1
𝑛
logEG𝑛 [𝑍

𝜶 ,𝜷
𝑩 (𝐺)] .

The function Ψ1 has a relatively explicit form (see [GŠV15, Section 2]) using entropy-style functions
though the exact details are not going to be important and we will in fact use a surrogate function later
on (see Section 4).

Before stating the main result of [GŠV15], we need some further terminology. A dominant phase
(𝜶 , 𝜷) is a maximizer of the function Ψ1(𝜶 , 𝜷) and captures the most likely configurations for the
spin system with interaction matrix on a random Δ-regular graph. A dominant phase is called Hessian
dominant if the Hessian of Ψ1 is negative definite. Finally, two dominant phases (𝜶1, 𝜷1) and (𝜶2, 𝜷2)
are permutation symmetric if there is a permutation matrix 𝑷 such that 𝑩 = 𝑷𝑩𝑷T and (𝜶1, 𝜷1) =
(𝑷𝜶2, 𝑷𝜷2) or (𝜶1, 𝜷1) = (𝑷𝜷2, 𝑷𝜶2). Now we can state [GŠV15, Theorem 1.5].6

Proposition 3.3 ([GŠV15]). Let Δ ≥ 3 be an integer, and suppose that 𝑩 is an ergodic interaction matrix
of an antiferromagnetic spin system. Suppose further that the dominant phases (𝜶 , 𝜷) satisfy 𝜶 ≠ 𝜷 , are
permutation symmetric and Hessian dominant. Then, it is NP-hard to approximate the partition function
𝑍𝑩 (𝐺) on 𝑛-vertex triangle-free Δ-regular graphs𝐺 , even within a factor of 2𝑐𝑛 for a constant 𝑐 (𝑩,Δ) > 0.

The key ingredient in the conditions of Proposition 3.3 is the condition that 𝜶 ≠ 𝜷 ; this enables a
reduction in [GŠV15] to theMax-Cut problem; the Hessian dominance and the permutation symmetry
condition are more on the technical side, but is one of the main reasons that complicates the overall
arguments (this was already prevalent in [GŠV15]).

The main challenge to show our inapproximability results is to establish the conditions of Proposi-
tion 3.3 for 𝑩 and the relevant range for Δ, which is the scope of the following lemma.

6Technically, [GŠV15, Theorem 1.5] demands the assumption NP ≠ RP but that is merely to exclude randomised algo-
rithms, the reduction itself is deterministic.
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Lemma 3.4. Let 𝑞 ≥ 4 be even, 𝑘 ≥ 2, and Δ = 5𝑞𝑘 + 1. Then the dominant phases of the spin system
with interaction matrix 𝑩 (defined in (5)) satisfy the conditions of Proposition 3.3.

Theorem 1.1 follows from Lemma 3.1, Proposition 3.3, and Lemma 3.4. It remains to analyse the
dominant phases of 𝑩 and establish Lemma 3.4, which is the focus of Section 4.

4. Analysis of the dominant phases

In this section we analyze the dominant phase. We will state the main lemmas in this section and
in Section 4.1. However, because the calculations are often very heavy, many of the lemmas are not
immediately proved. The sections in which their proofs appear can be found in Table 1 at the end of
Section 4.1.

Let 𝑞,Δ ≥ 3 be integers. To prove Lemma 3.4, we need to analyse the function Ψ1 from (6). The
function Ψ1 turns out to be inconvenient to work with, but there is a simpler surrogate function Φ
from [GŠV15] that we can use. For vectors 𝒓 = {𝑅𝑖}𝑖∈[𝑞 ] and 𝒄 = {𝐶𝑖}𝑖∈[𝑞 ] with nonnegative entries,
let

(7) Φ(𝒓 , 𝒄) := Δ ln
𝒓T𝑩𝒄

∥𝒓 ∥𝑝 ∥𝒄 ∥𝑝
, where 𝑝 = Δ/(Δ − 1) .

It is not hard to see that for the matrix 𝑩 defined in (5), the critical points of Φ satisfy the following
equations:7

(8)

𝑅0 ∝ 𝑡𝑑
(
𝑡𝐶0 +

∑
𝑗∈[𝑞 ];𝑗≠𝑖

𝐶𝑖
)𝑑
, 𝑅𝑖 ∝

(
𝑡𝐶0 +

∑
𝑗∈[𝑞 ];𝑗≠𝑖

𝐶𝑖
)𝑑

for 𝑖 ∈ [𝑞];

𝐶0 ∝ 𝑡𝑑
(
𝑡𝑅0 +

∑
𝑖∈[𝑞 ];𝑖≠𝑗

𝑅𝑖
)𝑑
, 𝐶 𝑗 ∝

(
𝑡𝑅0 +

∑
𝑖∈[𝑞 ];𝑖≠𝑗

𝑅𝑖
)𝑑

for 𝑗 ∈ [𝑞],

where 𝑡 = (𝑞𝑘 − 𝑞)1/Δ and 𝑑 := Δ − 1. The equations in (8) are often called the “tree recursions”,
because they are the same as the recursion for marginal probabilities on an infinite 𝑑-ary tree. Note
that 1 ≤ 𝑡 ≤ 1.0312 for any 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 5𝑞𝑘 . The connection between the functions Ψ1 and Φ
is detailed in the following result from [GŠV15], applied to our setting.
Proposition 4.1 ([GŠV15, Theorem 4.1]). Let 𝑞,Δ ≥ 3 be integers, and let 𝑝 = Δ/(Δ − 1). Then, the
local maxima of Φ and Ψ1 happen at critical points, i.e., there are no local maxima on the boundary. The
transformation (𝒓 , 𝒄) ↦→ (𝜶 , 𝜷) given by 𝛼𝑖 = 𝑅

𝑝
𝑖 /∥𝒓 ∥

𝑝
𝑝 and 𝛽𝑖 = 𝐶

𝑝
𝑗 /∥𝒄 ∥

𝑝
𝑝 for 𝑖 ∈ [𝑞] yields a one-to-one

correspondence between the critical points of Φ and Ψ1. Moreover, for the corresponding critical points
(𝒓 , 𝒄) and (𝜶 , 𝜷) it holds that Ψ1(𝜶 , 𝜷) = Φ(𝒓 , 𝒄).

The function Φ is still multi-dimensional (2𝑞), but fortunately we can reduce its dimensions signifi-
cantly down to 11 by studying the structure of fixpoints to the system (8). A first observation is that
𝑅𝑖 < 𝑅 𝑗 implies 𝐶𝑖 > 𝐶 𝑗 , and 𝑅𝑖 = 𝑅 𝑗 implies 𝐶𝑖 = 𝐶 𝑗 , where 𝑖, 𝑗 ≠ 0. The next lemma is similar to
[GŠV15, Lemma 7.6].
Lemma 4.2. Let (𝑅0, 𝑅1, · · · , 𝑅𝑞,𝐶0,𝐶1, · · · ,𝐶𝑞) be a positive fixpoint of (8). Then the number of distinct
values in {𝑅𝑖}1≤𝑖≤𝑞 and {𝐶𝑖}1≤𝑖≤𝑞 is at most 3.

Proof. Let𝑅 :=
∑𝑞
𝑖=1 𝑅𝑖 and𝐶 :=

∑𝑞
𝑖=1𝐶𝑖 . Suppose all variables are normalized so that𝑅0+𝑅 = 𝐶0+𝐶 = 1.

Then for any 𝑖 ∈ [𝑞], we have that
𝑅𝑖
𝑅0

= 𝑡−𝑑
( (𝑡 − 1)𝐶0 + 1 −𝐶𝑖

(𝑡 − 1)𝐶0 + 1

)𝑑
= 𝑡−𝑑

( (𝑡 − 1) +𝐶−1
0 −𝐶𝑖/𝐶0

(𝑡 − 1) +𝐶−1
0

)𝑑
= 𝑡−𝑑

(
1 − 1

𝑡𝑑𝐶′

(
1 − 𝑅𝑖

𝑅0𝑅′

)𝑑 )𝑑
,

where 𝐶′ = (𝑡 − 1) +𝐶−1
0 and 𝑅′ = (𝑡 − 1) + 𝑅−1

0 . Let 𝑥 = (𝑅𝑖/𝑅0)1/𝑑 and note that 𝑥 ∈ [0, 1]. Then the
above equation becomes 𝑓 (𝑥) = 0, where 𝑓 (𝑥) := 𝑡−1

(
1 − 1

𝑡𝑑𝐶′
(
1 − 𝑥𝑑

𝑅′
)𝑑 ) − 𝑥 . We have that

𝑓 ′(𝑥) := (𝑔(𝑥))𝑑−1 − 1, where 𝑔(𝑥) :=
(

𝑑2

𝑡𝑑+1𝑅′𝐶′

)1/(𝑑−1) (
1 − 𝑥𝑑

𝑅′

)
𝑥 .

7Here, and elsewhere, we use the notation 𝑥𝑖 ∝ 𝑦𝑖 for 𝑖 ∈ [𝑞] to denote that 𝑥𝑖 = 𝐴𝑦𝑖 for 𝑖 ∈ [𝑞], for some arbitrary 𝐴.
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Note that𝑔(𝑥) > 0 on the interval [0, 1] because 𝑥𝑑 = 𝑅𝑖
𝑅0

< (𝑡−1)+𝑅−1
0 = 𝑅′. Using that (𝑔(𝑥))𝑑−1−1 =

(𝑔(𝑥) − 1)(𝑔(𝑥)𝑑−2 + . . . + 1), we therefore obtain that the roots of 𝑓 ′(𝑥) = 0 can only come from the
roots of 𝑔(𝑥) − 1, which has at most two roots by the Descartes’ rule of signs. Hence 𝑓 ′(𝑥) changes its
sign at most twice in the interval of [0, 1] and 𝑓 (𝑥) has at most 3 roots over [0, 1], showing that the
𝑅𝑖 ’s for 𝑖 ∈ [𝑞] can only be supported on three different values. The statement for the 𝐶𝑖 ’s follows by
an analogous argument. □

The above lemma motivates the following definition.

Definition 4.3. Let (𝑅0, 𝑅1, · · · , 𝑅𝑞,𝐶0,𝐶1, · · · ,𝐶𝑞) be a positive fixpoint. We call the fixpoint𝑚-supported,
if the number of distinct values in {𝑅𝑖}1≤𝑖≤𝑞 is𝑚, where𝑚 ∈ {1, 2, 3}. We call the fixpoint is of type
(𝑞1, 𝑞2, 𝑞3) where 𝑞1 + 𝑞2 + 𝑞3 = 𝑞, if the multiplicities of different numbers in {𝑅𝑖}1≤𝑖≤𝑞 are 𝑞1, 𝑞2, 𝑞3
respectively.8 In case that the fixpoint is 2 or 1-supported, let one or two of 𝑞𝑖 ’s take zero respectively.

From now on we may also abuse the notation 𝑅𝑖 (also𝐶𝑖 , 𝑖 = 1, 2, 3) by absorbing all the same values,
and hence 𝑅1 stands for the value that 𝑞1 of 𝑅’s (except 𝑅0) take, rather than the value of 𝑅 on the first
index in the fixpoint.

The main lemma of this section can be stated as follows.

Lemma 4.4. Suppose 𝑞 ≥ 4 is even, 𝑘 ≥ 2 and 𝑑 = 5𝑞𝑘 . The maximum of Ψ1 over (𝑞1, 𝑞2, 𝑞3)-type
fixpoints is attained uniquely, when (𝑞1, 𝑞2, 𝑞3) = (𝑞/2, 𝑞/2, 0).

We also need to prove that 2-maximal triples (𝑞/2, 𝑞/2, 0) yield unique r and c (up to scaling and
permutation), and that the corresponding maxima are Hessian dominant.

Lemma 4.5. Suppose 𝑞 ≥ 4 is even, 𝑘 ≥ 2 and 𝑑 ≥ 5𝑞𝑘 . The fixpoints of type (𝑞/2, 𝑞/2, 0) are unique up
to scaling and permutation symmetric. In addition, they are Hessian dominant maxima of Ψ1.

Lemma 3.4 follows immediately by combining Lemmas 4.4 and 4.5.

4.1. Restricting to three values. In order to prove Lemma 4.4, we need to determine which type of
fixpoints maximizes Ψ1. By using Proposition 4.1, the value of Ψ1 corresponding to such a fixpoint in
(8) can be given by the matrix norm (7), which can be seen to be equal to

(9)

Φ𝑆 (q, r, c) :=

(𝑑 + 1) ln
(
𝑅0𝐶0𝑡

2 +
(∑3

𝑖=1 𝑞𝑖𝑅𝑖
)
𝐶0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
𝑅0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝑅𝑖

) (∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
−

(∑3
𝑖=1 𝑞𝑖𝑅𝑖𝐶𝑖

) )
− 𝑑 ln

(
𝑅 (𝑑+1)/𝑑
0 + ∑3

𝑖=1 𝑞𝑖𝑅
(𝑑+1)/𝑑
𝑖

)
− 𝑑 ln

(
𝐶 (𝑑+1)/𝑑
0 + ∑3

𝑖=1 𝑞𝑖𝐶
(𝑑+1)/𝑑
𝑖

)
.

Where we define the vector r = (𝑅0, 𝑅1, 𝑅2, 𝑅3) and c = (𝐶0,𝐶1,𝐶2,𝐶3). It is worth noting that this
function is scale-free with respect to r and c, as this property will be used intensively in our later
proofs.

