
TOWARDS DERANDOMISING MARKOV CHAIN MONTE CARLO

WEIMING FENG, HENG GUO, CHUNYANG WANG, JIAHENG WANG, YITONG YIN

Abstract. We present a new framework to derandomise certain Markov chain Monte Carlo (MCMC)
algorithms. As in MCMC, we first reduce counting problems to sampling from a sequence of marginal
distributions. For the latter task, we introduce a method called coupling towards the past that can, in loga-
rithmic time, evaluate one or a constant number of variables from a stationary Markov chain state. Since
there are at most logarithmic random choices, this leads to very simple derandomisation. We provide
two applications of this framework, namely efficient deterministic approximate counting algorithms for
hypergraph independent sets and hypergraph colourings, under local lemma type conditions matching,
up to lower order factors, their state-of-the-art randomised counterparts.

Contents

1. Introduction 1
2. Preliminaries 6
3. Derandomisation for deterministic counting 9
4. Coupling towards the past 10
5. Hypergraph independent set 16
6. Hypergraph colouring 27
7. Concluding remarks 46
References 47
Appendix A. Construction of 2-block-tree 50
Appendix B. Deterministic counting via derandomising the AJ algorithm 51

1. Introduction

It is a central question in the theory of computing to understand the power of randomness. Indeed,
randomisation has been shown to be extremely useful in designing efficient algorithms. One early and
surprising illustration of its power is through estimating the volume of a convex body. Deterministic
algorithms cannot achieve good approximation ratios through membership queries [Ele86, BF87], and
yet Dyer, Frieze, and Kannan [DFK91] discovered an efficient randomised approximation algorithm un-
der the same model. Their driving force is the celebrated Markov chain Monte Carlo (MCMC) method,
which has been studied since the origin of electronic computers. In MCMC, one reduces the counting
problem (such as computing the volume) to (usually a sequence of) related sampling problems [JVV86],
and the latter is solved using Markov chains. This powerful method has lead to many great achieve-
ments, ranging from the early results of approximating the partition function of ferromagnetic Ising
models [JS93] and the permanent of non-negative matrices [JSV04], to more recent developments such
as counting the number of bases in matroids [ALOV19, CGM21], and estimating partition functions of
spin systems up to critical thresholds [ALO20, CLV20, CLV21, CFYZ21, AJK+22, CE22, CFYZ22].

While randomness remains an indispensable ingredient to the MCMC method, the belief that ran-
domness is essential to efficient approximate counting is seriously challenged over the past two decades.

(Weiming Feng, Heng Guo, Jiaheng Wang) School of Informatics, University of Edinburgh, Informatics Forum,
Edinburgh, EH8 9AB, United Kingdom. E-mail: wfeng@ed.ac.uk, hguo@inf.ed.ac.uk, jiaheng.wang@ed.ac.uk.
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 947778).

(Chunyang Wang, Yitong Yin) State Key Laboratory for Novel Software Technology, Nanjing University, 163
Xianlin Avenue, Nanjing, Jiangsu Province, 210023, China. E-mail: wcysai@smail.nju.edu.cn, yinyt@nju.edu.cn

1

wfeng@ed.ac.uk
hguo@inf.ed.ac.uk
jiaheng.wang@ed.ac.uk
wcysai@smail.nju.edu.cn
yinyt@nju.edu.cn

Thiswas initiated by a highly influential result ofWeitz [Wei06], which gave the first deterministic fully
polynomial-time approximation scheme (FPTAS) for a #P-hard problem. Since then, deterministic al-
gorithms are gradually catching up with their random counterparts on many fronts. A plethora of tech-
niques have been introduced and developed for deterministic approximate counting, including: decay
of correlation [Wei06, BGK+07, GK07], zero-freeness of polynomials [Bar16, PR17, LSS22], linear pro-
gramming based methods [Moi19, GLLZ19, JPV21b], and various statistical physics related techniques
[HPR19, JPP22, JPSS22]. Curiously, although these algorithms are usually guided by probabilistic intu-
itions related to the problem, they work very differently from typical randomised algorithms.

All these developments beg one question: can we derandomise MCMC more directly? The benefit
of a positive answer would be two folds. It can help us to better understand the role of randomisation
in MCMC and in approximate counting. It might also lead to easier ways of designing determinis-
tic counting algorithms thanks to the plentifulness of MCMC algorithms. However, this task is not
easy, as Markov chains require at least a linear amount of random bits to approach its stationary dis-
tribution. Short of a breakthrough in pseudo-random number generators, it seems impossible to fully
derandomise Markov chains.

In this paper we make the first positive step towards this question. The saving grace to the issue
above is that the Monte Carlo step of MCMC does not require fully simulate the Markov chains any-
ways! Usually, only the marginal probability of a single variable needs to be evaluated, rather than
the whole state. We show that for certain MCMC algorithms, one or a constant number of variables
can be evaluated in their stationary state within only logarithmic time. This leads to some very sim-
ple brute force enumeration derandomisation. To illustrate the power of this new method, we obtain
efficient deterministic approximate counting algorithms for hypergraph independent sets and hyper-
graph colourings. Our algorithms match their currently best randomised counterparts under local
lemma type conditions up to log factors. We describe our results in more details next.

1.1. Our contributions. We give deterministic approximate counting algorithms by derandomising
certain MCMC algorithms. In fact, we venture the idea that efficient deterministic approximate count-
ing follows from “highly efficient” randomised algorithms. We first explain what these are and how
we obtain them.

1.1.1. Coupling towards the past. We consider a class of generic Markov chains known as systematic
scan Glauber dynamics, which are single-site Glauber dynamics (a.k.a. Gibbs sampling, heat-bath dy-
namics) with a fixed scan order. In classical MCMC, a Markov chain (Xt)t ≥0 is simulated chronologi-
cally for long enough to draw a sample according to the stationary distributionX∞ ∼ µ. Due to a lower
bound of Hayes and Sinclair [HS07], which applies to a wide range of models, this will cost Ω(n logn)
random bits if Xt = (Xt (v))v ∈[n] consists of n variables. However this simulation seems very wasteful
when we are only interested in evaluating X∞(v) for some particular v ∈ [n]. This reflects a more gen-
eral question: can we calculate the fixed point of a dynamical systemwithout simulating the dynamical
system until convergence?

We introduce a new method for evaluating the states of variables in a stationary Markov chain
without simulating the entire chain. We call this method coupling towards the past (CTTP).1 Consider
a mixed chain (Xt)t ≤0 that runs from the infinite past to now. Our goal is to evaluate X0(v) for v ∈ [n],
which follows the marginal distribution, denoted µv . It suffices to simulate the last update for v , and
the key observation here is that updates of Glauber dynamics may depend only on a small amount
of information. In particular, when the marginal distributions are properly lower bounded, there is a
positive probability to determine the update without any information of the current state. Thus, we can
deduceX0(v) by recursively revealing only the necessary randomness backwards in time. Alternatively,
this can be viewed as a grand coupling constructed towards the past. Each random bit revealed is used
for all possible chains, and every information successfully deduced is the same for all chains as well.
When this process terminates at time −t for some t ≥ 0, no matter what the state before −t is, it evolves
into the same X0(v). This implies that X0(v) follows µv as desired.

1The name resembles the coupling from the past (CFTP) method by Propp and Wilson [PW96]. However our method has
several key differences from CFTP. See Section 1.3 for a comparison.

2

When the CTTP process terminates in logarithmic steps with high probability, it yields a marginal
sampler that draws, approximately, from the marginal distribution with O(logn) cost in both time
and random bits. The error in total variation distance is the failure probability of CTTP. Such mar-
ginal samplers can be straightforwardly derandomised by enumerating all possible random choices in
polynomial time to deterministically estimate the marginal probabilities, which implies FPTASes via
standard self-reductions [JVV86].

We will apply CTTP to the uniform distribution of hypergraph independent sets and to a projected
distribution induced by uniformly at random hypergraph colourings. In both applications, the condi-
tions we obtain to guarantee the O(logn) run-time of CTTP match those for O(n logn) mixing time
bounds of Glauber dynamics. From a complexity-theory point of view, our construction of marginal
samplers from the original Markov chain algorithm has a certain direct-sum flavor: we transform a
protocol for sampling n variables, to a new protocol for sampling single variables, using only O(1/n)
fraction of the original cost each.

We remark that these low-cost marginal samplers have significances beyond deterministic approx-
imate counting. For example, in probabilistic inferences, it is often the end goal to estimate marginal
probabilities. Thus, in such contexts, our marginal samplers are substantially faster than standard
MCMC.

1.1.2. Counting hypergraph independent sets. The first testing field of our framework is to approxi-
mately count the number of hypergraph independent sets (equivalent to satisfying assignments of
monotone CNF formulas). Let H = (V , E) be a hypergraph. A set S ⊆ V is a (weak) independent set if
S ∩e , e for all e ∈ E. This problem is naturally parameterised by k and ∆, which denote the (uniform)
hyperedge size and the maximum vertex degree of H , respectively. There was an exponential gap be-
tween the parameters for which efficient randomised and deterministic algorithms exist, and our work
closes this gap.

Estimating the number of hypergraph independent sets was first studied by Borderwich, Dyer, and
Karpinski [BDK08, BDK06] using Markov chains. They used path coupling to show that the straight-
forward Glauber dynamics mixes in O(n logn) time if ∆ ≤ k − 2. The mixing time analysis was later
improved by Hermon, Sly, and Zhang [HSZ19] to extend the condition exponentially to ∆ ≤ c2k/2 for
some absolute constant c > 0 via an information percolation argument. This threshold is tight up to
constants due to a hardness result in [BGG+19]. Very recently, Qiu, Wang, and Zhang [QWZ22] gave
a perfect sampler under similar conditions.

On the other hand, deterministic counting algorithms have been lagging behind for this problem.
Even with significant adjustment, the correlation decay method works only if ∆ ≤ k [BGG+19]. One
may also put it under the Lovász local lemma framework, and apply a more general algorithm by He,
Wang, and Yin [HWY22a] to obtain an efficient algorithm assuming∆ ≲ 2k/5. The symbol ≲ suppresses
lower-order items such as poly(k).2 The conditions of the latter algorithm still has a gap exponential
in k comparing to the randomised algorithm or the hardness threshold.

We close this exp(k) gap using our new framework. The result is summarised inTheorem 1.1, match-
ing the previously mentioned randomised algorithm and hardness threshold up to a factor of O(k2).
We note that one caveat of our algorithm, similar to all other deterministic approximate counting al-
gorithms we are aware of, is that the exponent of its running time depends on ∆ and k , rather than
an absolute constant as in the case of randomised algorithms. A detailed running time bound of our
algorithm is given in Section 5. Comparisons with previous works are summarised in Table 1.

Theorem 1.1. Let k ≥ 2 and ∆ ≥ 2 be two constants satisfying ∆ ≤ 1√
8ek2 · 2

k
2 . There is an FPTAS for the

number of independent sets in k-uniform hypergraphs with maximum degree ∆.

This is a relatively straightforward application, since we just apply CTTP to the uniform distribution
over hypergraph independent sets. Our run-time analysis incorporates various techniques developed
in the local lemma context. The crucial part is to show that when CTTP runs for too long, there must
be many independent unlikely events happening.

2We make sure to suppress same order terms when comparing to other works in Table 1 and Table 2.
3

Hypergraph independent sets Reference Bound Running time

Randomised
counting / sampling

[BDK08, BDK06] ∆ ≤ k − 2 Õ(n2) / O(n logn)
[HSZ19, QWZ22] ∆ ≲ 2k/2 Õ(n2) / O(n logn)

Deterministic
counting

[BGG+19] ∆ ≤ k nO (log(k∆))

[JPV21b] ∆ ≲ 2k/7 npoly(k ,∆)

[HWY22a] ∆ ≲ 2k/5 npoly(k ,∆)

This work ∆ ≲ 2k/2 npoly(k ,∆)

Hardness [BGG+19] ∆ ≥ 5 · 2k/2
assuming P , NP

Table 1. Algorithms and hardness results for hypergraph independent sets

The regime of parameters in which our technique applies go further if the hypergraph is linear ;
namely, any two hyperedges intersect on at most one vertex. In this case our result also almost matches
the state-of-the-art randomised algorithms [HSZ19], where they require ∆ ≤ c2k/k2 for some absolute
constant c > 0. The improvement for linear hypergraphs is achieved by adapting a technique intro-
duced in [FGW22].

Theorem 1.2. For any real number δ > 0, let k ≥ 25(1+δ)2
δ 2 and ∆ ≥ 2 be two integers such that ∆ ≤

1
100k3 2k/(1+δ). There is an FPTAS for the number of independent sets in k-uniform linear hypergraphs with
maximum degree ∆.

1.1.3. Counting hypergraph colourings. The other application we give is to approximately count the
number of hypergraph (proper) colourings. Again let H = (V , E) be a hypergraph, and a q-colouring
σ ∈ [q]V is called proper if no hyperedge is monochromatic under σ . Similar to hypergraph inde-
pendent sets, our work also closes the exponential gap that previously existed between the range of
parameters for which efficient randomised and deterministic algorithms exist.

This problem was also studied first in [BDK08], where they show that Glauber dynamics mixes in
O(n logn) time if ∆ < q − 1. However, to go beyond ∆ = Θ(q), one starts to encounter the so-called
frozen barrier. As observed in [FM11], Glauber dynamics can be no longer connected when ∆ > cq for
sufficiently large c .

The key to bypass the frozen barrier lies in a classical combinatorial result, the Lovász local lemma.
Introduced by Erdős and Lovász [EL75], the local lemma was originally used to show that hypergraph
colourings exist when ∆ ≤ qk−1/e. In fact, it gives more information about the distribution of uniform
colourings than their mere existence [HSS11]. Especially, if we assume similar but stronger conditions
than the local lemma condition, the distribution enjoys many nice properties. This enables a projec-
tion approach [FGYZ21a, FHY21] where one finds a properly projected distribution to run Glauber
dynamics on. The projected distribution has better connectivity than the original state space, and yet
transitions between projected states can be efficiently implemented. With this approach, the state-
of-the-art randomised algorithm [JPV21a] (and the related perfect sampling algorithm [HSW21]) is
shown to be efficient if ∆ ≲ qk/3.

On the other hand, in fact, efficient deterministic algorithms were obtained even before randomised
algorithms in this setting [GLLZ19] under similar local lemma type conditions, based onMoitra’s linear
programming based approach [Moi19]. Their algorithm was later improved by Jain, Pham, and Vuong
[JPV21b], and then the aforementioned work of He, Wang, and Yin [HWY22a] introduced an alterna-
tive method achieving ∆ ≲ qk/5, which was the state-of-the-art before our work. Note, once again,
the exponential in k gap between the range of parameters for efficient randomised and deterministic
algorithms.

4

Wealso close this gap. Our result is summarised inTheorem 1.3. However, in this setting, there is still
an exponential in k gap between the algorithmic threshold and the hardness threshold of [GGW22]. A
detailed running time bound is given in Section 6. Previous works and hardness results are summarised
in Table 2.

Theorem 1.3. Let k ≥ 20, ∆ ≥ 2, and q be three integers such that ∆ ≤
(q
64

) k−5
3 . There is an FPTAS for

the number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Hypergraph colourings Reference Bound Running time

Randomised
counting / sampling

[BDK08] ∆ ≤ q − 1 Õ(n2) / O(n logn)
[FHY21] ∆ ≲ qk/9 Õ(n2.0001) / Õ(n1.0001)

[JPV21a, HSW21] ∆ ≲ qk/3 Õ(n2.0001) / Õ(n1.0001)

Deterministic
counting

[GLLZ19] ∆ ≲ qk/14 npoly(k ,∆,logq)

[JPV21b] ∆ ≲ qk/7 npoly(k ,∆,logq)

[HWY22a] ∆ ≲ qk/5 npoly(k ,∆,logq)

This work ∆ ≲ qk/3 npoly(k ,∆,logq)

Hardness [GGW22] for even q, ∆ ≥ 5qk/2

assuming P , NP

Table 2. Algorithms and hardness results for hypergraph colourings

In this setting, we apply CTTP to the projected distribution, and there are twomain differences from
hypergraph independent sets. First, in each step of the self-reduction, instead of a single variable we
need to evaluate a set of variables of size k . A natural attempt to address this is to run CTTP for each
variable, and there is a further complication that we need to maintain consistency of the randomness
used amongst different runs. Moreover, as we are sampling from the projected distribution, we still
need to sample a colouring conditioned on the projected sample. This is addressed by noticing that
CTTP not only returns the final state of the variables, it also gives us enough information to perform
the very last update for them. This information is indeed also enough to sample a colouring from the
marginal distribution conditioned on the projected sample.