The discrete optimization of (9) over all fixpoints of the tree recursion (8) is difficult to cope with.
Instead, we then try to maximize (9) over all nonnegative q and

∑3
𝑖=1 𝑞𝑖 = 𝑞, wishing the maximum to

be taken at integer q. This is the main reason such approach can only deal with even 𝑞.
For all q = (𝑞1, 𝑞2, 𝑞3) with 𝑞1 + 𝑞2 + 𝑞3 = 𝑞, 𝑞𝑖 ≥ 0, define

(10) Φ(q) := max
r,c

Φ𝑆 (q, r, c)

where the maximum is taken over r = (𝑅0, 𝑅1, 𝑅2, 𝑅3), c = (𝐶0,𝐶1,𝐶2,𝐶3) satisfying

(11)
𝑅0𝐶0𝑡

2 +
(∑3

𝑖=1 𝑞𝑖𝑅𝑖
)
𝐶0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
𝑅0𝑡 +

(∑3
𝑖=1 𝑞𝑖𝑅𝑖

) (∑3
𝑖=1 𝑞𝑖𝐶𝑖

)
−

(∑3
𝑖=1 𝑞𝑖𝑅𝑖𝐶𝑖

)
> 0,

𝑅𝑖 ,𝐶𝑖 ≥ 0, 𝑖 = 0, 1, 2, 3.

Our first step is to verify the maximum in (10) is well defined, and moreover, the maximum in
maxq Φ(q) can also be taken. This is formalized by the next lemma.

8Any permutation over 𝑞1, 𝑞2, 𝑞3 is considered equivalent. E.g., (𝑞/2, 𝑞/2, 0) and (𝑞/2, 0, 𝑞/2) are regarded as the same
type.
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Lemma 4.6 ([GŠV15, Lemma 7.10]). The maximum in (10) is well-defined. In addition, maxq Φ(q) can
be attained in the region where 𝑞1 + 𝑞2 + 𝑞3 = 𝑞, 𝑞𝑖 ≥ 0.

Proof. The argument is verbatim the same as in [GŠV15], the only difference is that the function has
slightly different form, but still accounts for the relevant parameters 𝑞1, 𝑞2, 𝑞3. □

The next trouble we may encounter later is that we are now dealing with all possible r, c conditioned
on (11), instead of just fixpoints of (8). The good news is that, in contrast to [GŠV15], we can rule out
fairly easily that the maximizer in (10) is at the boundary.

Lemma 4.7. For all triples 𝒒 = (𝑞1, 𝑞2, 𝑞3), any maximizer in (10) satisfies (a) 𝑅0,𝐶0 > 0, (b) for any 𝑖
such that 𝑞𝑖 > 0, it holds that 𝑅𝑖 ,𝐶𝑖 > 0, and (c) for distinct 𝑖, 𝑗 such that 𝑞𝑖 , 𝑞 𝑗 > 0, it holds that 𝑅𝑖 = 𝑅 𝑗
if and only if 𝐶𝑖 = 𝐶 𝑗 .

The problem in [GŠV15] that also appears in our setting is that it might be that 𝑞𝑖 , 𝑞 𝑗 > 0, but 𝑅𝑖 = 𝑅 𝑗
and 𝐶𝑖 = 𝐶 𝑗 . For example, imagine we are now strengthening the restriction (11) by adding 𝑅1 = 𝑅2
and 𝐶1 = 𝐶2. Then Φ(𝑞1 + 𝑞2, 0, 𝑞3) ≤ Φ(𝑞1, 𝑞2, 𝑞3). Such degenerate case makes it difficult to compare
between different q triples because the equality can be taken. This motivates the next definition.

Definition 4.8. Let𝑚 = 2, 3. A triple q is called𝑚-maximal, if exactly𝑚 𝑞𝑖 ’s in q are non-zero, and
there exists r, cmaximizing (10) such that, 𝑞𝑖 , 𝑞 𝑗 > 0 and 𝑖 ≠ 𝑗 imply that 𝑅𝑖 ≠ 𝑅 𝑗 and𝐶𝑖 ≠ 𝐶 𝑗 . We also
call q maximal if it is either 2- or 3-maximal.

Now we connect𝑚-maximal triples with fixpoints in (8).

Lemma 4.9. Suppose a triple q is𝑚-maximal. Then there exists r, c achieving the maximum in (10) and
specifying an𝑚-supported fixpoint of tree recursion (8) of type q.

For 2 and 3-maximal triples, the key is the next lemma.

Lemma 4.10. Suppose 𝑞 ≥ 4 is even. Then the following statements hold:
(a) There does not exist any 3-maximal triple that maximizes (10).
(b) The only possibility of a 2-maximal triple to maximize (10) is (𝑞/2, 𝑞/2, 0) or its permutations,

with 𝑅𝑖/𝑅 𝑗 = 𝐶 𝑗/𝐶𝑖 , where 𝑖 ≠ 𝑗 are the two indices such that 𝑞𝑖 , 𝑞 𝑗 = 𝑞/2.

The above lemma is not yet enough to finish the proof of Lemma 4.4 because we have to rule out
degenerate cases of all triples, i.e., the triple (𝑞, 0, 0). This is the main difference with the colour-
symmetric setting of [GŠV15]. Instead, we have the special colour corresponding to (𝑅0,𝐶0), which
makes the system behave like a 2-spin system when all “pure” colours take the same fraction. What is
worse is that, it is possible for the 2-spin system to have three fixpoints (two of them being symmetric),
when the tree recursion lies in the so-called “non-uniqueness” region (see Section 4.4). Therefore, we
need to discuss such fixpoints by two different cases.

Before continuing the discussion, let us state another useful result from [GŠV15]. A fixpoint 𝑥 of a
mapping 𝑓 is Jacobian stable if the Jacobian of 𝑓 at 𝑥 has spectral radius less than 1.

Proposition 4.11 ([GŠV15, Theorem 4.2]). A fixpoint of the tree recursion (8) is Jacobian stable if and
only if it corresponds to a Hessian dominant local maximum of Ψ1.

The first kind of fixpoints satisfy 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. As stated in the next lemma, such a fixpoint is
Jacobian stable, and hence it is a possible candidate to be the maximizer in maxq Φ(q). Though the
proof of stability is not necessary for our main theorem, we still leave it here for future references.

Lemma 4.12. Suppose𝑑 ≥ 5𝑞𝑘 . The fixpoint corresponding to triple (𝑞, 0, 0) and 𝑅0/𝑅1 ≠ 𝐶0/𝐶1 is unique
up to scaling and swapping 𝑅 and 𝐶 . Moreover, it is Jacobian stable.

For the reason above, we can only go through a very detailed calculation to rule out this case. The
equality in 𝑑 = 5𝑞𝑘 from the next lemma is for the sake of simplification in calculation.

Lemma 4.13. Suppose 𝑑 = 5𝑞𝑘 . Any fixpoint corresponding to triple (𝑞, 0, 0) and 𝑅0/𝑅1 ≠ 𝐶0/𝐶1 does
not maximize (10).
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On the other hand, when 𝑅0/𝑅1 = 𝐶0/𝐶1, things become easier as such fixpoints are not Jacobian
stable. Thus, by Proposition 4.11, these fixpoints do not correspond to local maxima of Ψ1.

Lemma 4.14. Suppose 𝑑 ≥ 5𝑞𝑘 . Any fixpoint corresponding to triple (𝑞, 0, 0) and 𝑅0/𝑅1 = 𝐶0/𝐶1 is
Jacobian unstable.

Now we are ready to prove Lemma 4.4, which given the above ingredients can be done by following
closely a related argument in [GŠV15]. The main complicacy in the proof is that when we find a
maximizer q ofΦ(q), the corresponding r (or c) values are not necessarily distinct. We need to carefully
rule out these degenerate cases.

Proof of Lemma 4.4. Denote𝑀𝐴𝑋 := maxq Φ(q). We first claim that𝑀𝐴𝑋 is attained at q̂ = (𝑞/2, 𝑞/2, 0),
and q̂ is maximal. Assuming the claim, Lemma 4.9 yields that there exist r̂, ĉ with Φ(q̂) = Φ𝑆 (q̂, r̂, ĉ),
specifying a (𝑞/2, 𝑞/2, 0)-type fixpoint of the tree recursion (8). Hence 𝑀𝐴𝑋 = maxΨ1. To show that
q̂ is the unique type of fixpoint achieving the maximum of Ψ1, consider an arbitrary q∗-type fixpoint
achieving the maximum of Ψ1, say (r∗, c∗). Then q∗ must also achieve the maximum in maxq Φ(q). By
Lemma 4.13, q∗ ≠ (𝑞, 0, 0) and hence it is maximal according to Definition 4.8 (using (r∗, c∗) as the
maximizers; Recall Definition 4.3 that 𝑅𝑖 ≠ 𝑅 𝑗 ,𝐶𝑖 ≠ 𝐶 𝑗 for 𝑖 ≠ 𝑗 and 𝑞𝑖 , 𝑞 𝑗 > 0). Therefore we can apply
Lemma 4.10 and obtain that q∗ = q̂.

It remains to prove the claim above. Let q∗ be any maximizer of maxq Φ(q).
(1) q∗ has at least two positive entries. This is a consequence of Lemmas 4.13 and 4.14 (after using

Proposition 4.11).
(2) In case q∗ has exactly two positive entries, then q∗ must be maximal. Otherwise, suppose

q∗ = (𝑞1, 𝑞2, 0) and the maximizer in (10) is achieved at r∗, c∗ where 𝑅1 = 𝑅2 or 𝐶1 = 𝐶2. By
Lemma 4.7 (c), both equalities are true and hence Φ(q∗) = Φ((𝑞, 0, 0)), contradicting item (1).

(3) In case q∗ has exactly two positive entries, it must holds that q∗ = q̂. This is from item (2), and
Lemma 4.10 (b).

(4) If q∗ has all positive entries, then it cannot be 3-maximal. This is from Lemma 4.10 (a).
(5) If q∗ has all positive entries, then Φ(q∗) = Φ(q̂). This can be proved by the following argument.

Let r∗, c∗ be the maximizer corresponding to q∗. By item (4), q∗ is not 3-maximal, and using the
argument of item (2), there exist distinct 𝑖, 𝑗 ≥ 1 such that 𝑅𝑖 = 𝑅 𝑗 and 𝐶𝑖 = 𝐶 𝑗 in r∗, c∗. Let
𝑘 ≥ 1 be the remaining index.
– If 𝑅𝑖 = 𝑅 𝑗 = 𝑅𝑘 , then by Lemma 4.7 (c), 𝐶𝑖 = 𝐶 𝑗 = 𝐶𝑘 , and hence Φ(q∗) = Φ(𝑞, 0, 0),
contradicting item (1).

– If 𝐶𝑖 = 𝐶 𝑗 = 𝐶𝑘 , then by Lemma 4.7 (c), 𝑅𝑖 = 𝑅 𝑗 = 𝑅𝑘 , and hence Φ(q∗) = Φ(𝑞, 0, 0),
contradicting item (1).

– If 𝑅𝑖 ≠ 𝑅𝑘 and𝐶𝑖 ≠ 𝐶𝑘 , we can “merge” the indices 𝑖, 𝑗 to get a new triple q′ := (𝑞𝑖+𝑞 𝑗 , 𝑞𝑘 , 0).
Let 𝒓 ′ := (𝑅0, 𝑅𝑖 , 𝑅𝑘 , 0), 𝒄 ′ := (𝑅0,𝐶𝑖 ,𝐶𝑘 , 0). Then

Φ(q∗) = Φ𝑆 (q∗, r∗, c∗) = Φ𝑆 (q′, r′, c′) ≤ Φ(q′) .

This means that q′ is also a maximizer of maxq Φ(q) since q∗ is a maximizer. However, q′
has exactly two positive entries. Hence by item (3), Φ(q∗) = Φ(q′) = Φ(q̂) .

The above arguments imply that for any maximizer q∗, it holds that Φ(q∗) = Φ(q̂), which means that q̂
is indeed a maximizer. This also indicates all items above apply to q∗ = q̂, and from item (3), we obtain
that q̂ is 2-maximal. This concludes the proof. □

Before diving into the proofs of all the lemmas above, we want to mention the following observation.
The partial derivatives 𝜕Φ𝑆/𝜕𝑞𝑖 , conditioned on r and c achieving the maximum in (10), can be written
as follows. (Note that it applies to all triples q, including non-maximal ones.) Based on these partial
derivatives, we can argue the non-optimality by perturbing 𝑞𝑖 ’s.
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Proposition/Lemma Section

Lemma 4.10 Section 4.2

Lemma 4.5 Section 4.3

Lemma 4.12, Lemma 4.14 Section 4.4

Lemma 4.13 Section 4.5

Lemma 4.9, Lemma 4.15 Section 5.2

Lemma 4.7 Section 5.3

Table 1. The sections where the lemmas are proved

Lemma 4.15. Suppose r, c achieve the maximum in (10). Then for any 𝑖 ∈ {1, 2, 3} such that 𝑞𝑖 > 0, it
holds that

𝜕Φ𝑆

𝜕𝑞𝑖
=

𝑅𝑖𝐶0𝑡 + 𝑅0𝐶𝑖𝑡 + (𝑑 − 1)𝑅𝑖𝐶𝑖 + 𝑅𝑖
(∑3

𝑗=1𝐶 𝑗𝑞 𝑗
)
+𝐶𝑖

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

)
𝑅0𝐶0𝑡2 +

(∑3
𝑗=1𝐶 𝑗𝑞 𝑗

)
𝑅0𝑡 +

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

)
𝐶0𝑡 +

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

) (∑3
𝑗=1𝐶 𝑗𝑞 𝑗

)
−

(∑3
𝑗=1 𝑅 𝑗𝐶 𝑗𝑞 𝑗

) .
Moreover, if there exists 𝑖, 𝑗 such that 𝑞𝑖 , 𝑞 𝑗 > 0 and 𝑖 ≠ 𝑗 and satisfies 𝜕Φ𝑆/𝜕𝑞𝑖 − 𝜕Φ𝑆/𝜕𝑞 𝑗 ≠ 0, then the
maximum in (10) is not achieved.

Unproved propositions and lemmas in this subsection can be found later. We make a list of where
they are proved.

4.2. 2, 3-maximal Triples. Let q be a maximal triple and let 𝐼 = {𝑖 | 𝑞𝑖 > 0}. From Lemma 4.7 (a) and
(b), by taking partial derivatives of Φ𝑆 with respect to non-zero 𝑅𝑖 and 𝐶𝑖 ’s and setting them to 0, we
get that the maximizer of Φ𝑆 satisfies

𝑅1/𝑑0 ∝ 𝐶0𝑡
2 + (𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3)𝑡, 𝑅1/𝑑𝑖 ∝ 𝐶0𝑡 + 𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3 −𝐶𝑖 for 𝑖 ∈ 𝐼 ;(12)

𝐶1/𝑑
0 ∝ 𝑅0𝑡2 + (𝑞1𝑅1 + 𝑞2𝑅2 + 𝑞3𝑅3)𝑡, 𝐶1/𝑑

𝑖 ∝ 𝑅0𝑡 + 𝑞1𝑅1 + 𝑞2𝑅2 + 𝑞3𝑅3 − 𝑅𝑖 for 𝑖 ∈ 𝐼 .(13)
First assume q is 3-maximal, for any 𝑖 ≠ 𝑗 it holds that 𝑅𝑖 ≠ 𝑅 𝑗 and 𝐶𝑖 ≠ 𝐶 𝑗 . From Lemma 4.7 (a) and
(b), we may assume the following strict ordering
(14) 𝑅1 > 𝑅2 > 𝑅3 > 0 and 0 < 𝐶1 < 𝐶2 < 𝐶3.

Lemma 4.16. Suppose 𝑅𝑖 ’s and 𝐶𝑖 ’s satisfy (12), (13) and (14). We have the following:

(a) If 𝑅1/𝑅3 ≠ 𝐶3/𝐶1, then 𝜕Φ𝑆/𝜕𝑞1 − 𝜕Φ𝑆/𝜕𝑞3 ≠ 0.
(b) If 𝑅1/𝑅3 = 𝐶3/𝐶1, then 𝜕Φ𝑆/𝜕𝑞1 − 𝜕Φ𝑆/𝜕𝑞2 ≠ 0.

For the sake of convenience, we further set
𝑟𝑑0 := 𝑅0/𝑅3, 𝑟𝑑1 := 𝑅1/𝑅3, 𝑟𝑑2 := 𝑅2/𝑅3, and 𝑐𝑑0 := 𝐶0/𝐶1, 𝑐

𝑑
2 := 𝐶2/𝐶1, 𝑐

𝑑
3 := 𝐶3/𝐶1.

which means
(15) 𝑟1 > 𝑟2 > 1 and 𝑐3 > 𝑐2 > 1.

We will need these notations in later sections too. With them, from (12) and (13), we obtain that

(16) 𝑟0 =
𝑐𝑑0 𝑡

2 + (𝑞1 + 𝑞2𝑐𝑑2 + 𝑞3𝑐𝑑3 )𝑡
𝑐𝑑0 𝑡 + 𝑞1 + 𝑞2𝑐𝑑2 + (𝑞3 − 1)𝑐𝑑3

, 𝑐0 =
𝑟𝑑0 𝑡

2 + (𝑞1𝑟𝑑1 + 𝑞2𝑟𝑑2 + 𝑞3)𝑡
𝑟𝑑0 𝑡 + (𝑞1 − 1)𝑟𝑑1 + 𝑞2𝑟𝑑2 + 𝑞3

.

(17) 𝑟1 =
𝑐𝑑0 𝑡 + 𝑞1 − 1 + 𝑞2𝑐𝑑2 + 𝑞3𝑐𝑑3
𝑐𝑑0 𝑡 + 𝑞1 + 𝑞2𝑐𝑑2 + (𝑞3 − 1)𝑐𝑑3

, 𝑐3 =
𝑟𝑑0 𝑡 + 𝑞1𝑟𝑑1 + 𝑞2𝑟𝑑2 + 𝑞3 − 1

𝑟𝑑0 𝑡 + (𝑞1 − 1)𝑟𝑑1 + 𝑞2𝑟𝑑2 + 𝑞3
,
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Proof of Lemma 4.16. From (12) and (13), we get

(18) 𝑟1 − 1
𝑟2 − 1

=
𝑐𝑑3 − 1

𝑐𝑑3 − 𝑐𝑑2
, yielding that 𝑟2 =

𝑟1𝑐
𝑑
3 − 1 − 𝑐𝑑2 (𝑟1 − 1)

𝑐𝑑3 − 1

Similarly, we obtain that

(19) 𝑐3 − 1
𝑐2 − 1

=
𝑟𝑑1 − 1

𝑟𝑑1 − 𝑟𝑑2
, yielding that 𝑟𝑑2 =

𝑟𝑑1 𝑐3 − 1 − 𝑐2(𝑟𝑑1 − 1)
𝑐3 − 1

,

From (12) and (13), we have that 𝑟2 =
𝑐𝑑0 𝑡+𝑞1+(𝑞2−1)𝑐𝑑2 +𝑞3𝑐𝑑3
𝑐𝑑0 𝑡+𝑞1+𝑞2𝑐𝑑2 +(𝑞3−1)𝑐𝑑3

which combined with (18) gives that

(20)
𝑐𝑑0 𝑡 + 𝑞1 + (𝑞2 − 1)𝑐𝑑2 + 𝑞3𝑐𝑑3
𝑐𝑑0 𝑡 + 𝑞1 + 𝑞2𝑐𝑑2 + (𝑞3 − 1)𝑐𝑑3

=
𝑟1𝑐

𝑑
3 − 1 − 𝑐𝑑2 (𝑟1 − 1)

𝑐𝑑3 − 1
.

Symmetrically we obtain that

(21)
𝑟𝑑0 𝑡 + 𝑞1𝑟𝑑1 + (𝑞2 − 1)𝑐𝑑2 + 𝑞3
𝑟𝑑0 𝑡 + (𝑞1 − 1)𝑟𝑑1 + 𝑞2𝑐𝑑2 + 𝑞3

=
𝑟𝑑1 𝑐3 − 1 − 𝑟𝑑2 (𝑐3 − 1)

𝑟𝑑1 − 1
.

We can view (20) and (21) as a linear system in 𝑞1 and 𝑞3 after clearing the denominators, which yields
that

𝑞1 · (𝑟𝑑1 𝑐𝑑3 − 1) = 𝑐𝑑0 𝑡 + 𝑞2𝑐𝑑2 +
1 − 𝑟1𝑐𝑑3
𝑟1 − 1

− 𝑐𝑑3

(
𝑟𝑑0 𝑡 + 𝑞2𝑟𝑑2 +

1 − 𝑐3𝑟𝑑1
𝑐3 − 1

)
,(22)

𝑞3 · (𝑟𝑑1 𝑐𝑑3 − 1) = 𝑟𝑑0 𝑡 + 𝑞2𝑟𝑑2 +
1 − 𝑟𝑑1 𝑐3
𝑐3 − 1

− 𝑟𝑑1

(
𝑐𝑑0 𝑡 + 𝑞2𝑐𝑑2 +

1 − 𝑟1𝑐𝑑3
𝑟1 − 1

)
,(23)

From (12) and (13), we also obtain that

(24) 𝑟𝑑0 𝑡 =
𝑟𝑑1 − 1

𝑐3 − 1
− (𝑞1 − 1)𝑟𝑑1 − 𝑞2𝑟𝑑2 − 𝑞3, 𝑐𝑑0 𝑡 =

𝑐𝑑3 − 1

𝑟1 − 1
− 𝑞1 − 𝑞2𝑐𝑑2 − (𝑞3 − 1)𝑐𝑑3 .

We can now show the following:
(25) if 𝑟1 = 𝑐3, then (i) 𝑟2 = 𝑐2, (ii) 𝑞1 = 𝑞3, and (iii) 𝑟0 = 𝑐0.
The proof of (i) in (25) is identical to that in [GŠV15, Lemma 7.20] using the expressions for 𝑟2, 𝑟𝑑2 in
(18) and (19), respectively. From (i) and the assumption that 𝑟1 = 𝑐3, we obtain from (22) and (23) that

(26) 𝑞3 − 𝑞1 = (𝑟𝑑0 − 𝑐𝑑0 ) ·
𝑡

𝑟𝑑1 − 1
.

Furthermore, the equations in (16) can also be regarded as a linear system in 𝑞1 and 𝑞3. Using the
assumption 𝑟1 = 𝑐3 and 𝑟2 = 𝑐2, we obtain that

𝑞3 − 𝑞1 =
𝑡
[
(𝑟𝑑0 − 𝑐𝑑0 )𝑡2 + (𝑟0𝑐𝑑0 − 𝑐0𝑟𝑑0 + 𝑐1+𝑑0 − 𝑟 1+𝑑0 )𝑡 + (𝑟𝑑0 − 𝑐𝑑0 )𝑟0𝑐0 − (𝑟0 − 𝑐0)𝑟𝑑1

]
(𝑟0 − 𝑡)(𝑐0 − 𝑡) (𝑟𝑑1 − 1)

.

which, together with (26), implies 𝑟0 = 𝑐0 and hence 𝑞1 = 𝑞3. This finishes proving (25).
We are now ready to give the proof of Lemma 4.16. For part (a), Lemma 4.15 yields that

𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞3
=
1
𝑆
×

[
(𝑟𝑑1 − 1) (𝑐𝑑0 𝑡 + 𝑞1 + 𝑐𝑑2𝑞2) − (𝑐𝑑3 − 1) (𝑟𝑑0 𝑡 + 𝑞3 + 𝑟𝑑2𝑞2)

+ (𝑑 − 1) (𝑟𝑑1 − 𝑐𝑑3 ) + 𝑟𝑑1 𝑐𝑑3 (𝑞3 − 𝑞1) + 𝑟𝑑1𝑞1 − 𝑐𝑑3𝑞3
]
.

where 𝑆 > 0. Then plug in the expression of 𝑞1 and 𝑞3 in (22) and (23), we get

(27) 𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞3
= −𝑔(𝑟1, 𝑐3)

𝑆
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where 𝑔(𝑟1, 𝑐3) := (𝑟1−𝑐3) (𝑟𝑑1 −1)(𝑐𝑑3 −1) −𝑑 (𝑟1−1)(𝑐3−1) (𝑟𝑑1 −𝑐𝑑3 ). This quantity was shown to have
the same sign as 𝑟1 − 𝑐3 (see Equation (123) in the proof of Lemma 7.19 in [GŠV15]), and specifically,
non-zero when 𝑟1 ≠ 𝑐3, concluding part (a).

Now we prove part (b) of Lemma 4.16. From (25), the assumption 𝑟1 = 𝑐3 implies 𝑟2 = 𝑐2, 𝑞1 = 𝑞3
and 𝑟0 = 𝑐0. Applying Lemma 4.15 based on these, we get

𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞2
= 𝑞1(1 + 𝑟𝑑1 )(1 + 𝑟𝑑1 − 2𝑟𝑑2 ) + 𝑟𝑑2 (𝑞2 − (2𝑞2 + 𝑑 − 1)𝑟𝑑2 − 2𝑟𝑑0 𝑡) + 𝑟𝑑0 𝑡 + 𝑟𝑑1 (𝑟𝑑0 𝑡 + 𝑞2𝑟𝑑2 + 𝑑 − 1)

= −
(𝑑 − 1) (𝑟1 − 1)𝑟 2𝑑2 + 2(𝑟𝑑+11 − 1)𝑟𝑑2 − (𝑟 2𝑑+11 + 𝑑𝑟𝑑+11 − 𝑑𝑟𝑑1 − 1)

𝑟1 − 1
,

where in the second line we use (24). This quantity was shown to be non-zero in the proof of Lemma
7.19 in [GŠV15] (from Equation (124) onwards) under (18), concluding part (b). □

Now we assume q = (𝑞1, 𝑞2, 𝑞3) is a 2-maximal triple, and assume 𝑞2 = 0 without loss of generality.
The result here is analogous to Lemma 4.16 (a).

Lemma 4.17. Under the assumption that 𝑞2 = 0, suppose 𝑅𝑖 ’s and 𝐶𝑖 ’s (𝑖 ≠ 2) satisfy (12), (13) and (14).
For any 𝑞1, 𝑞3 > 0, it holds that 𝜕Φ𝑆/𝜕𝑞1 − 𝜕Φ𝑆/𝜕𝑞3 ≠ 0, unless 𝑞1 = 𝑞3 and 𝑅1/𝑅3 = 𝐶3/𝐶1.

Proof. First, note that the values of 𝑅2 and𝐶2 do not affect the value of derivatives 𝜕Φ𝑆/𝜕𝑞1 and 𝜕Φ𝑆/𝜕𝑞3
when 𝑞2 = 0. In addition, the expressions of 𝑞1 and 𝑞3 in (22) and (23) still hold for 𝑞2 = 0. Therefore,
one can carry out the proof of Lemma 4.16 (a) once again for this case, showing 𝜕Φ𝑆/𝜕𝑞1− 𝜕Φ𝑆/𝜕𝑞3 = 0
only when 𝑅1/𝑅3 = 𝐶3/𝐶1. Assuming this, one can show𝑞1 = 𝑞3 by going through the proof of (25). □

We conclude this subsection with Lemma 4.10.

Proof of Lemma 4.10. This comes after Lemma 4.16, Lemma 4.17 and the second part of Lemma 4.15. □

4.3. Stability of Maximal (𝑞/2, 𝑞/2, 0) Fixpoints. In the next two subsections, we focus on the
(in)stability of candidate fixpoints that may maximize Ψ1. The condition of Jacobian stability is given
by the following Lemma.