Similar to the case of hypergraph independent sets, we also have improved results for linear hyper-
graphs, almost matching the state-of-the-art randomised algorithm [FGW22].

Theorem 1.4. For any real number δ > 0, let k ≥ 50(1+δ)2
δ 2 , ∆ ≥ 2, and q be three integers such that

∆ ≤
(q
50

) k−3
2+δ . There is an FPTAS for the number of proper q-colourings in k-uniform linear hypergraphs

with maximum degree ∆.

1.2. Connection and comparisons with the Anand-Jerrum algorithm. Asmentioned before, the
core of our derandomisation method is a logarithmic-cost marginal sampler, which may have indepen-
dent interest. Our main source of inspiration, and also the first such marginal sampler, is the recent
recursive algorithm by Anand and Jerrum [AJ22] for perfect sampling in infinite spin systems. Al-
though the implementation of our marginal sampler also has a recursive structure, there are some
quite noticeable distinctions. For one thing, our algorithm can be derived from Glauber dynamics,
whereas the AJ algorithm relies on spatial mixing properties and does not seem to directly correspond
to any Markov chain. Moreover, as the recursive call goes deeper and deeper, AJ’s algorithm would
pin more and more variables. In contrast, our sampler resembles Markov chains. No variable is per-
manently fixed and all variables can be refreshed if we go back long enough. This last point actually
provides us a technical edge in the analysis which we will discuss later.

5

The Anand-Jerrum algorithm soon found applications for almost uniform sampling general con-
straint satisfaction solutions in the local lemma regime [HWY22b]. It was later derandomised [HWY22a],
which leads to the previous best deterministic approximate counting algorithms for the two appli-
cations we consider. This is a very recent and rare exception to the common paradigm that deter-
ministic approximate counting algorithms require drastically different techniques from randomised
algorithms. However, the Anand-Jerrum algorithm encounters some difficulty to match the state-
of-art bounds for randomised algorithm, particularly in the two applications we consider – hyper-
graph independent sets and hypergraph colourings. From a technical point of view, the difficulty
lies in the lack of control for the aforementioned pinning of partial configurations in deep recursive
calls of AJ’s algorithm. This makes it hard to analyse the time-space structure derived from the al-
gorithm’s execution history, which is a key feature in ours and in previous information percolation
arguments [HSZ19, QWZ22, JPV21a, HSW21] to achieve the state-of-the-art bounds. We leave it as
an interesting direction whether there is a refined analysis of the Anand-Jerrum algorithm matching
other methods in these contexts.

In any case, we remark that the Anand-Jerrum algorithm does also lead to deterministic counting al-
gorithms, especially for spin systemswith strong spatial mixing on graphswith subexponential growth.
The only thing missing from [AJ22] is tail bounds for their algorithm’s running time. We provide such
analysis and collate the implications in Appendix B.

1.3. Other related work. Our coupling towards the past (CTTP) marginal sampler is also inspired by
the celebrated “coupling from the past” (CFTP) by Propp and Wilson [PW96] for perfect simulation of
Markov chains. Both methods share some similarities such as running backwards in time and having
underlying grand couplings. However, they are also very different in several aspects. The main dif-
ference is that CFTP needs to sequentially simulate the evolution of the whole state, which, even with
some optimisation (such as using bounding chains [Hub98]) and under favourable conditions, would
still require at least linear time. This makes it unsuitable for our derandomisation needs. Our CTTP, on
the other hand, only guarantees the value of a single variable to be coupled from all possible starting
configurations. Even if we want to couple only a single variable in CFTP, it would be impossible to
determine what variables to simulate a priori. Our backwards deduction approach is an adaptive solu-
tion to this problem, namely, the information revealed so far determines what variables to be revealed
next. This constitutes a big difference in implementing the two methods.

There have been various works aiming to find deterministic approximations for Markov chains,
especially for random walks on graphs [CS06, CDFS10, SYKY17, SYKY18, MRSV21, PV22]. However,
these results do not seem to have meaningful consequences for MCMC, where the Markov chains are
essentially high-dimensional random walks. The state space and the underlying (implicit) graph are
exponentially large, making those aforementioned results difficult to apply.

Our work focuses on approximate counting via derandomising certain Markov Chain Monte Carlo
samplers, which falls under the broader category of derandomising Monte Carlo methods. See [LV91,
LVW93, GMR13, DS14, ST19] for several examples of the latter. Usually in their contexts it is sufficient
to consider additive errors, and as a consequence the randomised algorithms are relatively simple to
get. The emphasis is on finding techniques to derandomise them. In contrast, our derandomisation
actually comes from designing and analysing more involved randomised algorithms.

2. Preliminaries

2.1. Markov chain and Glauber dynamics. Let Ω be a (finite) state space. Let (Xt)∞t=1 be a Markov
chain over the space Ω with transition matrix P . We often use P to refer the corresponding Markov
chain. A distribution π over Ω is a stationary distribution of P if π = πP . The Markov chain P is
irreducible if for any x,y ∈ Ω, there exists t such that P t (x,y) > 0. The Markov chain P is aperiodic if
for any x ∈ Ω, gcd{t | P t (x, x) > 0} = 1. If the Markov chain P is both irreducible and aperiodic, then
it has a unique stationary distribution. The Markov chain P is reversible with respect to distribution π

6

if the following detailed balance equation holds
∀x,y ∈ Ω, π (x)P(x,y) = π (y)P(y, x),

which implies π is a stationary distribution of P . The mixing time of the Markov chain P is defined by
∀ε > 0, T (P, ε) := max

X0∈Ω
max{t | dTV

(
P t (X0, ·), µ

)
≤ ε},

where the total variation distance is defined by

dTV
(
P t (X0, ·), µ

)
:=

1
2

∑
y∈Ω

��P t (X0,y) − µ(y)
�� .

In this paper, we consider two fundamental Markov chains on discrete state space. Let µ be a dis-
tribution over [q]V . We assume V = {v1,v2, . . . ,vn}. The Glauber dynamics starts from an arbitrary
X0 ∈ [q]V with µ(X0) > 0. For the t-th transition step, the Glauber dynamics does as follows

• pick a variable v ∈ V uniformly at random and let Xt (u) = Xt−1(u) for all u , v ;
• sample Xt (v) from the distribution µXt−1(V \{v })

v .
The systematic scan Glauber dynamics starts from an arbitrary X0 ∈ [q]V with µ(X0) > 0. For the t-th
transition step, the systematic scan Glauber dynamics does as follows

• let i(t) = (t mod n) + 1, pick the variable v = vi(t), and let Xt (u) = Xt−1(u) for all u , v ;
• sample Xt (v) from the distribution µXt−1(V \{v })

v .
The only difference between the above two Markov chains is the way they pick variables. The Glauber
dynamics is an aperiodic and reversible Markov chain. The systematic scan Glauber dynamics is not a
time-homogeneousMarkov chain. However by bundlingn consecutive updates together we can obtain
a time-homogeneous Markov chain, which is aperiodic and reversible.
Theorem 2.1 ([LP17]). Let µ be a distribution with support Ω ⊆ [q]V . Let (Xt)∞t=0 denote the Glauber
dynamics or the systematic scan Glauber dynamics on µ. If (Xt)∞t=0 is irreducible over Ω, it holds that

∀X0 ∈ Ω, lim
t→∞

dTV (Xt , µ) = 0.

2.2. Lovász local lemma. We introduce the setting of the (variable framework) Lovász Local Lemma.
LetX = {X1,X2, . . . ,Xn} be a set ofmutually independent randomvariables. We letB = {B1,B2, . . . , Bm}
be a set of “bad events” that only depends onX. For each eventA (not necessarily one of the bad events
in B), we let vbl (A) ⊆ X be the set of variables in X A depends on. Moreover, we let Γ(A) = {B ∈ B |
B , A∧vbl (A)∩vbl (B) , �}. The celebrated Lovász Local Lemma states that when certain conditions
are met, the probability that no bad events occur is nonzero:
Lemma 2.2 ([EL75]). If there exists a function x : B → [0, 1] such that

∀B ∈ B : Pr [B] ≤ x(B)
∏

B′∈Γ(B)
(1 − x(B′)),(1)

then

Pr

[∧
B∈B

B

]
≥

∏
B∈B
(1 − x(B)) > 0,

When the condition (1) is satisfied, as observed in [HSS11], the probability of any event happens,
conditioning on no bad events occurs is also bounded:
Lemma 2.3 ([HSS11]). If (1) holds, then for any event A,

Pr

[
A |

∧
B∈B

B

]
≤ Pr [A]

∏
B∈Γ(A)

(1 − x(B))−1,

Note that for a k-uniform hypergraph H = (V , E) with ∆ ≥ 2 and qk−1 > e∆, by setting the bad
events Be being “e is not monochromatic” for each e ∈ E, we then have Pr [Be] = q1−k for each e ∈ E.
Setting x(Be) = 1

∆ for each e ∈ E we have the condition in (1) is satisfied, and therefore Lemma 6.1 is
a direct corollary from Lemma 2.3.

7

2.3. Counting to sampling reductions. The classical result of Jerrum, Valiant and Vazirani [JVV86]
showed that sampling and (randomised) approximate counting can be reduced to each other in poly-
nomial time for “self-reducible” functions. We do not need that level of generality, and will describe
next reductions from counting to sampling for the following graphic model. Let H = (V , E) be a hy-
pergraph, where each vertex v ∈ V represents a random variable that takes its value from a finite
domain [q] = {1, 2, . . . ,q} and each hyperedge e ∈ E represents a local constraint on the variable
set e ⊆ V . For each v ∈ V , there is an “external field” function φv : [q] → R≥0, and for each
e ∈ E, there is a “constraint” function φe : [q] |e | → R≥0. A graphical model is specified by the tuple
G = (H , (φv)v ∈V , (φe)e ∈E), namely the hypergraph associate with the family of “external field” and
“constraint” functions. For each configuration σ ∈ [q]V , define its weight by

w(σ) :=
∏
v ∈V

φv (σv)
∏
e ∈E

φe (σe).(2)

The Gibbs distribution µ defined by the graphical model satisfies

∀σ ∈ [q]V , µ(σ) := w(σ)
Z
,(3)

where the partition function Z is given by

Z :=
∑

σ ∈[q]V
w(σ).(4)

In our applications, both counting problems for hypergraph independent sets and the hypergraph
colourings can be expressed as graphic models, by setting the external field φv on each vertex to con-
stant 1, and the constraint function φe on each hyperedge to the indicator function that the respective
constraint is not violated.

At the core of [JVV86] is the decomposition of the partition function into products of more tractable
quantities in a telescoping manner. Typically, these quantities are probabilities or expectations related
to a sequence of distributions induced by the original model. In our paper, such decomposition comes
in two manners: the vertex decomposition and the (hyper)edge decomposition. The vertex decom-
position is simpler and more common, but it does not always work. The edge decomposition works
more generally with the sacrifice of simplicity. We will apply the vertex decomposition to hypergraph
independent sets and the edge decomposition to hypergraph colourings.
Vertex decomposition. We assume that V = {v1, · · · ,vn}. Let σ ∈ [q]V be a feasible configuration
thatw(σ) > 0. We callσ the scheme of vertex decomposition. By the chain rule of theGibbs distribution,
the following product holds

Z =
w(σ)
µ(σ) = w(σ)

n∏
i=1

1

µσ<i
vi

(
σvi

) ,(5)

where we use σ<i to denote the partial configuration of σ restricted on vertex set {v1,v2, . . . ,vi−1},
and µσ<i

vi denote the marginal distribution on vi induced from µ conditional on σ<i . Therefore, to
approximate the partition function Z , it suffices to approximate each marginal probability µσ<i

vi
(
σvi

)
,

since the weight functionw(σ) is easy to compute. The scheme σ is said to be b-bounded if

∀i ∈ [n], µσ<i
vi

(
σvi

)
≥ b .

Edge decomposition. Let H = (V , E) be a hypergraph. We assume V = {v1, · · · ,vn} and E =
{e1, · · · , em}. In the edge decomposition, the original hypergraph H is decomposed into a sequence
of hypergraphs H0,H1, · · · ,Hm , given by Hi := {V , {e1, · · · , ei }}. In other words, the Hi sequence is
obtained by, starting from independent vertices, adding one edge from the original hypergraph in each
step. Letwi , Zi and µi be the weight function, the partition function and the Gibbs distribution induced

8

by the hypergraph Hi respectively. Then

(6)

Z = Zm = Z0

m∏
i=1

Zi
Zi−1

= Z0

m∏
i=1

∑
τ ∈[q]V

µi−1(τ)wi (τ)
wi−1(τ)

(⋆)
= Z0

m∏
i=1

∑
τei ∈[q]ei

µi−1,ei (τei)φei (τei) = Z0

m∏
i=1

Ez∼µi−1,ei [φei (z)],

where µi−1,ei (·) denotes the marginal distribution on ei projected from µi−1, and thus (⋆) holds because
wi (τ)
wi−1(τ) =

wi (τei)
wi−1(τei−1)

. Therefore, it suffices to approximate the expectation Ez∼µi−1,ei [φei (z)] in order to
approximate the partition function. Again, the edge decomposition is called b-bounded if

∀1 ≤ i ≤ m,
Ez∼µi−1,ei [φei (z)]
maxy∈[q]ei φei (y)

≥ b .

3. Derandomisation for deterministic counting

Our idea for deterministic counting is very simple — we just enumerate all possible random choices.
In this section we give a quick formalisation of this idea, and in subsequent sections we tackle the main
challenge of finding algorithms with logarithmic random choices. We consider randomised algorithms
whose whole randomness comes from drawing random variables from discrete distributions, such as
lines of the form: “draw r ∼ D”, where D is a probability distribution over a finite sample space Ω of
constant size. The specification of D is also computed by the algorithm, if necessary. Aside from these
samples, there is no randomness involved in the algorithm. This motivates us to consider the following
random oracle model.

Random oracle model. We consider randomised algorithms that are deterministic algorithms with
access to a random oracle Draw(·), which, given as input the description of a distribution D, returns
an independent random value r ∈ Ω distributed according to D.

This model allows us to quantify the number of random choices made in algorithms, as given in the
next definition.

Definition 3.1. Let t, r : N→ N be two nondecreasing functions and let c ≥ 2 be a constant. We say
that a randomised algorithmA has time cost t(n) and draws at most r (n) random variables over domains
of sizes at most c , if for any n ∈ N, in the worst case of the inputs of size n and all possible random
choices, the algorithmA terminates within t(n) steps of computation, and accesses the random oracle
Draw(·) for at most r (n) times such that each time it draws from a sample space of size at most c .

We are interested in those randomised algorithms that have poly(n) time cost and draws at most
O(logn) random variables over constant-sized domains, because such randomised algorithms can be
transformed to polynomial-time deterministic algorithms for computing the output distributions, due
to a standard routine for derandomisation by enumerating all random choices.

Proposition 3.2. LetA be a randomised algorithm that has time cost t(n) and draws at most r (n) random
variables over domains of sizes at most c . There is a deterministic algorithm B that, on any input Π of size
n, outputs the distribution of A(Π) in time O(t(n)cr (n)).

Proof. Consider the decision tree T = T(Π) for adaptively querying the random oracle Draw(·) by
the algorithm A on an input Π of size n. Since the algorithm A draws at most r (n) random variables
over domains of sizes at most c in the worst case of inputs and random choices, the decision tree has
branching number at most c and depth at most r (n). Therefore, there are at most cr (n) leaves in T .
Since A has time cost t(n) in the worst case of inputs and random choices, the computation cost for
the path from the root to each leaf in T is bounded by t(n). Hence, the entire tree T can be computed
in O(t(n)cr (n)) time. Note that each leaf in T corresponds to a possible output value for A(Π), whose
probability is given by that of the random choices along the path. Therefore, the distribution of the
output A(Π) can be computed within O(t(n)cr (n)) time by aggregating over all leaves in T . □

9

Implications to approximate counting. Recall the self-reductions using vertex/edge decomposi-
tions defined in Section 2.3 and the corresponding marginal distributions µσ<i

vi in (5) and µi−1,ei in
(6). Then a straightforward consequence to Proposition 3.2 is that the partition functions can be ap-
proximated deterministically in polynomial-time as long as one can sample approximately from the
marginal distribution in polynomial-time drawing O(logn) random variables whose domain sizes are
upper bounded by a constant. This is formally stated below.

Corollary 3.3. Let G be a class of graphical models, where each instance I ∈ G is provided with a
b-bounded vertex decomposition (or a b-bounded edge decomposition). If for every ε ∈ (0, 1) there exists a
randomised algorithmA such that for every instance I ∈ G of n vertices andm edges, and every possible
marginal distribution µσ<i

vi used in the vertex decomposition (or µi−1,ei in the edge decomposition), the
algorithmA returns a Yi within time t(ε,n), by drawing at most r (ε,n) random variables of domain sizes
at most c , such that

dTV
(
Yi , µ

σ<i
vi

)
≤ bε

10n
,

(
or dTV

(
Yi , µi−1,ei

)
≤ bε

10m
for the edge decomposition,

)
then there exists a deterministic algorithm B that for every ε ∈ (0, 1) and every instance I ∈ G, returns
an ε-approximation of the partition function of I within time O((m + n)t(ε,n)cr (ε ,n)).

The proof of Corollary 3.3 is rather straightforward. The only slight complication is to convert
additive errors into relative errors, which is made possible by our b bounded assumptions.

4. Coupling towards the past

In this section we introduce the coupling towards the past idea and present a marginal sampler by
evaluating the state of a single variable in stationary Markov chains. Suppose the chain has evolved
sufficiently long. Our goal is to evaluate the current state by revealing as few randomness as possible.
It suffices to perform the last update, and the update function is determined by both a fresh random
variable, and the states of other variables. The fresh random variable may allow us to determine the
state of the target variable directly without knowing any state of the rest. This is possible when mar-
ginal probability lower bounds are available. If we could not make such a quick decision, we recursively
reveal the necessary information on other variables required for this update. In case of Gibbs distribu-
tions, this step amounts to finding out the states of the neighbours of the target variable. However in
the application of hypergraph colourings, the distribution we sample from is not a Gibbs distribution,
and this revealing step becomes more complicated. Finally, to ensure that this process is efficient on
randomness, we will truncate once we have revealed too much information.

There is an implicit grand coupling (i.e. a coupling for chains starting from all possible initial config-
urations) underlying the construction above. Wemay consider all random variables drawn beforehand,
and then all chains use the same values. The approach above is just delayed revelation, or alternatively
constructing the grand coupling recursively towards the past. If the CTTP process terminates at time
−t , then it means that under these random choices, all chains starting from a time T < −t , no matter
what the initial configurations are, lead to the same value at time 0 for the target variable.

To carry out the plan, we first introduce an implementation of the standard systematic scan Glauber
dynamics which utilises the lower bound information as much as possible. This is in Section 4.1. Then
in Section 4.2, we flip the order of evaluation and deduce the state of a single variable backwards. The
algorithm is given in Algorithm 1 and its correctness is shown in Theorem 4.5. Finally in Section 4.3,
we give the truncated algorithm, Algorithm 3, and bound its error in Theorem 4.8.

4.1. Simulating Glauber dynamics assuming marginal lower bound. Let (Xt) be a convergent
Markov chain on the state space [q]V with its stationary distribution µ. In particular, consider the
chain (Xt)−∞<t ≤0 running from time −∞ to time 0. Drawing a sample from the marginal distribution
µv for an arbitrary v ∈ V can be realized by evaluating X0(v).

For technical reasons, we consider a class of chains known as systematic scan Glauber dynamics.
Enumerate the variables as V = {v1,v2, . . . ,vn}, and for any t ∈ Z, define:

i(t) := (t mod n) + 1.(7)
10

The rule for the t-th transition (Xt−1 → Xt) is:
• pick the variable v = vi(t) where i(t) is defined in (7);
• let Xt ∈ [q]V be constructed as that Xt (u) = Xt−1(u) for all u , v , and Xt (v) is drawn indepen-

dently according to the marginal distribution µXt−1(V \{v })
v .

When this chain is irreducible, it converges to the (unique) stationary distribution µ.
To perform the update, it is usually not necessary to know all of Xt−1(V \ {v}). Typically there is a

subset Λ ⊆ V \ {v} such that µXt−1(Λ)
v = µXt−1(V \{v })

v . Let σΛ = Xt−1(Λ). The marginal distribution µσΛv
can be decomposed as follows if it is suitably lower bounded.

Definition 4.1. Let µ be a distribution over [q]V . Let b = (b1,b2, . . . ,bq) ∈ [0, 1]q .
• Marginal lower bound: µ is said to beb-marginally lower bounded if for anyv ∈ V ,Λ ⊆ V \{v}

and any feasible σΛ ∈ [q]Λ, it holds that µσΛv (j) ≥ bj for all j ∈ [q].
For a b-marginally lower bounded distribution µ over [q]V , for each v ∈ V , we define the following
distributions (we follow the convention 0/0 = 0):

• Lower bound distribution µLBv over {⊥} ∪ [q]: µLBv = µLB for all v ∈ V such that

µLB(⊥) := 1 −
q∑
i=1

bi and ∀j ∈ [q], µLB(j) :=
bj∑q
i=1 bi

.

• Padding distribution µ
pad,σΛ
v over [q]: for Λ ⊆ V \ {v} and feasible σΛ ∈ [q]Λ,

∀j ∈ [q], µ
pad,σΛ
v (j) :=

µσΛv (j) − bj
1 −∑q

i=1 bi
.

With above definitions, drawing a sample c ∼ µσΛv according to the marginal distribution µσΛv can be
simulated by the following two steps:

(1) draw c ∼ µLBv ;
(2) if c =⊥, override c by drawing c ∼ µpad,σΛv .

Assume that µ has suitable marginal lower bounds. Fix an integer T ≥ 0. The systematic scan
Glauber dynamics (Xt)−T ≤t ≤0 from time −T to 0 can be generated by the following process P(T). We
use the convention that for any v ∈ V and t < −T , Xt (v) = X−T (v).

The systematic scan Glauber dynamics P(T)

• Initialize X−T ∈ [q]V as an arbitrary feasible configuration.
• For t = −T + 1,−T + 2, . . . , 0, the configuration Xt is constructed as follows:

(a) pick v = vi(t), where i(t) is defined in (7), and let Xt (u) ← Xt−1(u) for all u , v ;
(b) draw rt ∼ µLB independently, and let Xt (v) ← rt if rt ,⊥; otherwise,

σΛ ← Boundary(t), (by accessing Xt−1 and Rt−1 := (rs)−T <s<t)(8)

and draw Xt (v) ∼ µpad,σΛv independently.

In (8), we use a subroutine Boundary(t) satisfying the following condition, which allows us to per-
form the update without revealing the whole Xt−1.

Condition 4.2. The procedure Boundary(t) always terminates and returns σΛ ∈ [q]Λ satisfying that
µσΛv = µ

Xt−1(V \{v })
v for v = vi(t).

The implementation of Boundary(t) will be application specific. It is a deterministic procedure with
oracle access to previous random variables Rt−1 = (rs)−T <s<t and to the current configuration Xt−1
generated in the process P(T). These accesses are provided by the following two oracles:

• lower bound oracle B(s): given any s < t , returns rs if s > −T and ⊥ otherwise;
• configuration oracle C(u): given u ∈ V , returns Xt−1(u).

11

Typically, we will query B(s) as much as possible, and default to C(u) only if B(s) returns ⊥. It is
even possible, in some situations, not needing to query C(u) after B(u) returns ⊥. This is because
not all variables queried in Boundary(t) are necessary to determine Λ and σΛ, and this phenomenon
will become self-evident in the applications later. Although using only C(u) is sufficient to achieve
Condition 4.2, the use of B(s) is crucial and allows us to reduce the number of random variables used
for the backward deduction in the next subsection.

To better understand Boundary(t), take a Gibbs distribution µ as an example. In Gibbs distributions,
each variablev ∈ V has a neighbourhood N (v) ⊆ V \ {v} conditioned on whichv is independent from
the rest of variables, namely its non-neighbours. Consequently, for any feasible Xt−1 ∈ [q]V ,

µXt−1(V \{v })
v = µXt−1(N (v))

v .

Then a straightforward implementation of Boundary(t) is to return the configuration σΛ ← Xt−1(N (v))
by retrieving it from Xt−1 via the oracle C(·). However, as we want to reduce the number of accesses
to C(·), we instead try to infer Xt−1(N (v)) from already drawn samples Rt−1 = (rs)−T <s<t .

The following gives an alternative implementation of Boundary(t) for the Gibbs distribution µ. For
any u ∈ V and integer t , denote by predu (t) the last time before t at which u is updated, i.e.

predu (t) := max{s ≤ t | vi(s) = u},(9)

where i(s) is specified by the scan order defined in (7).

An implementation of Boundary(t) for Gibbs distribution µ

• Let Λ← N (v), where v = vi(t) and i(t) is defined as (7).
• For each u ∈ Λ:

(1) let s = predu (t), if s > −T and rs ,⊥, then σ (u) ← rs ; (oracle query B(s))
(2) otherwise, σ (u) ← Xt−1(u); (oracle query C(u))

• return σΛ.

This implementation satisfies Condition 4.2 due to the conditional independence property mentioned
earlier for Gibbs distributions.

In general, µ can be an arbitrary distribution over [q]V and the subroutine Boundary(t) will be
implemented specifically depending on µ. Nevertheless, the following proposition is easy to verify.

Proposition 4.3. As long as the subroutine Boundary(t) satisfies Condition 4.2, the process P(T) gener-
ates a faithful copy of the systematic scan Glauber dynamics (Xt)−T ≤t ≤0 for µ.

4.2. Evaluating stationary states via backward deductions. Fix an arbitrary integer T ≥ 0. Con-
sider the Markov chain (Xt)−T ≤t ≤0 generated by the process P(T). We present an algorithm that
outputs the random variable X0(v) for v ∈ V . Instead of simulating the process P(T) chronologically
from time −T to 0, our algorithm uses a backward deduction which tries to infer the correct value of
X0(v) by accessing as few random variables as possible for resolving X0(v).

The algorithm is described in Algorithm 1. It is a recursive algorithm that has an input argument
t ≤ 0 and maintains two global data structures M and R, initialized respectively as M0 =⊥Z and
R0 = �. Since all recursive calls access and update the sameM andR, we sometimeswriteResolveT (t) =
ResolveT (t ;M,R) for short.

For −T < t ≤ 0, ResolveT (t) tries to calculate the result of the update at time t , which is Xt (vi(t)).
In particular, for −n < t < 0, we have Xt (vi(t)) = X0(v(t mod n)+1) = X0(vt+n+1), and X0(vi(0)) = X0(v1).

The algorithm recursively deduces the outcome of the update at time t ≤ 0. The data structureM(t)
stores the resolved outcomes of the updates at time t , and the set R stores the generated samples from
the lower bound distribution µLB. Each value in M will only be updated at most once, and the set R
will never remove elements. Moreover, to implement the subroutine Boundary(t), each query to the
lower bound oracle B(s) is replaced by accessing the sample rs from the lower bound distribution µLB,
realized by Algorithm 2; each query to the configuration oracle C(u) is replaced by a recursive call to
ResolveT (predu (t);M,R) for evaluating Xt−1(u). Here, the principle of deferred decision is applied, so

12

Algorithm 1: ResolveT (t ;M,R)
Input: an integer t ≤ 0;
Global variables: a map M : Z→ [q] ∪ {⊥} and a set R;
Output: a value Xt (vi(t)) ∈ [q];

1 if t ≤ −T then return X−T (vi(t));
2 if M(t) ,⊥ then returnM(t);
3 M(t) ← LB-Sample(t ;R) and if M(t) ,⊥ then returnM(t);
4 σΛ ← Boundary(t), with the oracle queries being replaced by

• upon querying B(s): if s > −T , then return LB-Sample(s;R); else return ⊥;
• upon querying C(u): return ResolveT (predu (t);M,R), where predu (t) is defined in (9);

5 M(t) ← a random value drawn independently according to µpad,σΛv ;
6 returnM(t);

that the decision of the random choices of the (rs)−T <s<t in P(T) is deferred to the moments when
they are accessed in the backward deduction.

Algorithm 2: LB-Sample(t ;R)
Input: an integer t ≤ 0;
Global variables: a set R of pairs (s, rs) ∈ Z × ([q] ∪ {⊥});
Output: a random value in [q] ∪ {⊥} distributed as µLB.

1 if (t, r) ∈ R then return r ;
2 else
3 draw rt ∼ µLB;
4 R ← R ∪ {(t, rt)};
5 return rt ;

WhenT is set to∞, the programResolve∞(t) is still well-defined, as the only difference is that t ≤ −T
never triggers. Indeed Resolve∞(t) is what we call the coupling towards the past process. It tries to
calculate the result of the update at time t ≤ 0 in a chain running from the infinite past to time 0. By
Theorem 2.1, if the systematic scan Glauber dynamics P(T) is irreducible, then the distribution of X0

converges to µ as T → ∞, regardless of the initial state. We give a sufficient condition for both the
convergence of the forward process P(T) and the termination of the backward program Resolve∞(t).

Condition 4.4. The lower bound distribution µLB in Definition 4.1 satisfies that µLB(⊥) < 1.

The next theorem states that for any finiteT ≥ 0, Algorithm 1 always correctly evaluates the chain;
and by setting T = ∞, it returns a sample from the marginal distribution µv with probability 1 if
Condition 4.4 holds.

Theorem 4.5. Let µ be a distribution over [q]V ,T ≥ 0 be an integer, and (Xt)−T ≤t ≤0 be generated by the
process P(T) whose Boundary(t) subroutine satisfies Condition 4.2. For any −T ≤ t ≤ 0, the followings
hold:

• ResolveT (t) terminates in finite steps and returns a sample identically distributed as Xt (vi(t));
• if further Condition 4.4 holds, thenResolve∞(t) terminates with probability 1, and returns a sample
distributed as µv where v = vi(t).

Proof. Fix a finite T ≥ 0. It is straightforward to see that ResolveT (t) terminates in finite steps since
the time t decreases in the recursive calls to ResolveT and the procedure terminates once t ≤ −T .

We then show that the output of ResolveT (t) is identically distributed as Xt (vi(t)) by a coupling
between the process P(T) and ResolveT (t) for −T ≤ t ≤ 0. Consider the following implementations
of P(T) and ResolveT (t). For each −T < ℓ ≤ 0, let Uℓ ∈ [0, 1) be a real number sampled uniformly

13

and independently at random. Whenever the process P(T) tries to draw an Xℓ(vi(ℓ)) according to the
padding distribution µpad,σΛvi (ℓ) , we simulate this by assigning Xℓ(vi(ℓ)) the value c ∈ [q] satisfying

Uℓ ∈
[
c−1∑
j=1

µ
pad,σΛ
vi (ℓ) (j),

c∑
j=1

µ
pad,σΛ
vi (ℓ) (j)

)
.(10)

Similarly, in the procedure ResolveT (t), when a recursion ResolveT (ℓ;M,R) tries to draw an M(ℓ) ac-
cording to µ

pad,σΛ
vi (ℓ) in Line 5 of Algorithm 1, we simulate this by assigning M(ℓ) the same c ∈ [q]

satisfying (10). It is easy to see that such implementations faithfully simulate the original processes
P(T) and ResolveT (t) respectively.

Besides the random choices for sampling from the padding distributions, which are provided by the
sequence (Uℓ)−T <ℓ≤0, the only remaining random choices in the two processes ResolveT (t) and P(T)
are the outcomes (rℓ)−T <ℓ≤0 for sampling from the lower bound distribution µLB.

We define the following coupling between ResolveT (t) and P(T):
• the two processes use the same random choices for (rℓ)−T <ℓ≤0 and (Uℓ)−T <ℓ≤0.

Fix any evaluation of the random choices r = (rℓ)−T <ℓ≤0 and U = (Uℓ)−T <ℓ≤0. Both ResolveT (t) and
the (Xt)−T <t ≤0 generated according to P(T) are fully deterministic given (r,U). Furthermore, for any
mapping M : Z → [q] ∪ {⊥} and any set R of (s, r ′s) ∈ Z × ([q] × {⊥}) pairs, we say that (M,R) are
consistent with (r,U), if the followings hold

• ∀ −T ≤ ℓ ≤ 0 : M(ℓ) ,⊥ =⇒ M(ℓ) = Xℓ(vi(ℓ));
• ∀ −T < ℓ ≤ 0 : (ℓ, r ′

ℓ
) ∈ R =⇒ r ′

ℓ
= rℓ .

Under the coupling above, by an induction on t from −T to 0, one can routinely verify that for any
(M,R) consistent with (r,U), the output of ResolveT (t ;M,R) is precisely Xt (vi(t)) generated accord-
ing to P(T) using the same random choices (r,U), and the states of (M,R) during the execution of
ResolveT (t ;M,R) remain consistent with (r,U). This shows that ResolveT (t) is identically distributed
as Xt (vi(t)) for any finite T ≥ 0 and any −T ≤ t ≤ 0. In other words,

dTV (Xt (v),ResolveT (t)) = 0.(11)
Next, we deal with the infinite case. We claim that Condition 4.4 implies both the irreducibility of

P(T) and the termination of Resolve∞(t) with probability 1.
For the irreducibility of P(T), by Condition 4.4, there must exist c0 ∈ [q] such that µLB(c0) > 0.