Lemma 4.18 (cf. [GŠV15, Lemma 4.16]). Suppose (𝑅0, 𝑅1, · · · , 𝑅𝑞,𝐶0,𝐶1, · · · ,𝐶𝑞) is a fixpoint of the
tree recursion (8). Let 𝛼𝑖 :=

∑𝑞
𝑗=0 𝐵𝑖 𝑗𝑅𝑖𝐶 𝑗 and 𝛽 𝑗 :=

∑𝑞
𝑖=0 𝐵𝑖 𝑗𝑅𝑖𝐶 𝑗 . Define the matrix 𝑨 := (𝑎𝑖 𝑗 )0≤𝑖, 𝑗≤𝑞

as 𝑎𝑖 𝑗 = 𝐵𝑖 𝑗𝑅𝑖𝐶 𝑗/
√
𝛼𝑖𝛽 𝑗 , and the matrix 𝑳 :=

[
0 𝑨
𝑨⊤ 0

]
. Then 𝑳 has symmetric real spectrum (symmetry

means if 𝑎 is an eigenvalue then so is −𝑎), and ±1 is a pair of its eigenvalues. The condition for the fixpoint
to be stable is that the second largest eigenvalue of 𝑳 is less than 1/𝑑 .

We will also need the following lemma which is proved in Section 5.4.

Lemma 4.19. For any 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 3𝑞𝑘 , the function

ℎ(𝑥) :=
(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 − 𝑥𝑑 − 1

𝑥 − 1
+ 𝑞′ + (𝑞′ − 1)𝑥𝑑

has exactly one root in the region (1,∞).

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. Define 𝑞′ := 𝑞/2. We first prove the uniqueness of 2-maximal (𝑞′, 𝑞′, 0) fixpoint
(up to scaling). According to the proof of Lemma 4.17, fixpoints of type (𝑞′, 𝑞′, 0) maximize Φ only
when 𝑟1 = 𝑐3. Now denote 𝑥 := 𝑟1 = 𝑐3. To prove the first part of this lemma, we show there exists
exactly one possible 𝑥 > 1 when 𝑑 ≥ 3𝑞𝑘 . By (16) and (17), we get

𝑟0/𝑡 − 𝑟1
𝑟1 − 1

=
1

𝑐𝑑3 − 1
.
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Combining this with (24), 𝑥 > 1 satisfies ℎ(𝑥) = 0, where

ℎ(𝑥) :=
(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 − 𝑥𝑑 − 1

𝑥 − 1
+ 𝑞′ + (𝑞′ − 1)𝑥𝑑 .

By Lemma 4.19, ℎ(𝑥) has exactly one root 𝑥 > 1.
Next, we construct the matrices 𝑨 and 𝑳. Note that both matrices are scale-free with respect to 𝑅𝑖

and 𝐶𝑖 . Directly plug in the formula in Lemma 4.18 to get

𝑨 :=


𝑐2 𝑏𝑐1T 𝑎𝑐1T

𝑎𝑐1 𝑎𝑏 𝑱 𝑎2𝑱 ′

𝑏𝑐1 𝑏2𝑱 ′ 𝑎𝑏 𝑱


.

where 𝑎 :=
√
𝑥𝑑−1 𝑥−1

𝑥𝑑−1 , 𝑏 :=
√

𝑥−1
𝑥𝑑−1 and 𝑐 :=

√
𝑥𝑑+1−1−𝑞′ (𝑥−1) (𝑥𝑑+1)

𝑥𝑑+1−1 , 𝑱 is the 𝑞′ × 𝑞′ matrix with zeros
on the diagonal and ones elsewhere, 𝑱 ′ is the 𝑞′ × 𝑞′ matrix with ones everywhere, and 1 is the 𝑞′ × 1
matrix. The eigenvalues of 𝑳 =

[
0 𝑨
𝑨⊤ 0

]
consist of ±𝑎𝑏 (each by multiplicity 𝑞 − 2) and ±𝜆1,±𝜆2,±𝜆3,

where 𝜆1, 𝜆2, 𝜆3 are the zeros of the following cubic function

𝑓 (𝑧) = 𝑧3 − (𝑞′𝑎2 + 𝑞′𝑏2 + 𝑐2)𝑧2 + (2𝑞′ − 1)𝑎2𝑏2𝑧 + 𝑎2𝑏2𝑐2.
We claim that 𝑎𝑏 is the second largest eigenvalue. To prove this, recall that 1 is the eigenvalue of 𝑳.
We can assume 𝜆1 = 1 (because 𝑎𝑏 < 1, which means 1 must be among 𝜆1,2,3) and hence 𝑓 (1) = 0. In
addition, 𝑓 (𝑧) is monic and 𝑓 (0) > 0. This means it suffices to show 𝑓 (−𝑎𝑏) ≤ 0 and 𝑓 (𝑎𝑏) ≤ 0, which
are true since

𝑓 (𝑎𝑏) = −𝑎2𝑏2𝑞(𝑎 − 𝑏)2 < 0, 𝑓 (−𝑎𝑏) = −𝑎2𝑏2𝑞(𝑎 + 𝑏)2 < 0.

It remains to prove 𝑎𝑏 = 𝑥 (𝑑−1)/2 𝑥−1
𝑥𝑑−1 < 1/𝑑 which follows from 𝑥𝑑−1

𝑥−1 = 𝑥𝑑−1 + . . . + 1 > 𝑑𝑥 (𝑑−1)/2,
where the last inequality is an application of the AM-GM inequality when 𝑥 > 1. □

4.4. (In)stability of (𝑞, 0, 0) Fixpoints. Set 𝑥 := 𝑅0/𝑅1 and 𝑦 := 𝐶0/𝐶1. Then by rewriting the tree
recursion, one can see 𝑥,𝑦 satisfies the system

(28) 𝑥 = 𝑡𝑑
(
𝑡𝑦 + 𝑞

𝑡𝑦 + 𝑞 − 1

)𝑑
, 𝑦 = 𝑡𝑑

(
𝑡𝑥 + 𝑞

𝑡𝑥 + 𝑞 − 1

)𝑑
.

Before analysing the stability of the original (𝑞 + 1)-spin system, we first need to study this 2-spin
system. By replacing 𝛽 := 𝑡/𝑞, 𝛾 = (𝑞 − 1)/𝑡 and 𝜆 = 𝑞𝑑 , the system above is actually the tree
recursion of a general anti-ferromagnetic Ising model with parameter (𝛽,𝛾, 𝜆). It follows that such
system has either one solution (𝑄∗, 𝑄∗) (uniqueness) or three solutions (𝑄+, 𝑄−), (𝑄∗, 𝑄∗), (𝑄−, 𝑄+)
(non-uniqueness) where 𝑄+ > 𝑄∗ > 𝑄− (see [MSW07, Section 6.2] or [GŠV16, Theorem 7]). First and
foremost, if 𝑑 ≥ 5𝑞𝑘 , the system (28) is actually the latter case.

Lemma 4.20. When 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 5𝑞𝑘 , the system (28) lies in non-uniqueness region.

One way to prove Lemma 4.20 is to verify the non-uniqueness condition in [LLY13]. However,
in our case, that would cause pages of tedious calculation, and we could not get crucial quantitative
information about solutions, which is the key to the stability of the original (𝑞+1)-spin system. Hence,
we show the non-uniqueness by locating the solutions directly, as in the next two lemmas. Also note
that, when 𝑥 = 𝑅0/𝑅1 = 𝐶0/𝐶1, the two-step recursion (28) can be simplified into the following one-step
recursion

(29) 𝑥 =

(
𝑡2𝑥 + 𝑞𝑡
𝑡𝑥 + 𝑞 − 1

)𝑑
.

Lemma 4.21. Let (𝑥, 𝑥) be the solution of (28) i.e., 𝑥 be the solution of (29). When 𝑞 ≥ 4, 𝑘 ≥ 2 and
𝑑 ≥ 5𝑞𝑘 , it holds that 𝑡𝑥 + 𝑞 − 1 < 𝑑 .
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Lemma 4.22. When 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 5𝑞𝑘 , there exists a solution (𝑥,𝑦) to (28) satisfying (a) 𝑥 > 𝑦,
and (b) 𝑥 > 𝑑

𝑞𝑘−𝑞 · 𝑑 .

We give the proof of Lemmas 4.21 and 4.22 in Section 5.5.

Proof of Lemma 4.20. This directly follows from Lemma 4.21 and Lemma 4.22. □

Now we are ready to analyse the stability of (𝑞, 0, 0)-type fixpoints. In the following it will be
convenient to let 𝑱 be the 𝑞 × 𝑞 matrix with 0s on the diagonal and 1s elsewhere, and 1 to be the 𝑞 × 1
vector with all ones.

Proof of Lemma 4.12. Let 𝑥 = 𝑅0/𝑅1 and 𝑦 = 𝐶0/𝐶1 be the solution of (28) with 𝑥 > 𝑦. Set 𝑎 :=
√

1
𝑡𝑥+𝑞−1 ,

𝑏 :=
√

1
𝑡𝑦+𝑞−1 , 𝑟 :=

√
𝑡𝑦
𝑡𝑥+𝑞 and 𝑠 :=

√
𝑡𝑥
𝑡𝑦+𝑞 . By applying the formula in Lemma 4.18, the (𝑞 + 1) × (𝑞 + 1)

matrix 𝑨 can be written in the block form

𝑨 =

[
𝑟𝑠 𝑎𝑠1T

𝑏𝑟1 𝑎𝑏 𝑱

]
.

The eigenvalues of 𝑳 =
[

0 𝑨
𝑨⊤ 0

]
consist of ±𝑎𝑏 (with multiplicity 𝑞−1 respectively) and ±𝜆1,±𝜆2, where

±𝜆1,±𝜆2 are the zeros of the following biquadratic function

𝑓 (𝑧) = 𝑧4 − ((𝑞 − 1)2𝑎2𝑏2 + 𝑞𝑏2𝑟 2 + 𝑞𝑎2𝑠2 + 𝑟 2𝑠2)𝑧2 + 𝑎2𝑏2𝑟 2𝑠2.

Again, we assume 𝜆1 = 1 (note that 𝑎𝑏 ≠ 1). By Vieta’s formula, 𝜆2 = 𝑎𝑏𝑟𝑠 . Since 𝑟𝑠 < 1, this means
𝑎𝑏 is the second largest eigenvalue. Now it suffices to prove 𝑎𝑏 < 1/𝑑 , which is equivalent to showing
(𝑡𝑥 +𝑞 − 1) (𝑡𝑦 +𝑞 − 1) > 𝑑2. Note that 𝑡𝑦 > 𝑡𝑑+1 = 𝑞𝑘 −𝑞, and Lemma 4.22 gives 𝑥 > 𝑑 𝑑

𝑞𝑘−𝑞 . Therefore
(𝑡𝑥 + 𝑞 − 1) (𝑡𝑦 + 𝑞 − 1) > 𝑡𝑥𝑦 > 𝑑2. □

Remark 4.23. It is worth noting that the Jacobian stable fixpoints of the system (28) do not necessarily
induce (𝑞, 0, 0)-type Jacobian stable fixpoints of the original (𝑞 + 1)-spin system. This is because the
eigenvalue 𝑎𝑏 from the (𝑞 + 1)-spin system is missing in the 2-spin system. Interestingly, by directly
applying results over 2-spin system (e.g., [GŠV16, Lemma 8]), what we get is 𝑎𝑏𝑟𝑠 < 1/𝑑 instead of
𝑎𝑏 < 1/𝑑 . There is an interval of 𝑑 such that the former holds but the latter does not. Thus here we
cannot only analyze the simplified 2-spin system.

Proof of Lemma 4.14. According to the formula in Lemma 4.18, we construct the following (𝑞+1)×(𝑞+1)
matrix 𝑨 with block form

𝑨 =

[
𝑏

√
𝑎𝑏1T

√
𝑎𝑏1 𝑎𝑱

]
where 𝑎 := 1

𝑞−1+𝑡𝑥 , 𝑏 := 𝑡𝑥
𝑡𝑥+𝑞 , and 𝑥 is the solution of equation (29). Because 𝑨 is symmetric, the

spectral radius of 𝑳 =
[

0 𝑨
𝑨⊤ 0

]
is the same as that of 𝑨. It is not hard to see that −𝑎 is an eigenvalue

of 𝑨 by multiplicity 𝑞 − 1. From Lemma 4.21, we have that 1/𝑑 < 𝑎, and 𝑎 < 1 from 𝑞 ≥ 2 and 𝑥 > 0.
Therefore, the fixpoint is unstable. □

4.5. (𝑞, 0, 0) Fixpoint Is Not Maximal. Let 𝑞1 = 𝑞, 𝑞2 = 𝑞3 = 0 and 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. Due to stability,
it is difficult to analyse this kind of fixpoint’s global optimality (recall that it corresponds to a local
maxima of Ψ1). However, observe that changing the value of 𝑅3 and 𝐶3 will not affect the value of
Φ𝑆 . Therefore, we can force 𝑅3 and 𝐶3 to be subject to (12) and (13). As we will show later, doing
so allows us to reuse some lemmas we have utilized in our argument regarding 2-maximal fixpoints,
among which the most important one is the perturbation argument. We define 𝑟0, 𝑟1, 𝑐0, 𝑐3 analogously,
and without loss of generality, suppose 𝑟1, 𝑐3 > 1.

The next proposition shows how we choose 𝑟1 and 𝑐3.
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Lemma 4.24. Let 𝑥 = 𝑟1 and 𝑦 = 𝑐3 be a pair of solutions to the following system

(30)
𝑓1(𝑥,𝑦) := (𝑥 − 1)

((
1 + 𝑥

𝑑 (𝑦 − 1)
𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 + 𝑞 − 𝑦𝑑

)
− 𝑦𝑑 + 1 = 0;

𝑓2(𝑥,𝑦) := (𝑦 − 1)
((
1 + 𝑦

𝑑 (𝑥 − 1)
𝑦𝑑 − 1

)𝑑
𝑡𝑑+1 + 𝑞𝑥𝑑 − 𝑥𝑑

)
− 𝑥𝑑 + 1 = 0,

with 𝑥,𝑦 > 1. Then there exists 𝑟0 and 𝑐0 such that (16) and (17) are satisfied for 𝑞1 = 𝑞, 𝑞2 = 𝑞3 = 0.