Let σ ∈ [q]V be the constant configuration such that σ (v) = c0 for all v ∈ V . Then by the definition
of µLB it follows that σ is feasible and also can be reached via transitions of P(T) from all feasible
configurations. It is also straightforward to verify that for any two feasible configurations τ , τ ′ ∈ [q]V
and any −T < t ≤ 0, if Pt (τ , τ ′) > 0 then Pt (τ , τ ′) > 0, where Pt denotes the one-step transition
matrix of P(T) at time t . Therefore any feasible configuration is also reachable from σ . This shows the
irreducibility of P(T).

Then we show the termination of Resolve∞(t0) for any t0 ≤ 0. For each t ≤ t0, define the event:
Bt : rs ,⊥ for all s ∈ [t − n + 1, t].

We claim that if Bt happens for some t ≤ t0, then no recursive calls of Resolve∞(s;M,R) would be
incurred for any s ≤ t −n. Assume for the sake of contradiction that there exists a maximum s∗ ≤ t −n
such that Resolve∞(s∗;M,R) is called. As s∗ ≤ t − n < t0, Resolve∞(s∗;M,R) must be recursively
called directly within another instance of Resolve∞(s ′;M,R) such that s∗ < s ′. Note that by Line 4 of
Algorithm 1 and (9) we also have s∗ > s ′ + n. We then have two cases:

(1) s ′ ≤ t − n, this contradicts the maximality assumption for s∗.
(2) Otherwise s ′ > t − n. By s∗ ≤ t − n and s∗ > s ′ + n we have s ′ ∈ [t − n + 1, t]. Also

by the assumption that Bt happens, we have rs ′ ,⊥, therefore Resolve∞(s ′;M,R) would have
terminated at Line 3 of Algorithm 1 without incurring any recursive call. This also leads to a
contradiction and thus proves the claim.

Note that by Condition 4.4, for any t ≤ t0, we have Pr [Bt] ≥ p := (1 − µLB(⊥))n > 0. For any L > 0,
let EL be the event that there is a recursive call to Resolve∞(t∗;M,R) where t∗ ≤ t0 − Ln. By the claim

14

above,

Pr [EL] ≤ Pr

[
L−1∧
j=0

(
¬Bt0−jn

)]
=

L−1∏
j=0

Pr
[
¬Bt0−jn

]
≤ (1 − p)L,

where the equality is due to independence of (rt)t ≤t0 . Thus, with probability 1 there is only a finite
number of recursive calls, namely Resolve∞(t0) terminates with probability 1.

For any t ≤ 0, since Resolve∞(t) terminates with probability 1, its output distribution is well defined.
For any ε > 0, consider a sufficiently large L such that (1 − p)L ≤ ε . For any T ≥ Ln − t , we couple
Resolve∞(t) with ResolveT (t) using the same random variables drawn. As the coupling fails only if EL
happens, by the coupling lemma,

dTV (ResolveT (t),Resolve∞(t)) ≤ Pr [EL] ≤ ε .
This implies

lim
T→∞

dTV (ResolveT (t),Resolve∞(t)) = 0.(12)

The irreducibility of P(T) and Theorem 2.1 implies that
lim
T→∞

dTV
(
µv ,XT ,t (v)

)
= 0,(13)

where v = vi(t) and XT ,t is the state of P(T) at time t ≥ T . Moreover, for any T > 0,
dTV (µv ,Resolve∞(t)) ≤ dTV (µv ,ResolveT (t)) + dTV (ResolveT (t),Resolve∞(t)) .(14)

Combining the above, we have
dTV (µv ,Resolve∞(t))
≤ lim sup

T→∞
dTV (µv ,ResolveT (t)) + lim sup

T→∞
dTV (ResolveT (t),Resolve∞(t))(by (14))

= lim sup
T→∞

dTV (µv ,ResolveT (t))(by (12))

≤ lim sup
T→∞

dTV
(
µv ,XT ,t (v)

)
+ lim sup

T→∞
dTV

(
XT ,t (v),ResolveT (t)

)
= 0,(by (13) and (11))

and the theorem follows. □

Note that in the proof above, L has to be at least Ω(p−1) to guarantee a constant probability upper
bound for the event EL . Since p is an exponentially small quantity, this argument usually does not
yield a useful mixing time bound. This is mainly a proof for convergence and correctness.

Remark 4.6. In fact, if Resolve∞(t) terminates with probability 1 for any −n < t ≤ 0, then the
Glauber dynamics has to be irreducible. This is because, fix an arbitrary set of random choices, and run
Resolve∞(t) for all −n < t ≤ 0. Because of the termination assumption, there is a finite T < 0 beyond
which all of them terminates, and we obtain a configuration σ such that σ (vi) = Resolve∞(predi (0)).
It is then straightforward to see that if we run P(T) under the same random choices, no matter what
the initial configuration is, the configuration at time 0 is exactly σ . This implies that all feasible con-
figurations can reach σ and vice verse, and thus the Glauber dynamics is irreducible.

On the other hand, Resolve∞(t) terminating with probability 1 for any −n < t ≤ 0 is not that far
away from Condition 4.4. Consider a distribution µ. It is possible for Resolve∞(t) to terminate with
probability 1 if there is some v such that µLBv (⊥) = 1. However, as soon as there are two variables u
and v such that µLBv (⊥) = µLBu (⊥) = 1, and one cannot deduce the value of u (or v) without knowing
the value of v (or u), Resolve∞ will not terminate when resolving either u or v .

4.3. Truncated simulation using bounded randomness. Theorem 4.5 implies that under Condi-
tion 4.4, the coupling towards the past process, Resolve∞(t), is a perfect sampler for the marginal
distribution of µv . In our typical applications, the expected running time of this algorithm is often a
constant. However, since our end goal is derandomisation, we need an algorithm that draws no more
than logarithmic random variables in the worst case. This leads to the truncated version in Algorithm 3.
Similar to Algorithm 1, we may sometimes drop M and R from the input as all recursive calls access
the same data structures.

15

Algorithm 3: ApproxResolve(t,K ;M,R)
Input: integers t ≤ 0 and K ≥ 0
Global variables: a map M : Z→ [q] ∪ {⊥} and a set R;
Output: a random value in [q] ∪ {⊥};

1 initialize M ←⊥Z and R ← �;
2 try :
3 return Resolve∞(t ;M,R);
4 catch |R | ≥ K :
5 return ⊥;

The algorithm ApproxResolve(t,K) simulates Resolve∞(t) using a set R of size bounded by K . Recall
that the set R is used to store the generated samples (rs)s≤t from the lower bound distribution µLBv .
Moreover, since a sample from the padding distribution µ

pad, ·
v is drawn only after a corresponding

sample from the lower bound distribution has been drawn, we have the following observation.
Observation 4.7. In Algorithm 3, at most K samples are drawn from the lower bound distribution µLBv
and at most K samples are drawn from the padding distributions µpad, ·v .

Denote by Etrun(K) the event ApproxResolve(t,K) =⊥, i.e. the exception at Line 4 occurs. The fol-
lowing theorem says that this is precisely the error for ApproxResolve(t,K) sampling from µvi (t) .

Theorem 4.8. Let µ be a distribution over [q]V . Assume Condition 4.2 and Condition 4.4. For −n < t ≤ 0,
K ≥ 0, and Y = ApproxResolve(t,K), it holds that dTV (Y , µv) = Pr [Etrun(K)], where v = vi(t).

Proof. Suppose that sampling from the padding distribution µpad,σΛvi (ℓ) in Line 5 of Algorithm 1 is realised
in the same way as in (10), using a sequence of real numbers Uℓ ∈ [0, 1) chosen uniformly and inde-
pendently at random for each ℓ ≤ 0.

We apply the following coupling between Resolve∞(t) and ApproxResolve(t,K):
• the two processes use the same random choices for (rℓ)ℓ≤0 and (Uℓ)ℓ≤0.

One can verify that if Etrunc(K) does not occur, then the two processesResolve∞(t) andApproxResolve(t,K)
are coupled perfectly. By the coupling lemma and Theorem 4.5, we have

dTV (Y , µv) ≤ Pr [Etrun(K)] .
Note that Pr [Y =⊥] = Pr [Etrun(K)] and µv (⊥) = 0. Therefore, we have

dTV (Y , µv) ≥ Pr [Y =⊥] − µv (⊥) = Pr [Etrun(K)] .
Combining the two inequalities proves the theorem. □

Similar to CFTP, the coupling towards the past process, Resolve∞(t), is “non-interruptible”, and early
termination introduces bias in the sample. However, Theorem 4.8 guarantees that the bias is bounded
by the truncation probability. When applying the ApproxResolve(t,K) to draw approximate samples
from marginal distributions, we are especially interested in the cases with Pr [Etrun(K)] ≤ 1/poly(n)
achieved by a K = O(logn).

5. Hypergraph independent set

In this section, we give FPTASes for counting hypergraph independent sets and prove Theorem 1.1
and Theorem 1.2. We first introduce some notations. Given a k-uniform hypergraph H = (V , E) with
maximum degree ∆, denote by ΩH ⊆ {0, 1}V the set of all independent sets of H , and ZH = |ΩH | its
size. Let µ = µH be the uniform distribution over ΩH . We identify a subset S ⊆ V with an assignment
τS ∈ {0, 1}V by τS (v) = 1 if and only if v ∈ S , for any v ∈ V . Recall that τ ∈ {0, 1}V is a hypergraph
independent set if every hyperedge e ∈ E contains at least one vertex v ∈ e with τv = 0.

Assume V = {v1,v2, . . . ,vn} where n = |V |. To approximate the partition function ZH , namely the
number of independent sets of H , we use the vertex decomposition defined in (5) with the decompo-
sition scheme σ = 0 (all-zero vector). This reduces the task to approximating µσ<i

vi (0) for each i ∈ [n],
16

the probability that vi takes the value 0 conditional on all of vj take 0 where j < i . One reason for
choosing the all-zero scheme σ = 0 is the following marginal lower bound (recall Definition 4.1) by
the nature of independent sets.

Observation 5.1. For any Λ ⊆ V , any σΛ ∈ {0, 1}Λ and any v ∈ V \ Λ, it holds that

µσΛv (0) ≥
1
2
and µσΛv (1) ≥ 0.

And therefore, σ = 0 is a 1
2 -bounded vertex decomposition scheme.

The lower bound for µσΛv (1) can be improved slightly. It will not have any substantial improvement,
so for clarity we do not pursue that.

Next, consider the distribution µσ<i
vi obtained by pinning the partial configuration σ<i on the hyper-

graph H . As another reason of choosing σ = 0, observe that for each vertex v , if the value of v is
fixed to be 0, then all the constraints arising from hyperedges incident to v get immediately satisfied.
Therefore, these hyperedges can be safely pruned away from the subinstance. Suppose we are given
the partial configuration σ<i at some stage during the computation of the product in (5). All vertices
with index at most i − 1, together with hyperedges incident to any of them, can be safely removed.
This gives the hypergraph Hi = (Vi , Ei) where Vi = {vi ,vi+1, . . . ,vn} and Ei = {e ∈ E | e ⊆ Vi }. It is
straightforward to verify that

• µσ<i
vi = µ

′
vi , where µ ′ is the uniform distribution over all independent sets in Hi ;

• Hi is a k-uniform hypergraph;
• the maximum degree of Hi is at most that of H ;
• Hi is a linear hypergraph if H is a linear hypergraph.

Hence, sampling from the distribution µσ<i
vi is equivalent to sampling from µ ′vi . Moreover, ifH satisfies

the condition of Theorem 1.1 (or the condition of Theorem 1.2), then so does Hi . Using the “reduction”
from single-site samplers to deterministic counting algorithms as per Corollary 3.3, it suffices to de-
sign single-site samplers satisfying the conditions therein. We summarise this into the following two
lemmata, one for the general case and the other for the linear case.

Lemma 5.2. Let k,∆ ≥ 2 be two integers satisfying 2
k
2 ≥
√
8ek2∆. There exists an algorithm that given

as inputs a k-uniform hypergraph H = (V , E) with maximum degree at most ∆, a vertex v ∈ V and
a parameter γ > 0, outputs a random Yv ∈ {0, 1} such that dTV (Yv , µv) ≤ γ , where µ is the uniform
distribution over all independent sets in H . The algorithm runs in time O(∆3k5 log 1

γ) and draws at most
3∆2k4⌈log 1

γ ⌉ Boolean random variables.

Lemma 5.3. Let δ > 0. Let k ≥ 25(1+δ)2
δ 2 and ∆ ≥ 2 be two integers satisfying 2k ≥ (100k3∆)1+δ .

There exists an algorithm that given as inputs a k-uniform linear hypergraph H = (V , E) with maximum
degree at most ∆, a vertex v ∈ V and a parameter γ > 0, outputs a random Yv ∈ {0, 1} such that
dTV (Yv , µv) ≤ γ , where µ is the uniform distribution over all independent sets in H . The algorithm runs
in time O((1+δδ)2∆4k10 log 1

γ) and draws at most 104(1+δδ)2∆3k9⌈log 1
γ ⌉ Boolean random variables.

Remark 5.4 (perfect marginal samplers). Applying coupling towards the past (Algorithm 1 with
T = ∞) to the uniform distribution of hypergraph independent sets yields a perfect marginal sampler
for the marginal distributions µv that outputs Y ∗v distributed exactly as µv upon termination. Indeed,
the algorithms stated in Lemma 5.2 and Lemma 5.3 are obtained from truncating it. For any γ > 0,
with probability at least 1 − γ , the perfect marginal samplers terminate:

• (on k-uniform hypergraphs) within O
(
∆3k5 log 1

γ

)
time for computation, while drawing at

most 3∆2k4⌈log 1
γ ⌉ Boolean random variables;

• (on k-uniform linear hypergraphs) within O
(
(1+δδ)2∆4k10 log 1

γ

)
time for computation, while

drawing at most 104(1+δδ)2∆3k9⌈log 1
γ ⌉ Boolean random variables;

17

under the same conditions as stated in Lemma 5.2 and Lemma 5.3, respectively. Similar to CFTP, these
perfect samplers are “non-interruptible” in the sense that truncations may bias the sample. Neverthe-
less, due to the tail bounds above, the truncating error introduced is bounded by γ in the total variation
distance.

Theorem 1.1 and Theorem 1.2 are straightforward consequences of Lemma 5.2 and Lemma 5.3 re-
spectively. We first show Lemma 5.2 in Section 5.1, and then adapt the proof to the linear case and
show Lemma 5.3 in Section 5.3.

Proofs of Theorem 1.1 and Theorem 1.2. Theorem 1.1 follows fromLemma 5.2withγ = ε
20n , Corollary 3.3

with the vertex decomposition schemeσ = 0 andObservation 5.1. The running time of the approximate
counting algorithm is

T = O

((
n +

∆n

k

)
·
(
∆3k5 log

20n
ε

)
× 23∆2k4 ⌈log 20n

ε ⌉
)
= poly(∆k)

(n
ε

)O (∆2k4)
.

Theorem 1.2 is proved the same way but with Lemma 5.3 invoked. The running time of the deter-
ministic approximate counting algorithm is

T = O

(
∆n

k
·
((
1 + δ
δ

)2
∆4k10 log

20n
ε

)
· 2104(1+δδ)

2
k9∆3 ⌈log 20n

ε ⌉
)
= poly

(
∆k(1 + δ)

δ

) (n
ε

)O (
∆3k9(1+δ)2

δ 2

)
. □

5.1. Systematic scan Glauber dynamics for hypergraph independent sets. To apply the general
algorithm framework as in Algorithm 3, we first identify the lower bound and marginal distribution
in Definition 4.1 using Observation 5.1.

• The lower bound distribution µLB is given by

µLB(0) = µLB(⊥) = 1
2
, µLB(1) = 0.

Hence, we can assume that µLB is defined over {0,⊥} such that µLB(0) = µLB(⊥) = 1
2 .

• The padding distribution µ
pad,σΛ
v , given any Λ ⊆ V , any σΛ ∈ {0, 1}Λ and any v ∈ V \ Λ, is

defined by

µ
pad,σΛ
v (0) = 2µσΛv (0) − 1 and µpad,σΛv (1) = 2µσΛv (1).

Apparently, the Glauber dynamics for µ satisfies Condition 4.4. We then use Algorithm 3 on the dis-
tribution µ = µH to prove Lemma 5.2 and Lemma 5.3, where the subroutine Boundary(t) is defined in
Algorithm 4. Recall that two oracles B and C in Algorithm 4 are defined in Section 4.1.

Lemma 5.5. Boundary(t) in Algorithm 4 satisfies Condition 4.2.

Proof. Let Xt−1 and (r j)−T <j<t be as defined in P(T). Then

∀u , v, B(predu (t)) ,⊥ =⇒ Xt−1(u) = B(predu (t)) = 0,(15)

where the first equality is due to the construction of Xt−1 as in P(T), and the second one is due to the
definition of the lower bound oracle B and µLB(1) = 0.

It is straightforward to see that Algorithm 4 is guaranteed to terminate. We then show that the
output σΛ of Algorithm 4 satisfies the conditional independence property in Condition 4.2. Apparently
σΛ = Xt−1(Λ): if for some u it holds that B(predu (t)) ,⊥ then it must be assigned 0 in σΛ in Line 13
in Algorithm 4, which is consistent with Xt−1(u) because of (15); otherwise, its value is assigned using
the configuration oracle C(u) in Line 6 in consistency with Xt−1(u) by the definition of C. Then verify
µσΛv = µ

Xt−1(V \{v })
v as below.
• Suppose σΛ is returned in Line 8. There exists e ∈ E with v ∈ e such that e \ {v} ⊆ Λ and
Xt−1(u) = 1 for all u ∈ e \ {v}. Conditional on such σΛ, v must take the value 0, the same as
conditioning on Xt−1(V \{v}).

18

Algorithm 4: Boundary(t) for hypergraph independent sets
Input: hypergraph H = (V , E) specifying the distribution µ and an integer t ≤ 0;
Output: a partial configuration σΛ ∈ {0, 1}Λ over some Λ ⊆ V \ {vi(t)};

1 v ← vi(t),Λ← �,σΛ ← �;
2 forall e ∈ E s.t. v ∈ e do
3 if for all u ∈ e \ {v}, B(predu (t)) =⊥ then
4 forall u ∈ e \ {v} do
5 Λ← Λ ∪ {u};
6 σΛ(u) ← C(u);
7 if for all u ∈ e \ {v}, σΛ(u) = 1 then
8 return σΛ;
9 else
10 forall u ∈ e \ {v} do
11 if B(predu (t)) ,⊥ then
12 Λ← Λ ∪ {u};
13 σΛ(u) ← 0;

14 return σΛ;

• Suppose σΛ is returned in Line 14. This implies that the condition in Line 7 has never been
satisfied. Hence, for any e ∈ E with v ∈ e , we either update σΛ in Line 6 or in Line 13. Fix
an e ∈ E with v ∈ e . If σΛ is updated in Line 6, then there is a vertex u ∈ e \ {v} such that
σΛ(u) = Xt−1(u) = C(u) = 0. Otherwise, σΛ is updated in Line 13. Then there is a vertex
u ∈ e \ {v} such that B(predu (t)) ,⊥, and by (15), it must take σΛ(u) = Xt−1(u) = 0. In all, the
constraints on all hyperedges incident to v , conditioned on either σΛ or Xt−1(V \ {v}), are all
satisfied, and thus v take the value {0, 1} uniformly at random.

In both cases µσΛv = µXt−1(V \{v })
v . □

The above argument also indicates the following observation:

Observation 5.6. If σΛ is returned in Line 8, then the padding distribution µpad,σΛv takes value 0 with
probability 1; if σΛ is returned in Line 13, then the padding distribution µpad,σΛv takes value 1 with proba-
bility 1.

By adapting the subroutine Boundary(t) (Algorithm 4) to ApproxResolve (Algorithm 3) and setting
the threshold K therein to 3∆2k4⌈log 1

γ ⌉, we get an algorithm that approximately samples from the
marginal distributions of µ, where µ is uniform over all independent sets in k-uniform hypergraphs
with the maximum degree at most ∆. Clearing up this algorithm a bit gives Algorithm 5.

The algorithm maintains two global data structuresM and R that might be updated as the algorithm
proceeds. Upon the first invocation of this algorithm, these two global variables are initialised as
M = M0 =⊥Z and R = R0 = �. For simplicity of notations, we may drop both M and R from the list of
parameters so long as the references to these two global structures are clear from the context. We may
also drop the hypergraph H from the list of parameters as it does not change throughout the process.
Recall that the subroutine LB-Sample in the algorithm is given in Algorithm 2 with the lower bound
distribution µLB given by µLB(0) = µLB(⊥) = 1

2 .
The following lemma bounds the running time of Algorithm 5.

Lemma 5.7. The running time of ApproxMarginIndSet(t,γ ;M0,R0) (Algorithm 5) is O(∆3k5 log 1
γ).

Proof. Consider the recursion tree generated by executing ApproxMarginIndSet(t,γ ;M0,R0). Let S be
the set of all t0 such that ApproxMarginIndSet(t0,γ ;M,R) is executed at least once. For any such t0 ∈ S ,
one of the following two events must happen: (1) the whole algorithm terminates in Line 11 upon

19

Algorithm 5: ApproxMarginIndSet(t,γ ;M,R)
Input: a hypergraph H = (V , E), an integer t ≤ 0 and a real number 0 < γ < 1;
Global variables: a map M : Z→ [q] ∪ {⊥} and a set R;
Output: a random value in {0, 1}

1 try :
2 if M(t) ,⊥ then returnM(t);
3 if LB-Sample(t ;R) = 0 thenM(t) ← 0 and return 0;
4 v ← vi(t);
5 forall e ∈ E s.t. v ∈ e do
6 if for all u ∈ e \ {v}, LB-Sample(R, predu (t)) =⊥ then
7 if for all u ∈ e \ {v}, ApproxMarginIndSet(predu (t),γ ;M,R) = 1 then
8 M(t) ← 0 and return 0;

9 M(t) ← 1 and return 1;
10 catch |R | ≥ 3∆2k4⌈log 1

γ ⌉ :
11 return 0;

attempting to call LB-Sample with time t0; (2) (t0, rt0) ∈ R. Moreover, only one t∗ ∈ S triggers the first
case, and hence |S | ≤ |R |+ 1. For any t0 ∈ S , any execution of ApproxMarginIndSet(t0,γ ;M,R) beyond
the first run returns on Line 2. Therefore, the total running time is bounded byO(T ∗ |S |)whereT ∗ is the
run time bound if we assume the recursive calls return in O(1) time. It is easy to see that T ∗ = O(∆k).
Thus, the total running time is at most

O(∆k |S |) = O(∆k(|R | + 1)) = O
(
∆3k5 log

1
γ

)
. □

The correctness of Algorithm 5 is due to the following lemma. Its proof is given in Section 5.2.

Lemma 5.8. Let 0 < γ < 1. Let H = (V , E) be a k-uniform hypergraph with maximum degree at most ∆
such that 2

k
2 ≥
√
8ek2∆, and µ be the uniform distribution over all the independent sets inH . Then for any

vertex v ∈ V , the output distribution Y of ApproxMarginIndSet(predv (0),γ) satisfies dTV (Y , µv) ≤ γ .

Assuming the lemma above for now, we finish off Lemma 5.2.

Proof of Lemma 5.2. By Lemma 5.8, for any v ∈ V , the algorithm ApproxMarginIndSet(predv (0),γ)
generates a distribution that is γ -close to µv . Its running time is given in Lemma 5.7. As each entry
in R must have been fetched from the random oracle exactly once, the number of calls to the random
oracle equals |R |, which is bounded from above by 3∆2k4⌈log 1

γ ⌉. The random variables returned by
the random oracle lie in {0,⊥} because µLB(1) = 0. □

5.2. Analysis of the truncation error. Unless stated otherwise, the hypergraph H = (V , E) is fixed
and satisfies the same condition as in Lemma 5.8 throughout this section. Let t∗ ≤ 0 be the timestamp
of the initial call of ApproxMarginIndSet.

For any γ > 0, consider the event that ApproxMarginIndSet(t∗,γ) terminates by Line 11. Alterna-
tively, it is equivalent to that the size of R reaches 3∆2k4⌈log 1

γ ⌉ midst the execution of the algorithm
(even if we assume the algorithm did not truncate). ByTheorem 4.8, it suffices to bound the probability
of this event in order to bound the bias of the output distribution from the uniform distribution. This
is given by the following lemma.

Lemma 5.9. Let γ > 0 be a real, and H = (V , E) be a k-uniform hypergraph with maximum degree at
most ∆ such that 2

k
2 ≥
√
8ek2∆. Let η = ⌈log 1

γ ⌉. Upon the termination of ApproxMarginIndSet(t∗,γ),
the size of R satisifies

Pr
[
|R | ≥ 3∆2k4 · η

]
≤ 2−η .(16)

20

Lemma 5.8 follows directly from the above lemma, Lemma 5.5 and Theorem 4.8.
We now prove Lemma 5.9. For any e ∈ E and t ∈ Z≤0, let

TS(e, t) := {predv (t) | v ∈ e}(17)
be the set of timestamps of the latest consecutive updates of vertices in e up to time t . Given a hyper-
graph H = (V , E), we introduce the following definition of the witness graph GH = (VH , EH).
Definition 5.10 (witness graph). For a hypergraph H = (V , E), the witness graphGH = (VH , EH) is an
infinite graph with a vertex set

VH = {TS(e, t) | e ∈ E, t ∈ Z≤0},
and there is an undirected edge between x,y ∈ VH in GH if and only if x , y and x ∩ y , �.

We remark that the vertex set VH is not a multiset, i.e., it does not allow multiple instances of the
same element. For example, it is possible that for some t , t ′, TS(e, t) = TS(e, t ′). In this case, the two
correspond to the same vertex even if t , t ′. In addition, the witness graph GH is decided only by the
hypergraph H as predx (t) is a deterministic function. For any vertex x ∈ VH in the witness graph, let
eH (x) ∈ E be the edge in the original hypergraph that corresponds to x .

We first bound the degree of the witness graph. Define the following neighbourhoods of x in the
witness graph GH :

Nself (x) := {y ∈ VH | {x,y} ∈ EH and eH (x) = eH (y)},
Nout(x) := {y ∈ VH | {x,y} ∈ EH and eH (x) , eH (y)},
N (x) := Nself (x) ⊎ Nout(x).

(18)

In other words, we partition the neighbourhood N (x) of x in the witness graph GH into two parts,
one containing those corresponding to the same edge in the original hypergraph, and the other one
collecting the rest.
Lemma 5.11. For any vertex x ∈ VH , it holds that |Nself (x)| ≤ 2k − 2 and |Nout(x)| ≤ (2k − 1)k(∆ − 1),
and therefore, the maximum degree of GH is bounded by 2∆k2 − 2.
Proof. Fix arbitrarily an edge e ∈ E in the original hypergraph H and a time t ∈ Z≤0. This induces a
vertex x in the witness graph GH . We claim that for any e ′ ∈ E such that e ∩ e ′ , �, it holds that

|{TS(e ′, t ′) | t ′ ∈ Z≥0 and TS(e ′, t ′) ∩ TS(e, t) , �}| ≤ 2k − 1.
This claim implies the lemma because

• by taking e ′ = e , we have |Nself (x)| ≤ 2k − 2 (we need to exclude x itself); and
• by taking e ′ such that e ′ , e and e ′ ∩ e , �, we have |Nout(x)| ≤ (2k − 1)k(∆ − 1), since there

are at most (∆ − 1)k choices for such e ′.
We then verify the claim. Assume TS(e, t) = (t1, t2, . . . , tk) where t1 < t2 < · · · < tk < t1 + n, and

TS(e ′, t ′) = (t ′1, t ′2, . . . , t ′k) where t ′1 < t ′2 < · · · < t ′k < t ′1 + n. Observe that TS(e ′, t ′) ∩ TS(e, t) , �
implies e ∩ e ′ , �. This means the following two quantities

jmin :=min
{
j ∈ [k] | vi(tj) ∈ e ′

}
, and

jmax :=max
{
j ∈ [k] | vi(tj) ∈ e ′

}
are well defined.

Observe that t ′k ≥ tjmin and t ′1 ≤ tjmax . This can be argued as follows. Assume towards contradiction
that t ′k < tjmin . As TS(e ′, t ′) ∩ TS(e, t) , �, there must be such j and j ′ that tj = t ′j′ ∈ TS(e ′, t ′) ∩ TS(e, t).
Note that tj = t ′j′ < tjmin because of the ordering t ′j′ ≤ t ′k and the assumption. This contradicts with the
choice of jmin. The same argument goes for the other inequality.

The two inequalities above, together with t ′k < t ′1 + n, implies t ′1 ∈ (tjmin − n, tjmax]. Note further that
in the interval [tjmin − n, tjmax], there are at most 2k timestamps when there is a vertex in e ′ that gets
updated: k from [tjmin −n, tjmin) and at most k from [tjmin, tjmax] By definition of jmin, the vertex that gets
updated at time tjmin must come from e ′. Therefore, there are at most 2k − 1 timestamps in the interval
(tjmin −n, tjmax] that update vertices in e ′, and hence at most 2k −1 choices for t ′1. The claim then follows
by observing that the sequence TS(e ′, t ′) = (t ′1, t ′2, · · · , t ′k) is uniquely determined by t ′1. □

21

We analyse how ApproxMarginIndSet branches. For t0 < t1 ≤ t∗, if ApproxMarginIndSet(t0,γ)
originates from ApproxMarginIndSet(t1,γ), then we say the recursion ApproxMarginIndSet(t0,γ) is
triggered by x = TS(e, t1) ∈ VH , where e is the edge that the caller is handling. Also note that the same
t0 might be triggered by various different t1’s, but only the first recursion ApproxMarginIndSet(t0,γ)
can trigger more recursive calls. Let

VB := {x ∈ VH | x triggers recursive calls }(19)
be a random subset of VH . In fact, its randomness only comes from that used by the algorithm. Upon
the termination of the algorithm, it generates the set R of randomness used over time, and defines the
set VB . The size of R can be upper bounded in terms of |VB |.

Lemma 5.12. |R | ≤ (|VB | + 1)k2∆.

Proof. Arbitrarily fix the values of all random bits (rt)t ≤0. Given this, ApproxMarginIndSet is deter-
ministic. We show that the lemma always holds.

A timestamp t0 is said to be active if ApproxMarginIndSet(t0,γ) is invoked. Let A be the set of all
active timestamps except the initial call of ApproxMarginIndSet. For any t0 ∈ A, consider the first
invocation of ApproxMarginIndSet(t0,γ). It invokes the subroutine LB-Sample in Line 3 and Line 6.
The number of invocations in Line 3 is 1, and the number of invocations in Line 6 is bounded by k∆−1,
as each vertex is incident to at most ∆ hyperedges and each hyperedge contains k vertices. For any
call of ApproxMarginIndSet(t0,γ) beyond the first run, the algorithm directly returns a value in Line 2
and does not invoke LB-Sample. Together with the initial call at time t∗, we have

|R | ≤ (|A| + 1)k∆.
For each t0 ∈ A, consider the first invocation of ApproxMarginIndSet(t0,γ) and suppose it is invoked

by ApproxMarginIndSet(t1,γ) when it is processing the hyperedge e . This actually defines a map f :
A→ VB where f (t0) = TS(e, t1). By definition, for any t ′ such that f (t ′) = x ′, it must hold that t ′ ∈ x ′
and |x ′ | = k . This implies that for each x ′ ∈ VB , there are at most k different t ′ ∈ A such that f (t ′) = x ′.
This gives

|A| ≤ k |VB |.(20)

Hence |R | ≤ (|A| + 1)k∆ ≤ (|VB | + 1)k2∆. □

Lemma 5.13. The subgraph ofGH induced byVB is connected. Furthermore, ifVB , �, then there exists
x ∈ VB such that t∗ ∈ x .

Proof. Again, arbitrarily fix the values of all random bits (rt)t ≤0. Given this, ApproxMarginIndSet is
deterministic. We show that the lemma always holds. We may also assume VB , � or otherwise the
lemma trivially holds.

Order the set VB = {x (1), x (2), . . . , x (ℓ)} by the time a vertex joins this set, i.e., triggers a recursion.
Herex (i) is the i-th vertex that triggers a recursion. The last index ℓ is finite becauseApproxMarginIndSet(t,γ)
terminates within a finite number of steps. We claim that for any i ∈ [ℓ], there exists a path P =
(y1,y2, . . . ,ym) in GH such that

• t∗ ∈ y1 and x (i) = ym ;
• for all j ∈ [m], yj ∈ VB .