Proof. The 𝑟0 and 𝑐0 we choose are defined by

𝑟0/𝑡 :=
𝑟1 − 1

𝑐𝑑3 − 1
+ 𝑟1, 𝑐0/𝑡 :=

𝑐3 − 1

𝑟𝑑1 − 1
+ 𝑐3.(31)

Combining (31) with the expression of 𝑓2(𝑟1, 𝑐3) = 0, it holds that

𝑐𝑑0 𝑡 + 𝑞 − 𝑐𝑑3 −
𝑐𝑑3 − 1

𝑟1 − 1
= 0,

which is exactly (24), and is equivalent to the expression for 𝑟1 in (17). The same argument holds for the
𝑐3 expression in (17). In addition, plugging (31) back into (17) yields the expressions for 𝑟0, 𝑐0 in (16). □

Be cautious that we do not assume 𝑅0/𝑅1 = 𝐶0/𝐶1 in Lemma 4.24. Even if we managed to find a pair
of solutions 𝑟1 > 𝑐3 > 1 to (30), it does not imply that we can find 𝑅3 and𝐶3 for the case 𝑅0/𝑅1 ≠ 𝐶0/𝐶1,
because it is possible for such a pair to correspond to the other case 𝑅0/𝑅1 = 𝐶0/𝐶1. We will handle
this in Lemma 4.33 after finding a special solution to (30).

To study the solution of the system (30), we need to look into the properties of both functions. To
clarify the intuition of our approach, we plot both functions for the case𝑞 = 6, 𝑘 = 3, 𝑑 = 5𝑞𝑘 (see Figure
1a). In this setting, the two functions have three intersections in the region (1, +∞)2: one above 𝑦 = 𝑥 ,
one near 𝑦 = 𝑥 (but still below 𝑦 = 𝑥 ; see Figure 1b) and one far below 𝑦 = 𝑥 . Experimentally, only
the first two intersections correspond to the case 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. Hence we would only be interested
in them. Moreover, as we will see at the end of this subsection, a solution such that 𝑥 > 𝑦 is required.
For this purpose, the rest of the subsection endeavours to prove the existence of the intersection near
𝑦 = 𝑥 before finishing the proof of Lemma 4.13. Doing so also avoids the need of fully characterising
the shape of both curves 𝑓𝑖 (𝑥,𝑦) = 0.

1.000 1.002 1.004 1.006 1.008 1.010 1.012

1.000

1.002

1.004

1.006

1.008

1.010

1.012

𝑓1 (𝑥,𝑦) = 0

𝑓2 (𝑥,𝑦) = 0

𝑦 = 𝑥

(a)

1.0040 1.0042 1.0044 1.0046 1.0048 1.0050

1.0040

1.0042

1.0044

1.0046

1.0048

1.0050

𝑓1 (𝑥,𝑦) = 0

𝑓2 (𝑥,𝑦) = 0

𝑦 = 𝑥

(b)

FiguRe 1. (a): Shape of the curve 𝑓1 (𝑥,𝑦) = 0, 𝑓2 (𝑥,𝑦) = 0, and 𝑦 = 𝑥 . (b): Zoom in on the intersection
near 𝑦 = 𝑥 .
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Now we formalize our argument. Note that, by mimicking the proof of Lemma 4.19, one can show
𝑓2(𝑥, 𝑥) = 0 has exactly one solution 𝑥∗∗ > 1. Moreover, for any 𝑥 ∈ (1, 𝑥∗∗), 𝑓2(𝑥, 𝑥) < 0, and for any
𝑥 > 𝑥∗∗, 𝑓2(𝑥, 𝑥) > 0. A detailed proof is given in Section 5.4.

Lemma 4.25. For any 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 3𝑞𝑘 , the function

ℎ2(𝑥) :=
(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 − 𝑥𝑑 − 1

𝑥 − 1
+ (𝑞 − 1)𝑥𝑑

has exactly one root 𝑥∗∗ in the region 𝑥 > 1.

For 𝑓1, we do not need the uniqueness of its intersection with the line 𝑦 = 𝑥 .

Lemma 4.26. For any 𝑞 ≥ 4, 𝑘 ≥ 2 and 𝑑 ≥ 3𝑞𝑘 , the function

ℎ1(𝑥) :=
(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 − 𝑥𝑑 − 1

𝑥 − 1
+ 𝑞 − 𝑥𝑑

has at least one root in the region 𝑥 > 1. Let 𝑥∗ be its smallest root. Then ℎ1(𝑥) < 0 for 𝑥 ∈ (1, 𝑥∗).
Moreover, 𝑥∗ > 𝑥∗∗, and consequently ℎ2(𝑥∗) > 0.

Proof. The first part of the lemma is similar to the proof of Lemma 4.25 and Lemma 4.19, by computing
lim𝑥→1 ℎ1(𝑥) < 0 and lim𝑥→+∞ ℎ1(𝑥) = +∞. To prove the second part, note that ℎ2(𝑥) > ℎ1(𝑥) for all
𝑥 > 1. □

The next property will be useful later.

Proposition 4.27. If 𝑓1(𝑥,𝑦) = 0, then 𝑥 < 1 + 1
𝑡𝑑+1−1 . If 𝑓2(𝑥,𝑦) = 0, then 𝑦 < 1 + 1

𝑡𝑑+1−1 .

Proof. Suppose 𝑥 ≥ 1 + 1
𝑡𝑑+1−1 . Then

𝑓1(𝑥,𝑦) ≥
1

𝑡𝑑+1 − 1

((
1 + 𝑥

𝑑 (𝑦 − 1)
𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 + 𝑞 − 𝑦𝑑

)
− 𝑦𝑑 + 1

>
1

𝑡𝑑+1 − 1

(
𝑦𝑑𝑡𝑑+1 + 𝑞 − 𝑦𝑑

)
− 𝑦𝑑 + 1 =

𝑞

𝑡𝑑+1 − 1
+ 1 > 0.

A similar argument holds for 𝑓2. □

Then we study the shape of 𝑓1 below the line 𝑦 = 𝑥 .

Lemma 4.28. Let 𝑔(𝑥) := (𝑥𝑑−1)𝑑
(𝑥𝑑+1−1)𝑑−1 (𝑥−1) and assume that 𝑑 ≥ 3𝑞𝑘 . Then

(a) there is a unique 𝑥0 ∈ (1,∞) such that 𝑔(𝑥0) = 𝑡𝑑+1;
(b) for any 1 < 𝑥 < 𝑥0,

𝜕𝑓1
𝜕𝑦 < 0 for 𝑦 ∈ (1, 𝑥]; and

(c) 𝑥0 > 𝑥∗, where 𝑥∗ > 1 is the smallest solution to 𝑓1(𝑥, 𝑥) = 0 (see Lemma 4.26).
Moreover, for any 1 < 𝑥 < 𝑥0, 𝑓1(𝑥,𝑦) is decreasing for 𝑦 ∈ (1, 𝑥].

Proof. We first show that 𝑔(𝑥) is decreasing for 𝑥 > 1. By direct calculation,

𝑔′(𝑥) = (𝑥𝑑 − 1)𝑑−1
𝑥 (𝑥 − 1)2(𝑥𝑑+1 − 1)𝑑

(
𝑥𝑑𝑑2(𝑥 − 1)2 − 𝑥 (𝑥𝑑 − 1)2

)
< 0,

where the last inequality has already been shown in the proof of Lemma 4.5 for 𝑥 > 1. Notice that
lim𝑥→1 𝑔(𝑥) = 𝑑𝑑

(𝑑+1)𝑑−1 and lim𝑥→∞ 𝑔(𝑥) = 1. As 𝑑𝑑

(𝑑+1)𝑑−1 > 𝑑
𝑒 > 𝑞𝑘 > 𝑡𝑑+1 = 𝑞𝑘 − 𝑞 > 2, there is a

unique 𝑥0 such that 𝑔(𝑥0) = 𝑡𝑑+1 and for 𝑥 ∈ (1, 𝑥0), 𝑔(𝑥) > 𝑡𝑑+1. This shows part (a).
For part (b), we have 𝜕𝑓1

𝜕𝑦 = −𝑥𝑑𝑦𝑑−1 + (𝑥−1)𝑑𝑥𝑑𝑡𝑑+1 (𝑥𝑑𝑦−1)𝑑−1
(𝑥𝑑−1)𝑑 and thus, 𝜕𝑓1𝜕𝑦 < 0 is equivalent to(

𝑥𝑑+1 − (𝑥𝑑 − 1)𝑑/(𝑑−1)

(𝑥 − 1)1/(𝑑−1)𝑡 𝑑+1𝑑−1

)
𝑦 < 𝑥 .
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As the range of 𝑦 we consider is (1, 𝑥], we only need to show that

𝑥𝑑+1 − (𝑥𝑑 − 1)𝑑/(𝑑−1)

(𝑥 − 1)1/(𝑑−1)𝑡 𝑑+1𝑑−1
< 1,

which, after rearranging, is equivalent to 𝑔(𝑥) > 𝑡𝑑+1. This is guaranteed by part (a) of the lemma.
To prove the third part, by Lemma 4.26, it suffices to show ℎ1(𝑥0) = 𝑓1(𝑥0, 𝑥0) > 0. Note that 𝑥0

satisfies

𝑥𝑑+10 −
(𝑥𝑑0 − 1)𝑑/(𝑑−1)

(𝑥0 − 1)1/(𝑑−1)𝑡 𝑑+1𝑑−1
= 1, or equivalently,

(𝑥𝑑+10 − 1

𝑥𝑑0 − 1

)𝑑−1
=

𝑥𝑑0 − 1

𝑡𝑑+1(𝑥0 − 1)
.

By multiplying this with 𝑥𝑑+10 −1
𝑥𝑑0 −1

, we have
(
𝑥𝑑+10 −1
𝑥𝑑0 −1

)𝑑
𝑡𝑑+1 =

𝑥𝑑+10 −1
𝑥0−1 and plugging into the expression for

𝑓1(𝑥, 𝑥) we get 𝑓1(𝑥0, 𝑥0) = 𝑞(𝑥0 − 1) > 0, yielding part (c). □

By Lemma 4.28 (b) and (c), the partial derivative 𝜕𝑓1/𝜕𝑦 ≠ 0 at all points (𝑥,𝑦) such that 𝑓1(𝑥,𝑦) = 0
and 1 < 𝑦 ≤ 𝑥 ≤ 𝑥∗. Applying the implicit function theorem, 𝑓1 yields a continuous function between
𝑥 and 𝑦 in the region 1 < 𝑦 ≤ 𝑥 ≤ 𝑥∗.

Corollary 4.29. The set P+
1 := (1, 1) + {(𝑥,𝑦) : 𝑓1(𝑥,𝑦) = 0, 𝑥 ≥ 𝑦 > 1, 𝑥 ≤ 𝑥∗} forms a continuous

curve from (1, 1) to 𝑥∗, 𝑥∗, where 𝑥∗ > 1 is the smallest solution to 𝑓1(𝑥, 𝑥) = 0.

Regarding the shape of 𝑓2, we have the next lemma.

Lemma 4.30. For any 1 < 𝑦 < 1 + 1
𝑞−1 , there are at most two 𝑥 > 1 such that 𝑓2(𝑥,𝑦) = 0. Moreover, if

1 < 𝑦 < 𝑥∗∗, where 𝑥∗∗ > 1 is the unique value such that 𝑓2(𝑥∗∗, 𝑥∗∗) = 0 (see Lemma 4.25), then there is
exactly one 𝑥 > 𝑦 such that 𝑓2(𝑥,𝑦) = 0.

Proof. The crucial idea of this proof is to study the sign of 𝑓2(𝑥,𝑦) at its critical points w.r.t. 𝑥 (i.e., 𝑥 ′
such that 𝜕𝑓2(𝑥,𝑦)/𝜕𝑥 = 0 at 𝑥 = 𝑥 ′).

Fix 𝑦 in the range and define 𝑔(𝑥) := 𝑓2(𝑥,𝑦). By direct calculation, if 𝑔′(𝑥) = 0, 𝑥 ′ satisfies

𝑡𝑑+1
(
1 + 𝑦

𝑑 (𝑥 ′ − 1)
𝑦𝑑 − 1

)𝑑
=
𝑥 ′𝑑−1(𝑦 − 𝑞(𝑦′ − 1)) (𝑥 ′𝑦𝑑 − 1)

(𝑦 − 1)𝑦𝑑
.

Plugging it back to 𝑔, we get

𝑔(𝑥 ′) = 1 − 𝑥 ′𝑑−1(𝑦 − 𝑞(𝑦 − 1))
𝑦𝑑

.

Because 𝑦 − 𝑞(𝑦 − 1) > 0, for any critical point 𝑥 ′ of 𝑔,
(a) if 𝑥 ′ < 𝜒 , then 𝑔(𝑥 ′) > 0;
(b) if 𝑥 ′ = 𝜒 , then 𝑔(𝑥 ′) = 0;
(c) if 𝑥 ′ > 𝜒 , then 𝑔(𝑥 ′) < 0,

where 𝜒 is defined by 𝜒 :=
( 𝑦𝑑

𝑦−𝑞 (𝑦−1)
)1/(𝑑−1) .

As𝑔(𝑥) = 𝑓2(𝑥,𝑦) for the fixed𝑦, 𝑔(𝑥) is a polynomial in 𝑥 . Moreover, 𝑔(1) = (𝑦−1) (𝑡𝑑+1+𝑞−1) > 0
and lim𝑥→+∞ 𝑔(𝑥) = +∞. It implies that 𝑔(𝑥) must have an even number of roots. If 𝑔(𝑥) does not have
any root greater than 1 then we are done. Otherwise, let 𝑥1 > 1 be the smallest root and 𝑥2 be the
largest root.