This immediately proves the lemma. We prove the claim by induction on index i .
Base case. Consider the initial invocation ApproxMarginIndSet(t∗,γ). It must trigger some recur-
sion, or otherwise VB = �, violating our assumption. Therefore, t∗ ∈ x (1), and we can simply take the
path P = (x (1)).
Induction step. Fix an integer 1 < j ≤ ℓ. Suppose the claim holds for all x (i) for i < j. We
prove this for x (j). If x (j) joins VB whilst ApproxMarginIndSet(t∗,γ) executes, then we can simply
take P = (x (j)). Otherwise, suppose x (j) joins VB whilst ApproxMarginIndSet(t0,γ) executes for some
t0 < t∗, and this call is invoked by another ApproxMarginIndSet(t1,γ) where t0 < t1 ≤ t∗ when the
caller is processing some hyperedge e ∈ E in Line 7. Then there exists i < j such that x (i) = TS(e, t1).
By induction hypothesis, there is a path P = (y1,y2, . . . ,ym′) for x (i) with ym′ = x (i). Note that t0 ∈ x (i)

22

because x (i) triggers a recursive call of ApproxMarginIndSet(t0,γ), and t0 ∈ x (j) because vj joins VB
whilst ApproxMarginIndSet(t0,γ). Thus the edge (x (i), x (j)) exists in the witness graph, and we can
construct the new path as P ′ = (P, x (j)) to meet the conditions. □

Lemma 5.14. For all x ∈ VB and all t ′ ∈ x , it holds that rt ′ =⊥.

Proof. Fix a x = TS(e, t0) ∈ VB . As x triggers another subroutine in Line 7, the current hyperedge
e must satisfy the condition in Line 6. This means rt ′ =⊥ for all t ′ ∈ x \ {t0} (recall the definition
in (17)). Moreover, rt0 =⊥, as otherwise rt0 = 0 (recall the lower bound distribution µLB), in which case
ApproxMarginIndSet(t0,γ) must have terminated in Line 3 before reaching Line 7. □

To prove Lemma 5.9, we need the notion of 2-trees [Alo91]. Given a graph G = (V , E), its power
graph G2 = (V , E2) has the same vertex set, while an edge (u,v) ∈ E2 if and only if 1 ≤ distG (u,v) ≤ 2.

Definition 5.15 (2-tree). Let G = (V , E) be a graph. A set of vertices T ⊆ V is called a 2-tree of G, if
• for any u,v ∈ T , distG (u,v) ≥ 2, and
• T is connected on G2.

Intuitively, a 2-tree is an independent set that does not spread far away. The next lemma bounds the
number of 2-trees of a certain size containing a given vertex.

Lemma 5.16 ([FGYZ21a, Corollary 5.7]). LetG = (V , E) be a graph with maximum degreeD, andv ∈ V
be a vertex. The number of 2-trees in G of size ℓ ≥ 2 containing v is at most (eD

2)ℓ−1
2 .

The next lemma shows the existence of a large 2-tree.

Lemma 5.17 ([FGYZ21a, Observation 5.5] and [JPV21a, Lemma 4.5]). Let G = (V , E) be a graph of
maximum degree D, H = (V (H), E(H)) be a connected finite subgraph of G, and v ∈ V (H) a vertex in H .
Then there exists a 2-tree T of H containing v such that |T | = ⌊|V (H)|/(D + 1)⌋.

Proof of Lemma 5.9. By Lemma 5.12, it suffices to show Pr
[
|VB | ≥ 2∆k2 · η

]
≤ 2−η for any integer

η ≥ 1, as

Pr
[
|R | ≥ 3∆2k4 · η

]
≤ Pr

[
(|VB | + 1)∆k2 ≥ 3∆2k4 · η

]
≤ Pr

[
|VB | ≥ 2∆k2 · η

]
≤

(
1
2

)η
.

Fix an integerη ≥ 1 and assume |VB | ≥ 2∆k2 ·η. Recall thatVB is finite becauseApproxMarginIndSet
terminates within a finite number of steps. By Lemma 5.13, there exists y ∈ VB such that t∗ ∈ y. Also
by Lemma 5.11 and Lemma 5.17, there exists a 2-tree T ⊆ VB of size i such that y ∈ T . For x ∈ VH ,
let T η

x denote the set of 2-trees of VH of size η containing x . Then by Lemma 5.13, Lemma 5.17, and a
union bound over all 2-trees, we have

Pr
[
|VB | ≥ 2∆k2 · η

]
≤

∑
T ∈Tηx

Pr [T ⊆ VB] .

By Lemma 5.14, the event T ⊆ VB implies rt =⊥ for all timestamps t involved in T . Also note that,
any pair x,y of vertices in T do not share timestamps. Thus, we have Pr [T ⊆ VB] ≤ 2−k · |T | . Using
Lemma 5.11 and Lemma 5.16, it holds that∑

T ∈Tηx

Pr [T ⊆ VB] ≤ 2∆k2 · (4e∆2k4)η−1 ·
(
1
2

)kη
≤

(
4e∆2k4

2k

)η
≤ 2−η,

where the last inequality is due to 2k ≥ 8e∆2k4. □

5.3. Improved bounds for linear hypergraphs. We now give a marginal sampler for linear hyper-
graphs and prove Lemma 5.3. Let δ > 0 be a constant. Let k ≥ 25(1+δ)2

δ 2 and ∆ ≥ 2 be two integers
satisfying 2k ≥ (100k3∆)1+δ . Given as inputs a linear k-uniform hypergraph H = (V , E) with max-
imum degree ∆ and a parameter γ > 0, the algorithm is the same as Algorithm 5, except that the

23

truncation condition in Line 10 is changed from |R | ≥ 3∆2k4
⌈
log 1

γ

⌉
to:

|R | ≥ 104
(
1 + δ
δ

)2
∆3k9

⌈
log

1
γ

⌉
.(21)

Much of the analysis for the general case can be applied to the linear case, with amuch refined condition
on the maximum degree.

The running time of the modified algorithm can be bounded in the same way as Lemma 5.7.

Lemma 5.18. The running time of the modified algorithm is O
(
(1+δδ)2∆4k10 log 1

γ

)
.

Next, we bound the truncation error.

Lemma 5.19. Denote η = ⌈log 1
γ ⌉. Upon the termination of the modified algorithm, the size of R satisfies

Pr

[
|R | ≥ 104

(
1 + δ
δ

)2
∆3k9 · η

]
≤ 2−η .(22)

Lemma 5.3 then follows by Lemma 5.18, Lemma 5.19, and Theorem 4.8. The rest of this section is
dedicated to the proof of Lemma 5.19.

As the condition of maximum degree is much more refined, we need to rely heavily on the property
that the original hypergraph H is linear. Recall that in the analysis in Section 5.2, we were actually
dealing with the witness graphGH (Definition 5.10). However, for some pair of adjacent vertices in the
witness graph GH , the overlap |x ∩ y | is not necessarily 1 even the underlying hypergraph H is linear.
To see this, recall the partition of neighbourhood of x ∈ VH constructed in (18). For any neighbour y
that corresponds to a different edge in H , i.e., y ∈ Nout(x), it indeed holds that |x ∩ y | = 1; however,
for those u ∈ Nself (v), there is no guarantee on the size of the intersection |x ∩ y |. To handle such
kind of “neighbours” that are actually doppelgängers, we introduce the following new notion of the
self-neighbourhood powered witness graph.

Definition 5.20. LetGH = (VH , EH) be thewitness graph as inDefinition 5.10. The self-neighbourhood
powered witness graph Gself

H = (VH , EselfH) is defined on the same vertex set as GH . Its edge set
EselfH = EH ∪ E ′ is given by

E ′ = {{x,y} | (∃w ∈ VH s.t. w ∈ Nself (y) ∧w ∈ N (x)) ∨ (∃w ∈ VH s.t. w ∈ N (y) ∧w ∈ Nself (x))},
where Nself (x) and N (x) are defined as in (18).

We first bound the maximum degree of Gself
H .

Lemma 5.21. The maximum degree of Gself
H is at most 10k3∆ − 1.

Proof. For any x ∈ VH , by Lemma 5.11, |Nself (x)| ≤ 2k and N (x) ≤ 2∆k2 − 1. Hence, the maximum
degree of Gself

H is at most 2∆k2 − 1 + 2 × 2k × (2∆k2 − 1) ≤ 10k3∆ − 1. □

Recall from the proof of general case that we only need to analyse the size of a connected vertex set
VB inGH , as Lemma 5.12 still applies. To employ linearity at some point, we instead work onGself

H . As
there are more edges in Gself

H than in GH , small components are more likely to emerge. Therefore, for
any connected componentVB inGH , we can find a subsetV lin

B ⊆ VB that is connected inGself
H , fulfilling

linearity. This is formally described as the following lemma.

Lemma 5.22. Given a k-uniform linear hypergraph H = (V , E) with the maximum degree ∆, let GH =

(VH , EH) be its witness graph. Fix a vertex x ∈ VH , and let VB ⊆ VH be a finite subset containing x and
connected in GH . Then, there exists V lin

B ⊆ VB such that

(L1) x ∈ V lin
B and |V lin

B | ≥ ⌊
|VB |
2k+1⌋,

(L2) the induced subgraph Gself
H [V lin

B] is connected, and
(L3) for any two distinct vertices x1, x2 ∈ V lin

B , it holds that |x1 ∩ x2 | ≤ 1.
24

Proof. We construct one such V lin
B explicitly. Let G = GH [VB]. The condition in the lemma says G is

connected. For any vertex y ∈ VB , denote by ΓG (y) the neighbourhood of y in G, and for any subset
Λ ⊆ VB , define

ΓG (Λ) := {y ∈ VB \ Λ | ∃w ∈ Λ s.t. y ∈ ΓG (w)}.
The set V lin

B is constructed by the following algorithm.
• Initialise V lin

B ← �, Λ← � and V ← VB .
• Repeat the following until V = �:

(1) if Λ = �, let y ← x ; otherwise, let y be an arbitrary vertex in ΓG (Λ);
(2) V lin

B ← V lin
B ∪ {y};

(3) Λ← Λ ∪ {y} ∪ (VB ∩ Nself (y)).
(4) V ← VB \ Λ.

The algorithm above is well defined and terminates in finite steps. First, the vertex y in Line (1)
always exists. To see this, we only need to consider the case Λ , �. ThenV , � because the algorithm
has not yet terminated. Note thatΛ⊎V = VB upon entering Line (1), which impliesΛ , VB . In addition,
G is connected, and hence ΓG (Λ) , �, implying the existence of such y. Secondly, the algorithm will
eventually terminate because the setV is initialised to beVB which is finite, and the size ofV decreases
by at least 1 after each iteration.

We then verify that the output V lin
B satisfies the conditions in the lemma.

(L1): Apparently x ∈ V lin
B . By Lemma 5.11, we add at most 2k + 1 vertices into Λ in Line (3), thus

remove at most 2k + 1 vertices from |V | in each iteration. This implies |V lin
B | ≥ ⌊

|VB |
2k+1⌋.

(L2): We show by a simple induction that Gself
H [V lin

B] is connected during the whole process. As a
base case, V lin

B = {x} after the first iteration, and hence the claim holds. For the upcoming iterations,
we always pick y ∈ ΓG (Λ), thus there exists w ∈ Λ such that y and w are adjacent in G, and thus
adjacent in GH . There are two cases for w joining Λ in Line (3) in earlier iterations, that either (a)
w ∈ V lin

B , or (b)w ∈ Nself (w ′) for somew ′ ∈ V lin
B . In Case (a), y andw are adjacent inGH , and thus they

are adjacent Gself
H . In Case (b), y and w ′ are adjacent Gself

H . The claim then follows by the principle of
induction.

(L3): Fix x1, x2 ∈ V lin
B . Suppose the algorithm first adds x1 intoV lin

B and then x2. After x1 gets added,
the algorithm puts all (VB ∩ Nself (x1)) into Λ, implying x2 < Nself (x1). Hence, there are only two cases
for x2: either (a) x2 < N (x1), and thus x1 ∩ x2 = �; or (b) x2 ∈ Nout(x1), in which case, since the
hypergraph H is linear, |x1 ∩ x2 | = 1. □

To make the most of linearity, we use the following 2-block trees, first introduced in [FGW22],
instead of 2-trees as in the general case.
Definition 5.23 (2-block-tree). Let θ , ℓ ≥ 1 be two integer parameters, andG = (V , E) be a graph. We
call a collection of vertex sets {C1,C2, · · · ,Cℓ} a 2-block-tree of block size θ and tree size ℓ in G, if

• for any 1 ≤ i ≤ ℓ, the set Ci ⊂ V has size θ , and the induced subgraph G[Ci] is connected;
• distG (Ci ,Cj) := minu ∈Ci ,v ∈Cj distG (u,v) ≥ 2 for any distinct 1 ≤ i, j ≤ ℓ;
• ∪ℓ

i=1Ci is connected onG2, where u and v are adjacent inG2 if and only if 1 ≤ distG (u,v) ≤ 2.
In fact, a 2-tree is a 2-block-tree but with θ = 1. As we see from last section, the point of using

2-trees is to secure a bound on the independent vertices in the original hypergraph. Therefore, we
only look at independent hyperedges, by which we may drop too much. The observation is that, if the
hypergraph is simple, then a block, as defined above, has a much better lower bound on the number
of distinct vertices in the original hypergraph than just dropping dependent hyperedges, so long as
θ ≪ k .

We can construct a 2-block-tree out of a connected induced subgraph.
Lemma 5.24. Let θ ≥ 1 be an integer. LetG = (V , E) be a graph with maximum degree ∆. Given a finite
subsetC ⊆ V such that the subgraphG[C] induced byC is connected, and a vertexv ∈ C , then there exists
a 2-block-tree {C1,C2, . . . ,Cℓ} inG with block size θ and tree size ℓ = ⌊|C |/(θ 2∆2)⌋ such that v ∈ C1 and
Ci ⊆ C for all i ∈ [ℓ].

25

The above lemma is proved by the technique in [FGW22, Proposition 16], which we shall defer
to Appendix A for completeness. We comment that [FGW22, Proposition 16] actually proves some
additional results, but here in Lemma 5.24, we only requires ℓ = Ωθ ,∆(|C |) as this is enough for our
application.

We also need a bound on the number of 2-block-trees.

Lemma 5.25 ([FGW22, Lemma 20]). Let θ ≥ 1 be an integer. LetG = (V , E) be a graph with maximum
degree ∆. For any integer ℓ ≥ 1, any vertexv ∈ V , the number of 2-block-trees {C1,C2, . . . ,Cℓ} with block
size θ and tree size ℓ such v ∈ ∪ℓi=1Ci is at most (θeθ∆θ+1)ℓ .

Now we prove Lemma 5.19.

Proof of Lemma 5.19. Let VB be the set generated by the modified algorithm (see (21)) as defined in
(19). Again, VB ⊆ VH is a finite subset because the algorithm terminates after a finite number of steps.
Choose the parameter

θ :=

⌈
4(1 + δ)

δ

⌉
,

and by this choice, Pr
[
|R | ≥ 104(1+δδ)2k9∆3η

]
≤ Pr

[
|R | ≥ 400θ 2k9∆3η

]
. Using Lemma 5.12, it holds

for any positive integer η that

Pr
[
|R | ≥ 400θ 2k9∆3η

]
≤ Pr

[
(|VB | + 1)k2∆ ≥ 400θ 2k9∆3η

]
≤ Pr

[
|VB | ≥ 300θ 2k7∆2η

]
.

Hence, it suffices to show

Pr
[
|VB | ≥ 300θ 2k7∆2η

]
≤

(
1
2

)η
for any integer η ≥ 1.

Fix an integer η ≥ 1 and assume |VB | ≥ 300θ 2k7∆2η. As the set VB is non-empty, by Lemma 5.13,
there exists x ∈ VB such that t∗ ∈ x . Fix such a vertex x . By Lemma 5.22, we can find the set
V lin
B ⊆ VB with size |V lin

B | ≥ ⌊
|VB |
2k+1⌋ ≥ ⌊

|VB |
3k ⌋ ≥ θ 2(10k3∆)2η containing x and fulfilling the conditions

in Lemma 5.22, and it is straightforward to find a subset U ⊆ V lin
B with size exactly |U | = θ 2(10k3∆)2η

such that x ∈ U and the rest of Lemma 5.22 are satisfied by U . By Lemma 5.21, the maximum degree
of Gself

H [U] is at most 10k3∆. Since Gself
H [U] is a finite connected subgraph in Gself

H , by Lemma 5.24, we
can find a 2-block-tree {C1,C2, . . . ,Cη} in Gself

H with block size θ and tree size η such that x ∈ C1 and
Cj ⊆ U ⊆ VB for all j ∈ [η]. By (L3) in Lemma 5.22, for any distinct x1, x2 ∈ ∪ηj=1Cj , it holds that
|x1 ∩ x2 | ≤ 1.

The discussion above motivates the following notation. For any x , let T η,θ
x be the set of all 2-block-

trees {C1,C2, · · · ,Cη} with block size θ and tree size η in Gself
H such that

• x ∈ C1;
• let C = ∪ηj=1Cj , then for anyw1,w2 ∈ C , |w1 ∩w2 | ≤ 1.

Hence, if |VB | ≥ 300θ 2k7∆2η, then there exists a vertex x ∈ VH satisfying t∗ ∈ v together with a 2-
block-tree {C1,C2, . . . ,Cη} ∈ T η,θ

x such thatCj ⊆ VB for all j ∈ [η]. By a union bound over all possible
vertices x and all 2-block-trees in T η,θ

x , we have

Pr
[
|VB | ≥ 3θ 2k∆2η

]
≤

∑
x ∈VH :t ∈x

∑
{C1, ...,Cη }∈Tη,θx

Pr
[
∀j ∈ [η],Cj ⊆ VB

]
.

Fix a 2-block-tree {C1, . . . ,Cη} ∈ T η,θ
x . By definition, for any j and ℓ that j , ℓ, we have distG self

H
(Cj ,Cℓ) ≥

2, and thus for any x j ∈ Cj and xℓ ∈ Cℓ , it holds that x j ∩ xℓ = �. For any j ∈ [η], and any two
w1,w2 ∈ Cj , it holds that |w1 ∩ w2 | ≤ 1 by the definition of T η,θ

x . This implies that Cj contains at
least θ (k − θ) distinct timestamps, and hence the 2-block-tree {C1, · · · ,Cη} contains at least θ (k − θ)η

26

distinct timestamps. Since the 2-block-tree is a subset ofVB , by Lemma 5.14, every timestamp t in the
2-block-tree must take the corresponding random oracle output rt =⊥. This gives

Pr
[
∀j ∈ [η],Cj ⊆ VB

]
≤

(
1
2

)θ (k−θ)η
.

Next, we count the number of possible 2-block-trees in T η,θ
x , which can be upper bound by the number

of all 2-block-trees {C1,C2, . . . ,Cη} with block size θ and tree size η in Gself
H such that x ∈ C1. By

Lemma 5.25 and Lemma 5.21, we have���T η,θ
x (U)

��� ≤ (θeθ (10k3∆)θ+1)η .
Hence, we only need to prove that

(θeθ (10k3∆)θ+1)η
(
1
2

)θ (k−θ)η
≤

(
1
2

)η
,

which is equivalent to 2k−θ ≥ (2θ)1/θ e(10k3∆)(1+θ)/θ . We derive this as follows. Observe the following
inequalities

δ ≥ 2
4
δ + 3

≥ 2⌈
4
δ + 3

⌉ = 2
θ − 1 ;(23)

k ≥ 25(1 + δ)2
δ 2

≥ θ 2 =⇒ k − θ
k
≥ θ − 1

θ
.(24)

Then we have

2k−θ = (2k) k−θk ≥
(
(100k3∆)1+δ

) k−θ
k(By condition)

≥
(
101+

2
θ−1 (10k3∆)1+ 2

θ−1
) k−θ

k(By (23))

≥
(
5

θ
θ−1 (10k3∆)1+ 2

θ−1
) k−θ

k

≥ 5(10k3∆) 1+θθ(By (24))

≥ (2θ)1/θ e(10k3∆) 1+θθ .(By θ ≥ 4)
This finishes the proof. □

6. Hypergraph colouring

In this section, we give FPTASes for the number of proper colourings in a hypergraph in the local
lemma regime and prove Theorem 1.3 and Theorem 1.4. Given a k-uniform hypergraph H = (V , E)
with maximum degree ∆, we use ΩH ⊆ [q]V to denote the set of all proper q-colourings of H , and
Z = |ΩH | to denote its size. Our goal is to approximate Z .

We use the edge decomposition scheme in (6) to count the number of hypergraph colourings. As-
sume E = {e1, e2, . . . , em}. Let Ei = {e1, e2, . . . , ei },Hi = (V , Ei). Let µi denote the uniform distribution
over all proper q-colourings of Hi = (V , Ei) for each 0 ≤ i ≤ m, where Ei = {e1, e2, . . . , ei }. According
to (6), approximating ZH boils down to approximating Ez∼µi−1,ei [φei (z)] for each 1 ≤ i ≤ m, where
φei (z) = 0 if and only if all v ∈ ei take the same value in z. Hence,

Ez∼µi−1,ei [φei (z)] = Pr
X∼µi−1

[ei is not monochromatic in X] .(25)

Next, for each 0 ≤ i ≤ m, it is straightforward to verify the following properties:
• Hi is a k-uniform hypergraph if H is a k-uniform hypergraph;
• the maximum degree of Hi is at most the maximum degree of H ;
• Hi is a linear hypergraph if H is a linear hypergraph.

When the Lovász local lemma applies, any edge decomposition scheme is suitably lower bounded,
as shown by the next lemma.

27

Lemma 6.1. If ∆ ≥ 2 and q > (e∆k) 1
k−1 , any edge decomposition scheme for H = (V , E) is 1

2 -bounded.

Proof. For any ordering of the hyperedges of H , fix a hypergraph Hi−1 = (V , Ei−1). Note that the
maximum degree of Hi−1 is at most ∆. Suppose each vertex takes a colour from [q] uniformly and
independently. For each hyperedge e ∈ Ei−1, define Be as the event that e is monochromatic. Let
x(Be) = 1

∆k for all e ∈ Ei−1. Then (1) in Lemma 2.2 is satisfied. Let A denote the event that all vertices
in set ei are monochromatic. By Lemma 2.3,

Pr
X∼µi−1

[ei is monochromatic in X] ≤
(
1
q

)k−1 (
1 − 1

∆k

)−(∆−1)k
≤ 1

∆k
≤ 1

2
,

and thus the probability that ei is not monochromatic is at least 1
2 . □

By Corollary 3.3, it suffices to give the following sampling algorithms for general hypergraphs and
linear hypergraphs, respectively.

Lemma 6.2. Let ∆ ≥ 2, k ≥ 20 and q ≥ 64∆
3

k−5 be three integers and 0 < γ < 1 be a real number.
There exists an algorithm such that given any k-uniform hypergraph H = (V , E) with the maximum
degree at most ∆, any subset of vertices S ⊆ V such that |S | ≤ k , outputs a random Y ∈ [q]S such that
dTV (Y , µS) ≤ γ , where µ is the uniform distribution over all proper q-colourings in H . The time cost of
this algorithm isO(∆6k11(log2 1

γ) · q
8∆3k6 log 1

γ). It draws at most 8∆2k5⌈log 1
γ ⌉ + 1 random variables over

a size-(q + 1) domain.

Lemma 6.3. Let δ > 0 and 0 < γ < 1 be two real numbers. Let k ≥ 50(1+δ)2
δ 2 , ∆ ≥ 2 and q be

integers satisfyingq ≥ 50∆
2+δ
k−3 . There exists an algorithm such that given anyk-uniform linear hypergraph

H = (V , E) with the maximum degree at most ∆, any subset of vertices S ⊆ V such that |S | ≤ k , outputs
a random Y ∈ [q]S such that dTV (Y , µS) ≤ γ , where µ is the uniform distribution over all proper q-
colourings in H . The time cost of this algorithm is O

(
(1+δδ)4∆8k21(log2 1

γ)q
6·104(1+δδ)

2∆4k11 log 1
γ
)
. It draws

at most 6 · 104(1+δδ)2∆3k10⌈log 1
γ ⌉ + 1 random variables over a size-(q + 1) domain.

Remark 6.4. Unlike in Remark 5.4, algorithms in Lemma 6.2 and Lemma 6.3 are not direct truncations
of perfect marginal samplers. In fact, we will apply CTTP to a projected distribution, rather than to
the original uniform distribution over all proper hypergraph colourings. There are some extra steps
after truncating CTTP, which will be explained in more details in Section 6.2.

Theorem 1.3 and Theorem 1.4 are direct consequences of Lemma 6.2 and Lemma 6.3, respectively.

Proof of Theorem 1.3 and Theorem 1.4. By Lemma 6.1, any edge decomposition scheme is 1
2 -bounded

under the conditions of Theorem 1.3 and Theorem 1.4. Plugging γ = ε
20m into Lemma 6.2, where

m ≤ ∆n is the number of hyperedges, we have an algorithm that draws at most 8∆2k5⌈log 20m
ε ⌉ + 1

random variables over a size-(q+1) domain with time costO(∆6k12 log2 20m
ε ·q8∆

3k6 log 20m
ε) for sampling

from the conditional distribution within ε
20m total variation distance. By Corollary 3.3, we have a

deterministic approximate counting algorithm with running time

T = O

(
∆n · ∆6k11 log2

20∆n
ε
· q8∆3k6 log 20∆n

ε · (q + 1)9∆2k5 log 20∆n
ε

)
= poly(∆k)

(
∆n

ε

)O (∆3k6 logq)
.

This proves Theorem 1.3. Theorem 1.4 is proved the same way but with Lemma 6.3 invoked. The
running time of the deterministic approximate counting algorithm is

T = O

(
∆n ·

((
1 + δ
δ

)4
∆8k21 log2

20∆n
ε

)
· q6·104(1+δδ)

2
∆4k11 log 20∆n

ε · (q + 1)7·104(1+δδ)2∆3k10 log 20∆n
ε

)

= poly

(
(1 + δ)∆k

δ

) (
∆n

ε

)O (
(1+δ)2∆4k11 logq

δ 2

)
.

This proves Theorem 1.4. □
28

6.1. Projection schemes andprojected distribution. Unlike in the case of hypergraph independent
sets, the single-site Glauber dynamics for hypergraph colouring is not necessarily irreducible. We use
the following “projection scheme” introduced in [FHY21] to resolve this issue.

Definition 6.5 (projection scheme for hypergraph colourings [FHY21]). Let 1 ≤ s ≤ q be an integer.
A (balanced) projection scheme h : [q] → [s] satisfies for any i ∈ [s],

��h−1(i)�� = ⌊ qs ⌋ or ��h−1(i)�� = ⌈qs ⌉.
We extend h to colourings of V as well. For any X ∈ [q]V , we use Y = h(X) to denote the projected

image:
∀v ∈ V , Yv = h(Xv),

i.e., the colouring is projected independently for each vertex. Also for any subset of vertices Λ ⊆ V ,
we will use a similar notation YΛ = h(XΛ) = (h(Xv))v ∈Λ.

Consider the projection schemeh(·) defined in Definition 6.5, where the integer parameter 1 ≤ s ≤ q
will be fixed later. We can naturally associate it with the following projected distribution.

Definition 6.6 (projected distribution). The projected distributionψ : [s]V → [0, 1] is the distribution
Y = h(X) where X ∼ µ, where µ is the uniform distribution over all proper hypergraph q-colourings
of H = (V , E). Formally,

∀σ ∈ [s]V , ψ (σ) =
∑

τ ∈h−1(σ)
µ(τ).

For any Λ ⊆ V and σΛ ∈ [s]Λ, we let ψ σΛ denote the distribution over [s]V obtained from ψ con-
ditional on σΛ. For any S ⊆ V , let ψ σΛ

S denote the marginal distribution on S projected from ψ σΛ . If
S = {v} only contains a single vertex, we writeψ σΛ

v for simplicity.
We also slightly abuse the notation: for any Λ ⊆ V and σΛ ∈ [s]Λ, we let µσΛ denote the distribution

of X ∼ µ conditional on h(X (v)) = σΛ(v) for each v ∈ Λ. Note that this conditional distribution differs
from the usual conditional distribution µσΛ when σΛ ∈ [q]Λ is a partial colouring. We shall explain
the meaning of σΛ when using µσΛ . Also, for any S ⊆ V , let µσΛS denote the marginal distribution on S
projected from µσΛ . If S = {v} only contains a single vertex, we write µσΛv for simplicity.

An important corollary from Lemma 2.3 is the “local uniformity” property for the projected distri-
bution ψ in Definition 6.6, which states that for any Λ ⊆ V , any v ∈ V \ Λ, conditional on any partial
configuration σ ∈ [s]Λ,ψ σ

v is close to the uniform distribution over [s].

Lemma 6.7 (local uniformity). Let 1 ≤ s ≤ q. If ⌊q/s⌋k ≥ 4eqs∆k , then for any v ∈ V , any subset
Λ ⊆ V \ {v} and partial configuration σΛ ∈ [s]Λ, it follows that

∀j ∈ [s],
��h−1(j)��

q

(
1 − 1

4s

)
≤ ψ σΛ

v (j) ≤
��h−1(j)��

q

(
1 +

1
s

)
.

To prove Lemma 6.7, we need the following lemma for the general list hypergraph colouring problem.
Let H = (V , E) be a k-uniform hypergraph with maximum degree at most ∆. Let {Qv }v ∈V be a set of
colour lists. We say X ∈ ⊗v ∈VQv is a proper list colouring if no hyperedge in E is monochromatic
with respect to X . Let µ denote the uniform distribution of all proper list hypergraph colourings of H .

Lemma 6.8 ([GLLZ19, Lemma 7] and [FGW22, Lemma 6]). Suppose q0 ≤ |Qv | ≤ q1 for any v ∈ V . For
any r ≥ k ≥ 2, if qk0 ≥ eq1r∆, then for any v ∈ V and any colour c ∈ Qv ,

1
|Qv |

(
1 − 1

r

)
≤ µv (c) ≤

1
|Qv |

(
1 +

4
r

)
.

We are now ready to prove Lemma 6.7 using Lemma 6.8.

Proof. Note thatψ σΛ
v is the marginal distribution induced by a list hypergraph colouring instance with

hypergraph H and colour lists satisfying

∀u ∈ V , Qu =

{
h−1(σΛ(u)) u ∈ Λ
[q] u < Λ

.

29

Note that the size of the colour list Qu of each vertex u ∈ V satisfies

⌊q/s⌋ ≤
��h−1(σΛ(u))�� ≤ |Qv | ≤ q

By setting q0 = ⌊q/s⌋, q1 = q and r = 4sk in Lemma 6.8, we have

∀j ∈ [s],
��h−1(j)��

q

(
1 − 1

4s

)
≤ ψ σΛ

v (j) ≤
��h−1(j)��

q

(
1 +

1
s

)
. □

6.2. Marginal sampler for the projected distribution. Here, we give the marginal sampler for the
projected distribution of hypergraph colourings (Algorithm 7). We want to apply the truncated resolve
algorithm, Algorithm 3. One requirement for the correctness of Algorithm 3 is the irreducibility of
systematic scan Glauber dynamics, and we achieve this by running it on the projected distribution
ψ , with a suitably chosen s . Furthermore, we will specify suitable marginal lower bounds for ψ , and
specify the Boundary(t) subroutine.

Formally, we use the systematic scan Glauber dynamics (Yt)−T ≤t ≤0 on the projected distribution ψ .
By Lemma 6.7, for any Λ ⊆ V , any σΛ ∈ [s]Λ and any v ∈ V \ Λ, it holds that

∀j ∈ [s], ψ σΛ
v (j) ≥ ρ j :=

��h−1(j)��
q

(
1 − 1

4s

)
.

Hence, the distribution ψ has the (ρ1, ρ2, · · · , ρs)-marginal lower bound. Note that this immediately
shows that the systematic scan Glauber dynamics satisfies Condition 4.4 as ρ j > 0 for all j ∈ [s]. Define
the lower bound distribution for (projected) hypergraph colouring instancesψ LB by

ψ LB(⊥) = 1 −
∑

1≤i≤s
ρi =

1
4s

and ∀j ∈ [s], ψ LB(j) = ρ j .(26)

For any Λ ⊆ V , any σΛ ∈ [s]Λ and any v ∈ V \ Λ, define the padding distributionψ pad,σΛ
v over [s] by

∀j ∈ [s], ψ
pad,σΛ
v (j) = 4s(ψ σΛ

v (j) − ρ j).
In order to apply Algorithm 3, we still need to specify the Boundary(t) subroutine for ψ . Note that

the projected distributionψ is no longer a Gibbs distribution, but we can still get the conditional inde-
pendence property by constructing σΛ via a breadth-first search (BFS). Given a projected configuration
σΛ ∈ [s]Λ on a subset of vertices Λ ⊆ V , we say a hyperedge e ∈ E is satisfied by σΛ if there are
u,v ∈ e ∩ Λ such that σΛ(u) , σΛ(v). If e is satisfied by σΛ, for all X ∈ [q]V such that σΛ = h(XΛ),
the hyperedge e cannot be monochromatic with respect to X . Let HσΛ = (V , E ′) be the hypergraph
obtained from H after removing all hyperedges in H satisfied by σΛ. Our subroutine Boundary(t) uses
BFS to find the connected component V ′ in HYt−1(V \{vi (t) }) containing the target variable v = vi(t).
Once the component is found, it also finds σΛ = Yt−1(Λ) on some Λ ⊃ V ′ such that V ′ is disconnected
from the rest in HσΛ . We show in Lemma 6.9 that this σΛ satisfies Condition 4.2.

The pseudocode for Boundary(t) is given in Algorithm 6. Recall that it requires two oracles B and
C in Section 4.1.