• If 𝑥1 < 𝜒 , this means the next critical point 𝑥 ′ ≥ 𝑥1 cannot be 𝑥1, or otherwise, 𝑔(𝑥 ′) = 0,
contradicting with item (a) above. Therefore, 𝑔(𝑥 ′) < 0, which means 𝑥 ′ > 𝜒 . If there exists
another zero 𝑥 ′ < 𝑥3 < 𝑥2, then either 𝑔′(𝑥3) < 0 or 𝑔′(𝑥3) > 0 (otherwise, it contradicts
with item (b)). In the former case, there must exist another critical point 𝑥 ′′ such that 𝜒 <
𝑥 ′ < 𝑥 ′′ < 𝑥3 and 𝑔(𝑥 ′′) > 0, which contradicts to item (c). In the latter case, there must exist
another critical point 𝑥 ′′′ such that 𝑥3 < 𝑥 ′′′ < 𝑥2 and 𝑔(𝑥 ′′′) > 0, violating item (c) as well.

• If 𝑥1 > 𝜒 , this means all the critical points 𝑥 ′ in [𝑥1, 𝑥2] must have function value 𝑔(𝑥 ′) < 0,
which implies there is not any other root in (𝑥1, 𝑥2).
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• If 𝑥1 = 𝜒 and 𝑥1 is not a critical point, then 𝑔′(𝑥1) < 0 and the argument of the previous case
still applies.

• If 𝑥1 = 𝜒 and 𝑥1 is a critical point, then for any other critical point (if exists) 𝑥 ′ > 𝑥1, it must
holds that 𝑔(𝑥 ′) < 0. Namely once 𝑔(𝑥) becomes positive as 𝑥 increases, the sign of 𝑔′(𝑥) will
not change. It implies that 𝑥2 is the only root larger than 𝑥1 in this case. If no critical point
𝑥 ′ > 𝑥1 exists, then 𝑥1 = 𝑥2 is the only root.

In all cases, 𝑔(𝑥) has at most two roots greater than 1. This finishes the first part of the lemma.
For the second part, notice that if 𝑦 < 𝑥∗∗ then 𝑔(𝑦) < 0, and recall lim𝑥→∞ 𝑔(𝑥) = ∞. The number

of zeros larger than 𝑦 must be odd, and by the first part, it must be unique. Proposition 4.27 guarantees
that 𝑥∗∗ < 1 + 1

𝑡𝑑+1−1 < 1 + 1
𝑞−1 . □

We then argue there is a point on P+
1 (except (1, 1)) such that 𝑓2 takes zero. To establish this, we

first find a point 𝐸 with 𝑓2(𝑥𝐸, 𝑦𝐸) = 0 such that it lies to the right of P+
1 (with some extra conditions,

and later we will apply Lemma 4.30). To simplify the calculation, we only consider the case 𝑑 = 5𝑞𝑘 .
The proof of the next lemma consists some detailed calculations, which we postpone till Section 5.6.

Lemma 4.31. Suppose 𝑑 = 5𝑞𝑘 . There exists a point 𝐸 with 𝑓2(𝑥𝐸, 𝑦𝐸) = 0 such that it lies to the right of
P+
1 . More specifically, (a) 𝑦𝐸 = 1 + 0.5

𝑡𝑑+1−1 ; (b) 𝑦𝐸 < 𝑥∗∗; and (c) 𝑥𝐸 > 1 + 1
𝑡𝑑+1−1 .

This yields the following lemma.

Lemma 4.32. Suppose 𝑑 = 5𝑞𝑘 . The system (30) has a solution (𝑥,𝑦) such that 𝑥 > 𝑦 > 𝑦𝐸 .

Proof. Consider the following point𝑀 on P+
1 : 𝑦𝑀 = 𝑦𝐸 , and 𝑥𝑀 is the largest one such that (𝑥𝑀 , 𝑦𝑀 ) ∈

P+
1 .

9 Lemma 4.31 (b) asserts that𝑦𝐸 < 𝑥∗∗, which allows us to invoke Lemma 4.30: for any𝑦𝐸 < 𝑥 < 𝑥𝐸 ,
we have 𝑓2(𝑥,𝑦𝐸) < 0. More specifically, 𝑓2(𝑥𝑀 , 𝑦𝑀 ) < 0 because 𝑥𝑀 < 𝑥∗ < 1 + 1

𝑡𝑑+1−1 < 𝑥𝐸 , where the
second and third inequalities come from Proposition 4.27 and Lemma 4.31 (c) respectively.

Now consider the path of P+
1 between the point𝑀 and (𝑥∗, 𝑥∗). It is continuous and bounded away

from both 𝑥 = 1 and 𝑦 = 1, and the function 𝑓2(𝑥,𝑦) is continuous over (1, +∞) × (1, +∞). This means
as one walks along the path, the value of 𝑓2 changes continuously; otherwise, it violates the continuity
of 𝑓2 by a simple 𝜀-𝛿 argument. Moreover, by the second part of Lemma 4.26, 𝑓2(𝑥∗∗, 𝑥∗∗) > 0. This
means there must be a point (𝑥,𝑦) on the path such that 𝑓2(𝑥,𝑦) = 0. Moreover, by the choice of 𝑥𝑀 , it
must hold that 𝑦 > 𝑦𝑀 = 𝑦𝐸 . □

Now we argue that the solution we find actually satisfies 𝑅0/𝑅1 ≠ 𝐶0/𝐶1.

Lemma 4.33. If 𝑟1 > 𝑐3 > 1 yields 𝑅0/𝑅1 = 𝐶0/𝐶1, then it must hold that 𝑐3 < 𝑦𝐸 .

Proof. In this case,𝐶0/𝐶1 is the solution to the one-step recursion (29). Define𝑢 := 𝑐0/𝑡 = (𝐶0/𝐶1)1/𝑑/𝑡 .
By rewriting (29), one can see that 𝑢 is the unique solution to the following equation

ℎ(𝑢) := 𝑢 −
(
1 + 1

𝑡𝑑+1𝑢𝑑 + 𝑞 − 1

)
= 0.

Note that 𝑢 > 1. Using this notation, (31) yields that 𝑐3 =
𝑢 (𝑟𝑑1 −1)+1

𝑟𝑑1
, giving that 𝑐3 < 𝑢.

It remains to show 𝑢 < 1 + 0.5
𝑡𝑑+1−1 . Note that the system (29) has a unique fixpoint, namely that

ℎ(𝑢) has a unique solution over 𝑢 > 1. Because ℎ(1) < 0 and lim𝑢→∞ ℎ(𝑢) = ∞, it suffices to prove
ℎ(1 + 0.5

𝑡𝑑+1−1 ) > 0. After plugging in the expression and clearing the denominator, it turns out to be
equivalent to

1 + 3𝑞 − 2𝑞𝑘 + (𝑞𝑘 − 𝑞)
(
1 + 1

2𝑞𝑘 − 2(𝑞 + 1)

)5𝑞𝑘
> 0

which is true for any 𝑞 ≥ 4 and 𝑘 ≥ 2. □

We can finally conclude Lemma 4.13.

9𝑥𝑀 is well-defined. This follows from the fact that (𝑥𝑑 − 1)𝑑 𝑓1 (𝑥,𝑦𝑀 ) is a non-zero polynomial with respect to 𝑥 , thus
having a finite number of zeros.
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Proof of Lemma 4.13. Lemma 4.32 guarantees the existence of 𝑟1 > 𝑐3 > 𝑦𝐸 satisfying (30) with 𝑥 = 𝑟1
and 𝑦 = 𝑐3. By Lemma 4.24, given 𝑟1 and 𝑐3, we can choose 𝑅0, 𝑅1, 𝑅3,𝐶0,𝐶1,𝐶3 to satisfy (12) and (13).
Lemma 4.33 implies that for this choice, 𝑅0/𝑅1 ≠ 𝐶0/𝐶1. Moreover, the 2-spin system regarding 𝑅0/𝑅1
and 𝐶0/𝐶1 lies in non-uniqueness region, and hence the values of 𝑅0/𝑅1 and 𝐶0/𝐶1 are unique up to
the swap of 𝑅 and 𝐶 (see Section 4.4).

Because 𝑅3 and 𝐶3 are subject to (12) and (13), the first part of the proof in Lemma 4.15 still holds,
even when 𝑞3 = 0 (since we only require (32)). Therefore the expression of 𝜕Φ𝑆/𝜕𝑞3 still applies. Based
on this, by going through the proof of Lemma 4.16 (a), we can see (27) still holds, i.e.,

sgn

(
𝜕Φ𝑆

𝜕𝑞1
− 𝜕Φ𝑆

𝜕𝑞3

)
= −sgn(𝑟1 − 𝑐3) .

Hence under this choice, 𝜕Φ𝑆/𝜕𝑞1 − 𝜕Φ𝑆/𝜕𝑞3 < 0. Now consider a new q vector (𝑞 − 𝜀, 0, 𝜀). When 𝜀
is small enough, the value of Φ𝑆 increases, and feasibility in (11) still holds. Because the value of Φ𝑆 at
q = (𝑞, 0, 0) is irrelavent to 𝑅3,𝐶3, and the value of Φ𝑆 is the same for all fixpoints of type (𝑞, 0, 0) and
𝑅0/𝑅1 ≠ 𝐶0/𝐶1, it means Φ does not take the maximum at fixpoints of such type. □

Remark 4.34. Our approach in fact jumps out of the local area around the fixpoint. Intuitively, the
argument considers a new “imaginary” fixpoint where 𝜀 portion of the𝑞 entries 𝑅1 (resp. 𝐶1) is changed
into 𝑅3 (resp. 𝐶3, recall that 𝑅3 and 𝐶3 are bounded away from 𝑅1 and 𝐶1), and compares its value of
the original induced matrix normwith the one of (𝑅0, 𝑅1, · · · , 𝑅1,𝐶0,𝐶1, · · · ,𝐶1). This is another reason
why optimizing Φ𝑆 over all nonnegative q’s instead of integer q’s helps a lot.

5. Remaining PRoofs

5.1. Proof of Lemma 2.3. We will consider the following computational problem. Given a graph
𝐺 = (𝑉 , 𝐸), for a 𝑞-colouring 𝜎 : 𝑉 → {1, . . . , 𝑞}, let Mono(𝐺, 𝜎) be the number of monochromatic
edges under 𝜎 .

Name: Max-𝑞-Cut
Instance: A undirected graph 𝐺 = (𝑉 , 𝐸)
Output: max𝜎 :𝑉→{1,...,𝑞}{|𝐸 | −Mono(𝐺, 𝜎)}

Let Max-Cut be the 𝑞 = 2 version of Max-𝑞-Cut. Alimonti and Kann [AK00] showed the following.
Proposition 5.1. There is a constant 𝛿0 > 0 such that, there is no randomized polynomial-time approxi-
mation algorithm for Max-Cut in cubic graphs with relative error 𝛿0 unless NP = RP.

Furthermore, Kann, Khanna, Lagergren, and Panconesi [KKLP97] showed the following reduction.

Proposition 5.2. For any 0 ≤ 𝛿 ≤ 1, if Max-𝑞-Cut in
(
Δ(𝑞+1)

2 + 𝑞−1
2

)
-regular graphs can be approxi-

mated within relative error 𝛿
2(𝑞+1) in polynomial-time, then Max-Cut can be approximated within 𝛿 in

polynomial-time for Δ-regular graphs.

The original reduction in [KKLP97, Theorem 1] works for only even 𝑞 and gives relative error lower
bound 𝛿

2(𝑞−1) instead. For odd 𝑞 they used a different reduction to achieve the same lower bound
but it does not keep the degrees bounded. Here we briefly describe how to modify the reduction in
[KKLP97, Theorem 1] such that it works for odd 𝑞 as well, albeit with a slightly worse relative error
lower bound 𝛿

2(𝑞+1) . For odd 𝑞, given an instance 𝐺 = (𝑉 , 𝐸) for Max-Cut, we replace each vertex
𝑣 ∈ 𝑉 by a clique𝐶𝑣 of size 𝑞+12 (instead of 𝑞2 in the original reduction), and replace each edge (𝑢, 𝑣) ∈ 𝐸
by a bipartite complete graph between𝐶𝑣 and𝐶𝑢 . Moreover, give weight 𝑞+1𝑞−1𝑑𝐺 (𝑣) for edges inside𝐶𝑣
(instead of 𝑑𝐺 (𝑣)) and keep weight 1 for all other edges. It can be verified straightforwardly that the
proof still works, except that the parameters 𝛼 and 𝛽 changed from (𝑞 (𝑞−1)2 , 2𝑞 ) to ( (𝑞+1)

2

2 , 2
𝑞+1 ), which

leads to the worse lower bound 𝛿
2(𝑞+1) . Finally, Crescenzi, Silvestri, and Trevisan [CST01] showed that

for a general class of combinatorial optimization problem, including Max-𝑞-Cut, the weighted and
unweighted versions have the same approximation complexity.
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Lemma 5.3. There is a constant 0 < 𝐶0 < 1 such that for any 𝑞 ≥ 2, there is no FPRAS for the 𝑞-state
Potts model with weights 𝐵 < 𝑞−1/𝐶0 in (2𝑞 + 1)-regular graphs unless NP = RP.

Proof. Let𝐶0 :=
5𝛿0
24 , where 𝛿0 is from Proposition 5.1. We claim that for any 𝑞 ≥ 2, an FPRAS for𝑍𝐵 (𝐺)

with weight 𝐵 < 𝑞−1/𝐶0 in graphs with degree bound 2𝑞+1 implies an efficient approximation of Max-
𝑞-Cut within relative error 𝜀0 := 𝛿0

2(𝑞+1) in graphs with the same degree bound. Then Proposition 5.1
and Proposition 5.2 (with Δ = 3) imply the lemma.

Given an instance𝐺 = (𝑉 , 𝐸) toMax-𝑞-Cut, assume themaximum value of𝑞-cut isOpt. Let𝑛 := |𝑉 |
and𝑚 := |𝐸 |. Then𝑚 = (2𝑞+1)𝑛

2 . If we had an FPRAS for the 𝑞-state Potts model, then we can efficiently
sample a colouring proportional to its weight. (In the local lemma setting, one such reduction is given
in [JPV21b].) The probability that the cut value of the colouring is less than (1 − 𝜀0)Opt is at most

𝑞𝑛𝐵𝑚−(1−𝜀0 )Opt

𝐵𝑚−Opt + 𝑞𝑛𝐵𝑚−(1−𝜀0 )Opt
.

In particular, this probability is at most 1/2 if
𝐵𝑚−Opt ≥ 𝑞𝑛𝐵𝑚−(1−𝜀0 )Opt,

which is equivalent to 𝐵−𝜀0Opt ≥ 𝑞𝑛 . On the other hand, notice that a uniformly at random colouring
achieves cut value (1− 1

𝑞 )𝑚 in expectation. Thus,Opt ≥ (1− 1
𝑞 )𝑚 = (2𝑞+1) (𝑞−1)𝑛

2𝑞 . Consequently, for any

𝑞 ≥ 2, 𝐵−𝜀0Opt ≥ 𝐵−𝛿0𝑛 (2𝑞+1) (𝑞−1)
4𝑞 (𝑞+1) ≥ 𝐵−𝐶0𝑛 , since 𝐶0 =

5𝛿0
24 ≤ (2𝑞+1) (𝑞−1)𝛿0

4𝑞 (𝑞+1) for 𝑞 ≥ 2. Thus if 𝐵 < 𝑞−1/𝐶0 ,
𝐵−𝜀0Opt ≥ 𝑞𝑛 as desired. Standard methods can boost the success probability from 1/2 to arbitrarily
close to 1. □

Now we are ready to show Lemma 2.3.

Proof of Lemma 2.3. Given a (2𝑞 + 1)-regular graph 𝐺 = (𝑉 , 𝐸), we replace each edge by 𝑠 := ⌊ Δ
2𝑞+1⌋

parallel edges to get a new graph 𝐺 ′ whose degree is at most (2𝑞 + 1)𝑠 ≤ Δ. As 𝑞 ≥ 2, 𝐶1 ≥ 5, and
Δ ≥ 2𝐶1𝑞 ln𝑞, 𝑠 ≥ Δ

2𝑞+1 − 1 > 0.63 Δ
2𝑞+1 .

If we have a Potts model with edge weight 𝐵 on𝐺 ′, then effectively, this is a Potts model on𝐺 with
𝐵′ = 𝐵𝑠 . Thus if 𝐵 < 1 − 𝐶1𝑞 ln𝑞

Δ for 𝐶1 = 5/𝐶0, where 𝐶0 is from Lemma 5.3, then

𝐵−𝑠𝐶0 >

(
1 + 𝐶1𝑞 ln𝑞

Δ

)𝑠𝐶0

≥ 𝑒
0.8𝑠𝐶0𝐶1𝑞 ln𝑞

Δ ≥ 𝑒
0.8∗0.63𝐶0𝐶1𝑞 ln𝑞

2𝑞+1 > 𝑒
𝐶0𝐶1𝑞 ln𝑞
2(2𝑞+1) ≥ 𝑞0.2𝐶0𝐶1 ≥ 𝑞,

where in the first line we used 1 + 𝑥 ≥ 𝑒0.8𝑥 for 𝑥 ≤ 0.5. Thus this parallel construction can reduce
from the Potts model satisfying the conditions of Lemma 5.3, which is NP-hard to approximate. □

5.2. Proof of Lemmas 4.15 and 4.9.

Proof of Lemmas 4.15 and 4.9. We first prove Lemma 4.15. Let

𝑆 := 𝑅0𝐶0𝑡
2 +

(∑3
𝑗=1𝐶 𝑗𝑞 𝑗

)
𝑅0𝑡 +

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

)
𝐶0𝑡 +

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

) (∑3
𝑗=1𝐶 𝑗𝑞 𝑗

)
−

(∑3
𝑗=1 𝑅 𝑗𝐶 𝑗𝑞 𝑗

)
,

𝑅 := 𝑅 (𝑑+1)/𝑑
0 +

(∑3
𝑗=1 𝑅

(𝑑+1)/𝑑
𝑗 𝑞 𝑗

)
, 𝐶 := 𝐶 (𝑑+1)/𝑑

0 + ∑3
𝑗=1𝐶

(𝑑+1)/𝑑
𝑗 𝑞 𝑗

By direct calculation,

𝜕Φ𝑆

𝜕𝑞𝑖
= (𝑑+1)

𝑆

[
𝑅𝑖𝐶0𝑡 + 𝑅0𝐶𝑖𝑡 − 𝑅𝑖𝐶𝑖 + 𝑅𝑖

(∑3
𝑗=1𝐶 𝑗𝑞 𝑗

)
+𝐶𝑖

(∑3
𝑗=1 𝑅 𝑗𝑞 𝑗

)]
− 𝑑

(𝑅 (𝑑+1)/𝑑
𝑖
𝑅 + 𝐶 (𝑑+1)/𝑑

𝑖
𝐶

)
.

Note that if 𝑞𝑖 > 0 and 𝑅𝑖 ≠ 0, then it must holds that 𝜕Φ𝑆/𝜕𝑅𝑖 = 0, and hence (12) applies, which gives
(32) 𝑅 (𝑑+1)/𝑑

0 ∝ 𝑅0(𝐶0𝑡
2 + (𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3)𝑡), 𝑅 (𝑑+1)/𝑑

𝑖 ∝ 𝑅𝑖 (𝐶0𝑡 + 𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3 −𝐶𝑖) .

Therefore, 𝑅
(𝑑+1)/𝑑
𝑖
𝑅 =

𝑅𝑖𝐶0𝑡+𝑅𝑖
(∑3

𝑗=1𝐶 𝑗𝑞 𝑗
)
−𝑅𝑖𝐶𝑖

𝑆 and, similarly, 𝐶
(𝑑+1)/𝑑
𝑖
𝐶 =

𝐶𝑖𝑅0𝑡+𝐶𝑖
(∑3

𝑗=1 𝑅 𝑗𝑞 𝑗
)
−𝑅𝑖𝐶𝑖

𝑆 . Note that
these two equations also hold trivially when 𝑅𝑖 = 0 or 𝐶𝑖 = 0, respectively. Putting these together
yields the desired expression for 𝜕Φ𝑆

𝜕𝑞𝑖
in Lemma 4.15.
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For the second part of Lemma 4.15, without loss of generality, suppose 𝑞1, 𝑞2 > 0 and 𝜕Φ𝑆/𝜕𝑞1 −
𝜕Φ𝑆/𝜕𝑞2 > 0. Take a positive 𝜀 and consider (𝑞1+𝜀, 𝑞2−𝜀, 𝑞3). When 𝜀 is small enough, the entries 𝑞1+𝜀
and 𝑞2 − 𝜀 are positive, the value of Φ𝑆 increases, and feasibility in (11) still holds. Hence (𝑞1, 𝑞2, 𝑞3)
does not maximize Φ.

Finally we prove Lemma 4.9. Here we have an extra condition that q is𝑚-maximal. This means there
exists a maximizer r, c such that for every 𝑖 ≠ 𝑗 such that 𝑞𝑖 , 𝑞 𝑗 > 0, it holds that 𝑅𝑖 ≠ 𝑅 𝑗 and 𝐶𝑖 ≠ 𝐶 𝑗 .
From (12) and (13), we obtain that r, c specify an𝑚-supported fixpoint of the tree recursion (8). □

5.3. Proof of Lemma 4.7.

Proof of Lemma 4.7. We first show that the maximum in (10) cannot be achieved at 𝑅0 = 0 or 𝐶0 = 0.
Assume otherwise. If 𝑅0 = 0, we have that

𝜕Φ𝑆

𝜕𝑅0

����
𝑅0=0

=
(𝑑 + 1)𝑡
𝑆

· (𝐶0𝑡 + 𝑞1𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3) > 0

where 𝑆 > 0. Therefore, increasing 𝑅0 by a sufficiently small amount increases also the value of Φ𝑆 ,
contradiction. An analogous argument applies for 𝐶0.

Next, we show that at least one of 𝑅1, 𝑅2, 𝑅3,𝐶1,𝐶2,𝐶3 are non-zero. Assume otherwise, then

𝜕Φ𝑆

𝜕𝑅1

����
𝑅1=0

=
𝑑 + 1
𝑆

· (𝐶0𝑡 + (𝑞1 − 1)𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3) =
𝑑 + 1
𝑆

𝐶0𝑡 > 0,

and therefore we obtain a contradiction as above.
Consider now a triple (𝑞1, 𝑞2, 𝑞3) with positive entries, and assume w.l.o.g. that the maximum is

taken when 𝑅1 = 0. We claim that 𝐶1 > 0. Otherwise, by the first part of Lemma 4.15, we have
𝜕Φ𝑆/𝜕𝑞1 = 0, and 𝜕Φ𝑆/𝜕𝑞𝑖 > 0 for some 𝑖 ∈ {2, 3} since we cannot have 𝑅2 = 𝑅3 = 𝐶2 = 𝐶3 = 0. This
yields a contradiction to the second part of Lemma 4.15, and therefore 𝐶1 > 0. Observe also that

𝜕Φ𝑆

𝜕𝑅1

����
𝑅1=0

=
𝑑 + 1
𝑆

· (𝐶0𝑡 + (𝑞1 − 1)𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3),

so by the argument above we conclude that 𝐶0𝑡 + (𝑞1 − 1)𝐶1 + 𝑞2𝐶2 + 𝑞3𝐶3 ≤ 0 and therefore 𝑞1 < 1
(since 𝐶0,𝐶1 > 0). This yields that

𝐶1 ≥
1

1 − 𝑞1
(𝐶0𝑡 + 𝑞2𝐶2 + 𝑞3𝐶3) > 𝐶0.

On the other hand, since both of𝐶0,𝐶1 are nonzero, to achieve the maximum, (13) must hold for 𝑖 = 1,
which gives 𝐶0 > 𝐶1, contradiction. Therefore we have 𝑅1 > 0 for triples with positive entries.

Exactly the same argument works for triples of type (𝑞1, 0, 𝑞3) with 𝑞1, 𝑞3 > 0. For the case (𝑞, 0, 0),
note that 𝑞 ≥ 4 > 1, which means the partial derivatives with respect to both 𝑅1 and𝐶1 are positive at
𝑅1 = 0 and 𝐶1 = 0 respectively, and hence the maximum cannot be taken at either 𝑅1 = 0 or 𝐶1 = 0.

To prove the final part of the lemma, suppose that 𝑞𝑖 , 𝑞 𝑗 > 0. Since 𝑅𝑖 ,𝐶𝑖 , 𝑅 𝑗 ,𝐶 𝑗 > 0, we have that
(12) and (13) apply, which yields that 𝑅𝑖 = 𝑅 𝑗 iff 𝐶𝑖 = 𝐶 𝑗 . □

5.4. Proof of Lemma 4.19 and Lemma 4.25.

Proof of Lemma 4.19. We put the expression of ℎ here for convenient reference.

(33) ℎ(𝑥) :=
(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 − 𝑥𝑑 − 1

𝑥 − 1
+ 𝑞′ + (𝑞′ − 1)𝑥𝑑 .

We have that ℎ is continuous over 𝑥 ∈ (1, +∞) and lim𝑥→+∞ ℎ(𝑥) = +∞. Using that 𝑡𝑑+1 = 𝑡Δ = 𝑞𝑘 − 𝑞,
we have that

lim
𝑥↓1

ℎ(𝑥) =
(𝑑+1
𝑑

)𝑑
𝑡𝑑+1 − 𝑑 + 𝑞 − 1 < e𝑞𝑘 − e𝑞 − 𝑑 + 𝑞 − 1 < e𝑞𝑘 − 𝑑 < 0.

This implies the existence of 𝑥 with ℎ(𝑥) = 0. To prove the uniqueness of the root, we will show that
for any root 𝑥 > 1 of ℎ′(𝑥), it holds that ℎ(𝑥) < 0 (note if such 𝑥 does not exist then we are already
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done), using the fact that ℎ is differentiable and its derivative is continuous. To see the reason why it
is sufficient, note that the number of roots of ℎ(𝑥) over 𝑥 > 1 must be odd (because any critical point
of ℎ has value less than zero). Assuming towards contradiction, let 𝑥2 > 𝑥1 > 1 be the smallest two
roots. Then ℎ′(𝑥1) > 0 and ℎ′(𝑥2) < 0, indicating there must be some 𝑥∗ ∈ (𝑥1, 𝑥2) such that ℎ′(𝑥∗) = 0.
However, in this case ℎ(𝑥∗) > 0, which leads to contradiction.

Next we prove our claim. Take the derivative of ℎ and let it be zero:

ℎ′(𝑥) = 𝑑 (𝑞′ − 1)𝑥𝑑−1 − 𝑑𝑥
𝑑−1

𝑥 − 1
+ 𝑥𝑑 − 1
(𝑥 − 1)2 +

𝑑𝑡𝑑+1𝑥𝑑−1
(
𝑥𝑑+1−1
𝑥𝑑−1

)𝑑−1
(𝑑 − 𝑑𝑥 + 𝑥 (𝑥𝑑 − 1))

(𝑥𝑑 − 1)2
= 0,

or equivalently,

(34)
(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 =

(𝑥𝑑 − 1)(𝑥𝑑+1 − 1) (𝑥 − 𝑥𝑑 (𝑑 (𝑞′(𝑥 − 1) − 𝑥)(𝑥 − 1) + 𝑥))
𝑑 (𝑥 − 1)2𝑥𝑑 (𝑑 − 𝑑𝑥 + 𝑥 (𝑥𝑑 − 1))

.

Combining (33) and (34), we obtain that for any 𝑥 such that ℎ′(𝑥) = 0, it holds that

ℎ(𝑥) = 𝑔(𝑥, 𝑑, 𝑞′)
𝑑 (𝑥 − 1)2𝑥𝑑−1(𝑑 − 𝑑𝑥 + 𝑥 (𝑥𝑑 − 1))

where

(35)
𝑔(𝑥, 𝑑, 𝑞′) := 𝑑𝑞′(𝑥 − 1)2(𝑥 + 1)(𝑥𝑑 − 1)𝑥𝑑−1 − (𝑥𝑑 − 1)2(𝑥𝑑+1 − 1)

− 𝑑2𝑥𝑑−1(𝑥 − 1)2(1 − 𝑥1+𝑑 + 𝑞′(𝑥 − 1)(𝑥𝑑 + 1)) .

It is not hard to see that 𝑑 −𝑑𝑥 + 𝑥 (𝑥𝑑 − 1) > 0 for any 𝑥 > 1, so, to show ℎ(𝑥) < 0, it suffices to prove
𝑔(𝑥, 𝑑, 𝑞′) < 0 for all 𝑥 > 1. This will follow by showing that
(36) 𝑔(𝑥, 𝑑, 0) < 0 and 𝑔(𝑥, 𝑑, 𝑞′) is decreasing in 𝑞′, for any 𝑥 > 1 and 𝑑 ≥ 3,
We have 𝑔(𝑥, 𝑑, 0)/(𝑥𝑑+1− 1) =

(
𝑑2(𝑥 − 1)2𝑥𝑑−1− (𝑥𝑑 − 1)2

)
; the last quantity has been shown negative

for all 𝑥 > 1 in the proof of Lemma 4.5. To prove the monotonicity w.r.t. 𝑞′ note that
𝜕𝑔

𝜕𝑞′
= −𝑑 (𝑥 − 1)2𝑥𝑑−1

(
−(𝑥 + 1)𝑥𝑑 + 𝑑 (𝑥 − 1)

(
𝑥𝑑 + 1

)
+ 𝑥 + 1

)
=: 𝑑𝑥𝑑−1(𝑥 − 1)2𝑔1(𝑥)

where 𝑔1(𝑥) := −
(
−(𝑥 + 1)𝑥𝑑 + 𝑑 (𝑥 − 1)

(
𝑥𝑑 + 1

)
+ 𝑥 + 1

)
. Note that

𝑔′1(𝑥) = (𝑑 + 1)(𝑥𝑑−1(𝑑 + 𝑥 − 𝑑𝑥) − 1) < 0 for 𝑥 > 1

Since𝑔1(1) = 0, we obtain 𝑔1(𝑥) < 0 for all 𝑥 > 1, proving (36) and concluding the proof of Lemma 4.19.
□

Proof of Lemma 4.25. Recall that ℎ2(𝑥) :=
(
𝑥𝑑+1−1
𝑥𝑑−1

)𝑑
𝑡𝑑+1 − 𝑥𝑑−1

𝑥−1 + (𝑞 − 1)𝑥𝑑 . We adopt the same idea as
the proof of Lemma 4.19 by showing that ℎ2 takes negative values at critical points. The estimation of
lim𝑥→1 ℎ2(𝑥) is the same as we did in Lemma 4.19.

Taking the derivative of ℎ2 and setting it to zero, we get

𝑑𝑞𝑥𝑑−1 +
𝑑𝑡𝑑+1

(
𝑥−1
𝑥𝑑−1 + 𝑥

)𝑑−1 (
𝑥

(
𝑥𝑑 − 1

)
+ 𝑑 (−𝑥) + 𝑑

)
𝑥𝑑−1(

𝑥𝑑 − 1
)2 − (𝑑 + 1)𝑥𝑑

𝑥 − 1
+ 𝑥

𝑑+1 − 1
(𝑥 − 1)2 = 0,

or equivalently,(
𝑥𝑑+1 − 1

𝑥𝑑 − 1

)𝑑
𝑡𝑑+1 =

𝑥−𝑑
(
𝑥𝑑 − 1

) (
𝑥𝑑+1 − 1

) (
𝑑𝑞𝑥𝑑 − 2𝑑𝑞𝑥𝑑+1 + 𝑑𝑞𝑥𝑑+2 + 𝑑𝑥𝑑+1 + 𝑥𝑑+1 − 𝑑𝑥𝑑+2 − 𝑥

)
𝑑 (𝑥 − 1)2

(
−𝑥𝑑+1 + 𝑑𝑥 − 𝑑 + 𝑥

) .

By plugging this back into the expression for ℎ2(𝑥) and simplifying, we obtain that for any 𝑥 such that
ℎ′2(𝑥) = 0 it holds that ℎ2(𝑥) = 𝑔 (𝑥,𝑑,𝑞)

𝑑 (𝑥−1)2(𝑑−𝑑𝑥+𝑥 (𝑥𝑑−1)) , where

𝑔(𝑥, 𝑑, 𝑞) := −𝑑2(𝑥 − 1)2
(
𝑥𝑑 (𝑞(𝑥 − 1) − 𝑥) + 1

)
+ 𝑑𝑞(𝑥 − 1)2

(
𝑥𝑑 − 1

)
−

(
𝑥𝑑 − 1

)2 (
𝑥𝑑+1 − 1

)
𝑥1−𝑑 .
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Since 𝑑 − 𝑑𝑥 + 𝑥 (𝑥𝑑 − 1) > 0 for any 𝑥 > 1, it remains to prove that 𝑔(𝑥, 𝑑, 𝑞) < 0. Note that
𝜕𝑔 (𝑥,𝑑,𝑞)

𝜕𝑞 = 𝑑 (𝑥 − 1)2
(
𝑥𝑑 (𝑑 (−𝑥) + 𝑑 + 1) − 1

)
< 0 for 𝑥 > 1 and therefore 𝑔(𝑥, 𝑑, 𝑞) < 𝑔(𝑥, 𝑑, 0). We also

have that 𝑔(𝑥, 𝑑, 0)/(𝑥𝑑+1 − 1) =
(
𝑑2(𝑥 − 1)2 − 𝑥1−𝑑

(
𝑥𝑑 − 1

)2)
< 0, where the inequality follows from

the argument below (36). Therefore 𝑔(𝑥, 𝑑, 0) < 0 for all 𝑥 > 1, as desired, finishing the proof. □

5.5. Proof of Lemma 4.21 and Lemma 4.22. We will use the following inequality.

(37) exp{𝑎} >
(
1 + 𝑎

𝑏

)𝑏
> exp

{
𝑎𝑏

𝑎 + 𝑏

}
for all 𝑎, 𝑏 > 0.

Proof of Lemma 4.21. Let 𝑝 := 𝑡𝑥 + 𝑞 − 1 and assume for the sake of contradiction that 𝑝 ≥ 𝑑 . Let
𝑤 := 𝑝/𝑞𝑘 and 𝑐 := 𝑑/𝑞𝑘 , so tha the assumptions of the lemma imply that𝑤 ≥ 𝑐 ≥ 5. (29) gives

𝑝 = 𝑞 − 1 + 𝑡𝑑+1
(
1 + 1

𝑝

)𝑑
𝑞 − 1 + 𝑡𝑑+1 exp

{
𝑑

𝑝

}
< 𝑞 − 1 + 𝑞𝑘 exp

{ 𝑐
𝑤

}
.

Therefore,𝑤 <
𝑞−1
𝑞𝑘

+ exp
{
𝑐
𝑤

}
< 1

𝑞𝑘−1
+ e < 3, contradicting𝑤 ≥ 5. □

Proof of Lemma 4.22. For any solution (𝑥,𝑦) of (28), 𝑥 satisfies the two-step recursion 𝑓 (𝑥) = 0, where

𝑓 (𝑧) := 𝑡𝑑
©­­«1 +

1

𝑡 · 𝑡𝑑
(
1 + 1

𝑡𝑧+𝑞−1

)𝑑
+ 𝑞 − 1

ª®®¬
𝑑

− 𝑧.

Take 𝑥 as the largest root of 𝑓 . Define 𝑐 := 𝑑/𝑞𝑘 . Because lim𝑥→∞ 𝑓 (𝑥) = −∞, to show (b), it suffices
to prove 𝑓

(
𝑐2𝑞𝑘 𝑞𝑘

𝑞𝑘−𝑞

)
> 0, or equivalently,

(38)
(
1 + 1

(𝑞𝑘 − 𝑞)𝐷 + 𝑞 − 1

)𝑑
> 𝑡𝑐2

(
𝑞𝑘

𝑞𝑘 − 𝑞

)2
where 𝐷 :=

©­­«1 +
1

𝑡
(
𝑐2𝑞𝑘 𝑞𝑘

𝑞𝑘−𝑞

)
+ 𝑞 − 1

ª®®¬
𝑑

.

Because 𝐷 < exp
{

𝑑
𝑐2𝑞𝑘

}
< exp{ 1𝑐 } < 1.2215,

LHS of (38) >
(
1 + 1

1.2215(𝑞𝑘 − 𝑞) + 𝑞 − 1

)𝑐𝑞𝑘
> 2.2674𝑐 ,

where the last inequality follows from (37). Moreover, for any 𝑞 ≥ 4, 𝑘 ≥ 2, 𝑑 ≥ 5𝑞𝑘 , we have (𝑞𝑘/(𝑞𝑘 −
𝑞))2 < 1.7778 and 𝑡 < 1.0312. Therefore, RHS of (38) < 1.8332𝑐2, which is smaller than 2.2674𝑐

whenever 𝑐 ≥ 5. This concludes (b). Part (a) follows from (b) and Lemma 4.21. □

5.6. Proof of Lemma 4.31.

Proof of Lemma 4.31. Define 𝑠 := 𝑑
𝑡𝑑+1−1 . By Proposition 4.27, any point on 𝑥 = 1 + 𝑠

𝑑 must be on the
right of P+

1 . Therefore we are interested in the point (𝑥,𝑦) where 𝑥 = 1+ 𝑠
𝑑 and 𝑦 = 1+ 𝑠

2𝑑 . Specifically,
we will show 𝑓2(𝑥,𝑦) < 0, which, together with the fact that lim𝑥→+∞ 𝑓2(𝑥,𝑦) = +∞ for any fixed𝑦 > 1,
implies the existence of 𝑥𝐸 > 𝑥 such that 𝑓2(𝑥𝐸, 𝑦) = 0. However, in order to apply Lemma 4.30, we
further need to show 𝑦 < 𝑥∗∗. The latter can be done by proving 𝑓2(𝑦,𝑦) < 0 due to Lemma 4.25.

We deal with the latter one first. Assume 𝑞 ≥ 4, 𝑘 ≥ 3, or 𝑞 ≥ 12, 𝑘 ≥ 2. Then 5 < 𝑠 < 5.4962

, 𝑞𝑘−𝑞
2(𝑞𝑘−𝑞−1) < 0.5085 and

(
1 − 𝑞−1

2(𝑞𝑘−𝑞−1)

)
> 0.9580. Set 𝐷 :=

(
1 + 𝑠

2𝑑

)𝑑 . By using (37), one can show
𝐷 > exp{5/2} > 12.1824. Therefore,

𝑓2
(
1 + 𝑠

2𝑑
, 1 + 𝑠

2𝑑

)
= 1 +

(
1 +

𝑠
(
1 + 1

−1+𝐷
)

2𝑑

)𝑑
𝑞𝑘 − 𝑞

2(𝑞𝑘 − 𝑞 − 1)
− 𝐷

(
1 − 𝑞 − 1

2(𝑞𝑘 − 𝑞 − 1)

)
< 1 + exp

{
𝑠

2

(
1 + 1

−1 + 𝐷

)}
𝑞𝑘 − 𝑞

2(𝑞𝑘 − 𝑞 − 1)
− 𝐷

(
1 − 𝑞 − 1

2(𝑞𝑘 − 𝑞 − 1)

)
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< 1 + 0.5085 exp

{
5.4962

2

(
1 + 1

−1 + 𝐷

)}
− 0.9580𝐷 < 0,

where in the last inequality we use the fact that the function is decreasing in 𝐷 . The cases (𝑞, 𝑘) =
(4, 2), (6, 2), (8, 2), (10, 2) also holds by directly computing 𝑓2.

The first one can be handled similarly. Denote 𝐸 :=
(
1 + 𝑠

𝑑

)𝑑 . Then 𝐷 > 𝐸1/2. By using (37) again,
𝐸 > exp{5}. Consider the case 𝑞 ≥ 8, 𝑘 ≥ 3, or 𝑞 ≥ 28, 𝑘 ≥ 2. Then 5 < 𝑠 < 5.1921, 𝑞𝑘−𝑞

2(𝑞𝑘−𝑞−1) < 0.5010

and
(
1 − 𝑞−1

2(𝑞𝑘−𝑞−1)

)
> 0.9821. Therefore,

𝑓2
(
1 + 𝑠

𝑑
, 1 + 𝑠

2𝑑

)
= 1 +

(
1 +

𝑠
(
1 + 1

−1+𝐷
)

𝑑

)𝑑
𝑞𝑘 − 𝑞

2(𝑞𝑘 − 𝑞 − 1)
− 𝐸

(
1 − 𝑞 − 1

2(𝑞𝑘 − 𝑞 − 1)

)
< 1 + exp

{
𝑠

(
1 + 1

−1 + 𝐷

)}
𝑞𝑘 − 𝑞

2(𝑞𝑘 − 𝑞 − 1)
− 𝐸

(
1 − 𝑞 − 1

2(𝑞𝑘 − 𝑞 − 1)

)
< 1 + exp

{
𝑠

(
1 + 1

−1 + 𝐸1/2

)}
𝑞𝑘 − 𝑞

2(𝑞𝑘 − 𝑞 − 1)
− 𝐸

(
1 − 𝑞 − 1

2(𝑞𝑘 − 𝑞 − 1)

)
< 1 + 0.5010 exp

{
5.1921

(
1 + 1

−1 + 𝐸1/2

)}
− 0.9821𝐸 < 0,

where in the last inequality we use the fact that the function is decreasing in 𝐸. The remaining cases
(𝑞, 𝑘) = (4, 3), (6, 3), (4, 2), (6, 2), · · · , (26, 2) also holds by directly computing 𝑓2. □
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