Lemma 6.9. Boundary(t) in Algorithm 6 satisfies Condition 4.2.

Proof. The assumptions on the oracles B and C ensure that

∀u , v, B(predu (t)) ,⊥ =⇒ Yt−1(u) = B(predu (t)),(27)

and C(u) = Yt−1(u). We then verify the termination and conditional independence property in Condi-
tion 4.2. Note that in the while loop in Lines 2-11, if the condition in Line 4 is satisfied, then e is added
into V ′ in Line 7; otherwise e is satisfied by σΛ after the loop by Line 11. This shows each e ∈ E can
be chosen in Line 3 at most once, and therefore the while loop eventually terminates. After the while
loop in Lines 2-11 terminates, the following holds:

(1) v ∈ V ′;
(2) V ′ ⊆ Λ ∪ {v};
(3) for all e ∈ E s.t. e ∩V ′ , � and e ∩ (V \V ′) , �, e is satisfied by σΛ.

30

Algorithm 6: Boundary(t) for (projected) hypergraph colourings
Input: a hypergraph H = (V , E), a set of colours [q], a projection scheme h : [q] → [s] that

defines the projected distributionψ , and an integer t ≤ 0;
Output: a partial configuration σΛ ∈ [s]Λ over some Λ ⊆ V \ {vi(t)};

1 v ← vi(t),Λ← �,σΛ ← �,V ′← {v};
2 while ∃e ∈ E s.t. e ∩V ′ , �, e ∩ (V \V ′) , � and e is not satisfied by σΛ do
3 choose such e with the lowest index;
4 if ∃j ∈ [s] s.t. ∀u ∈ e \ {v}, B(predu (t)) ∈ {⊥, j} then
5 forall u ∈ e \ {v} do
6 Λ← Λ ∪ {u} and σΛ(u) ← C(u) ;
7 V ′← V ′ ∪ e ;
8 else
9 forall u ∈ e \ {v} do
10 if B(predu (t)) ,⊥ then
11 Λ← Λ ∪ {u} and σΛ(u) ← B(predu (t));

12 return σΛ;

Property (1) holds because v is added to V ′ in the initialisation, and V ′ never removes vertices. Prop-
erty (2) holds because if vertices in some e ∈ E are added to V ′ in Line 7, then all vertices in e \ {v}
are added into Λ in Line 6. As the while loop terminates, the condition in Line 2 no long holds, which
is exactly Property (3).

Since σΛ is a restriction of Yt−1(V \ {v}) on Λ, Property (1) and Property (3) imply that conditioned
on either σΛ or Yt−1(V \ {v}), the marginal distribution forv is unchanged if we remove all hyperedges
crossing bothV ′ andV \V ′. Thus, under both conditioning, the marginal distribution forv is the same
as its marginal distribution on H [V ′] given σΛ and Yt−1(V \ {v}) restricted toV ′ \ {v}, respectively. By
Property (2), the latter two conditionings restricted to V ′ \ {v} are the same. Thus, µσΛv = µYt−1(V \{v })v .

□

Plug Boundary(t) of Algorithm 6 into ApproxResolve of Algorithm 3 and set the threshold K to be
4∆2k5⌈log 1

γ ⌉ This gives Algorithm 7 for approximately sampling from the marginal distributions on
one vertex projected from ψ . Recall that as in Algorithm 1, when plugging Boundary(t), we need to
replace the oracles B and C with suitable calls to LB-Sample and recursive calls, respectively.

Algorithm 7 takes a hypergraph H = (V , E), a colour set [q], a projection scheme h : [q] → [s],
an integer t < 0, and a parameter γ as the input. To avoid notation cluttering, we drop (H , [q],h)
from the input, since these are the same throughout all recursive calls. We denote the algorithm by
ApproxMarginColouring(t,γ ;M,R), where M and R are two global data structures maintained by the
algorithm. When approximately sampling fromψv , find an integer t such that −n < t ≤ 0 andv = vi(t),
and then evoke ApproxMarginColouring(t,γ ;M0,R0), where M0 =⊥Z and R0 = �. Recall that the
subroutine LB-Sample in the algorithm is given in Algorithm 2 with the lower bound distribution µLB
given by (26).

The correctness of Algorithm 7 is justified byTheorem 4.8 and Lemma 6.9. In Line 16 of Algorithm 7,
we sample from the padding distribution ψ pad,σΛ

v . To implement it, we enumerate all colourings X ∈
⊗u ∈Λh−1(σu) on subset Λ to compute µσΛv and then computeψ pad,σΛ

v by

∀j ∈ [s], ψ
pad,σΛ
v (j) = 4s

©­«©­«
∑

c ∈h−1(j)
µσΛv (c)

ª®¬ − ρ jª®¬ .(28)

Algorithm 7 is not the algorithm stated in Lemma 6.2 and Lemma 6.3 as it only samples from the
projected value on a single vertex. In the upcoming Section 6.3, we show how to use Algorithm 7 as a
subroutine to build the algorithm for Lemma 6.2 and Lemma 6.3.

31

Algorithm 7: ApproxMarginColouring(t,γ ;M,R)
Input: a hypergraph H = (V , E), a set of colours [q], a projection scheme h : [q] → [s] that

defines the projected distributionψ , an integer t ≤ 0 and a real number 0 < γ < 1;
Global variables: a map M : Z→ [q] ∪ {⊥} and a set R;
Output: a random value in [s];

1 try :
2 if M(t) ,⊥ then returnM(t);
3 if LB-Sample(R, t) ,⊥ thenM(t) ← LB-Sample(R, t) and returnM(t);
4 v ← vi(t),Λ← �,σΛ ← �,V ′← {v};
5 while ∃e ∈ E s.t. e ∩V ′ , �, e ∩ (V \V ′) , � and e is not satisfied by σΛ do
6 choose such e with the lowest index;
7 if ∃j ∈ [s] s.t. ∀u ∈ e \ {v}, LB-Sample(predu (t);R) ∈ {⊥, j} then
8 forall u ∈ e \ {v} do
9 Λ← Λ ∪ {u} and σΛ(u) ← ApproxMarginColouring(predu (t),γ ;M,R) ;

10 V ′← V ′ ∪ e;
11 else
12 U ← {u ∈ e \ {v} | LB-Sample(predu (t);R) ,⊥};
13 forall u ∈ U do
14 Λ← Λ ∪ {u} and σΛ(u) ← LB-Sample(predu (t);R);

15 enumerate all X ∈ ⊗u ∈Λh−1(σu) to compute µσΛv and then computeψ pad,σΛ
v using (28);

16 sample c ∼ ψ pad,σΛ
v ;

17 M(t) ← c and returnM(t);
18 catch |R | ≥ 4∆2k5⌈log 1

γ ⌉ :
19 return 1;

6.3. Estimating the marginal distribution on a subset. We now describe an algorithm such that
given a hypergraph H = (V , E) and a subset S ⊆ V , it approximately samples from µS , where µS is
the marginal distribution on S induced by the uniform distribution µ of all proper q-colourings of H .
We then use this algorithm to prove Lemma 6.2 and Lemma 6.3. Our algorithm builds on Algorithm 7,
which draws approximate samples from the projected marginal distribution ψv . Suppose we want to
sample from the marginal distribution µS . One straightforward approach is that

• sample Y ∼ ψ ;
• sample X ∼ µ conditioning on h(X) = Y and output XS .

However, the approach above uses too much randomness. Our sampling algorithm essentially follows
it but without sampling the full configurations of X and Y . Note that the process above specifies a
joint distribution (Y ,X) ∼ π such that Y ∼ ψ and X ∼ µY . Consider the following computational
problem. Suppose there is a random sample Y ∼ ψ together with an oracle Y such that given any
v ∈ V , Y returns the value of Yv . The algorithm needs to draw a random sample XS using as few
oracle queries as possible. We use the idea in Algorithm 6. Start from S and use BFS to find a subset
Λ ⊇ S together with a partial configuration YΛ such that XS is independent from YV \Λ in π conditional
on YΛ. In other words, the partial configuration YΛ gives enough information to compute XS . The
algorithm for sampling XS ∼ µS is presented in Algorithm 8, where the oracle Y mentioned above is
implemented by ApproxMarginColouring (Algorithm 7).

ApproxMarginColouring-Set (Algorithm 8) together with subroutines ApproxMarginColouring and
LB-Samplemaintain two global data structuresM and R, which are initialised asM = M0 =⊥Z and R =
R0 = � in Line 1 ofApproxMarginColouring-Set. Once |R | ≥ 4∆2k5⌈log 1

γ ⌉,ApproxMarginColouring-Set
stops immediately and outputs the all-one configuration on S .

32

Algorithm 8: ApproxMarginColouring-Set(S,γ)
Input: a hypergraph H = (V , E), a set of colours [q], a projection scheme h : [q] → [s] that

defines the projected distributionψ , a subset of S ⊆ V and a real number 0 < γ < 1;
Global variables: a map M : Z→ [q] ∪ {⊥} and a set R;
Output: a random assignment in τ ∈ [q]S

1 M ←⊥Z and R ← �;
2 try :
3 σ ← �,V ′← S ;
4 forall u ∈ S do
5 σ (u) ← ApproxMarginColouring(predu (0),γ ;M,R);
6 while ∃e ∈ E s.t. e ∩V ′ , �, e ∩ (V \V ′) , � and e is not satisfied by σ do
7 choose such e with the lowest index;
8 if ∃j ∈ [s] s.t. ∀u ∈ e , LB-Sample(predu (0);R) ∈ {⊥, j} then
9 forall u ∈ e do
10 σ (u) ← ApproxMarginColouring(predu (0),γ ;M,R) ;
11 V ′← V ′ ∪ e;
12 else
13 U ← {u ∈ e | LB-Sample(predu (0);R) ,⊥};
14 forall u ∈ U do
15 σ (u) ← LB-Sample(predu (0);R);

16 enumerate all colourings X ∈ ⊗u ∈V ′h−1(σu) onV ′ to compute the marginal distribution of S
on the sub-hypergraph H [V ′], which is equivalent to µσS ;

17 Sample τ ∼ µσS ;
18 return τ ;
19 catch |R | ≥ 4∆2k5⌈log 1

γ ⌉ :
20 return 1S ;

Sincewe truncate the algorithmwhen |R | ≥ 4∆2k5⌈log 1
γ ⌉, we have the following lemma that bounds

the running time of Algorithm 8.

Lemma 6.10. The running time of Algorithm 8 is O(∆6k11 log2 1
γ · q

8∆3k6 log 1
γ).

To prove Lemma 6.10, we need the following lemma.

Lemma 6.11. For any hypergraph k-uniform H = (V , E) with the maximum degree at most ∆, any
integer t < 0 and any 0 < γ ≤ 1

2 , anyM : Z→ [q] ∪ {⊥} and any set R, let Λ be either
• the set of assigned variables in σ in Line 15 of the execution ApproxMarginColouring(t,γ ;M,R);
• the set of assigned variables in σ in Line 16 of the execution of ApproxMarginColouring-Set(S,γ),

it holds that

|Λ| ≤ k∆ · |V ′ | ≤ 4∆3k6
⌈
log

1
γ

⌉
.

Proof. We only show the case for Algorithm 7 and the case for Algorithm 8 holds through a similar
argument. The size of the set V ′ increases from during the while loop. By the condition in Line 5, we
have for all u ∈ Λ, there exists e ∈ E andw ∈ V ′ such that u,w ∈ e . This shows that

|Λ| ≤ k∆ · |V ′ | .
Moreover, note that by Line 3 and Line 7 we have |R | ≥ |V ′ |. Therefore by the truncation condition at
Line 18 we have

|V ′ | ≤ 4∆2k5
⌈
log

1
γ

⌉
.

33

Combining the two inequalities proves the lemma. □

Proof of Lemma 6.10. Consider the whole process of ApproxMarginColouring-Set(S,γ). Let A be the
set of all t0 such that ApproxMarginColouring(t0,γ ;M,R) (for someM and R) is executed at least once.
For any t0 ∈ A, one of the following two events must happen (1) the whole algorithm terminates in
Line 18; or (2) (t0, rt0) ∈ RF , where RF is the final R when whole algorithm terminates. Moreover,
there is at most one t∗ ∈ A making the first event happen. Hence |A| ≤ |RF | + 1 = O

(
∆2k5 log 1

γ

)
.

For any t0 ∈ A, once ApproxMarginColouring(t0,γ ;M,R) returns, M(t0) ,⊥. Any further calls to
ApproxMarginColouring(t0,γ ;M,R) would not execute beyond Line 2 of Algorithm 7 and would have
cost O(1) time. Consider the recursion tree of the whole execution. All subsequent recursive calls are
leaf nodes. We attribute the time cost of the subsequent recursive calls to its parent, and this way the
total time cost becomes the total cost of all first calls. Assuming the cost of each recursive call is O(1),
let T ∗ be the upper bound of the running time of both

• ApproxMarginColouring(t,γ ;M,R) of Algorithm 7, and
• ApproxMarginColouring-Set(S,γ) of Algorithm 8.

Then the total running time of can be bounded by (|A| + 1)T ∗. We then analyze the time cost of the
first item for Algorithm 7.

Note that the cost of the while loop in Lines 5-14 of Algorithm 7 is at most a constant multiple
of the number of executions of Line 9 and Line 14. If the condition in Line 7 is satisfied, then e is
added into V ′ in Line 10; otherwise e is satisfied by σ after the loop by Line 14. This shows that each
e ∈ E can be chosen in Line 6 at most once. Each time Line 9 or Line 14 executes, some u is added
to Λ due to an hyperedge e ∋ u. Thus it happens at most ∆ times for each u ∈ Λ. By Lemma 6.11,
|Λ| ≤ O

(
∆3k6 log 1

γ

)
. Thus the total cost of the while loop is at most O

(
∆4k6 log 1

γ

)
. Moreover, in

Line 15, we enumerate q |Λ |+1 possible configurations, each of which takesO(|Λ| ∆) time to check. The
total time cost of Line 15 is

O(|Λ| ∆q |Λ |+1) = O
(
∆4k6 log

1
γ
· q8∆

3k6 log 1
γ

)
.

The same time cost bound holds for Algorithm 8 by the same argument. Therefore it suffices to take

T ∗ = O

(
∆4k6 log

1
γ
· q8∆

3k6 log 1
γ

)
.

Since |A| = O(∆2k5 log 1
γ), the total running time of ApproxMarginColouring-Set(S,γ) is at most

O(∆6k11 log2 1
γ · q

8∆3k6 log 1
γ). The lemma follows. □

The next lemma shows the correctness of Algorithm 8. Let Etrun = Etrun(4∆2k5⌈log 1
γ ⌉) be the

event that the truncation in Line 20 of Algorithm 8 occurs. Similar to Theorem 4.8, we bound the total
variation distance between the output of Algorithm 7 and the target distribution µS by Pr [Etrun].

Lemma 6.12. LetH = (V , E) be ak-uniform hypergraph with the maximum degree at most ∆, [q] be a set
of colours, and h : [q] → [s] be a projection scheme that defines the projected distributionψ . Let S ⊆ V be
a subset of vertices andγ > 0 be a real number. LetXS be the output of ApproxMarginColouring-Set(S,γ).
If ⌊q/s⌋k ≥ 4eqs∆k , it holds that dTV (XS , µS) ≤ Pr [Etrun], where Etrun = Etrun(4∆2k5⌈log 1

γ ⌉) and µ is
the uniform distribution over all proper q-colourings of H .

The proof of Lemma 6.12 is similar to the proof of Theorem 4.8. The main difference is that the
equivalent to Algorithm 3, ApproxMarginColouring, is calledmultiple times in Algorithm 8. Intuitively,
we use ApproxMarginColouring to access a full configurationY ∈ [s]V , whereY approximately follows
the projected distribution ψ . We may query the values of Yu for different vertices u. The answers
returned by ApproxMarginColouring for different u should be consistent with each other. Since this
proof is somewhat repetitive to that of Theorem 4.8, we delay the proof of Lemma 6.12 to Section 6.6.

We also have the following lemma that bounds the probability that the size of R becomes too large.
34

Lemma 6.13. Let H = (V , E) be a k-uniform hypergraph with the maximum degree at most ∆, [q] be a
set of colours, and h : [q] → [s] be a projection scheme that defines the projected distributionψ . Let S ⊆ V
be a subset of vertices and γ > 0 be a real number. If k ≥ 20, q ≥ 4s , ⌊q/s⌋k ≥ 4eqs∆k , s ≥ 6∆

2
k−2 and

|S | ≤ k , then upon the termination of ApproxMarginColouring-Set(S,γ), it holds that
Pr

[
|R | ≥ 4∆2k5 · η

]
≤ ·2−η(29)

where η = ⌈log 1
γ ⌉. In particular, this shows that

Pr [Etrun] ≤ γ .

Lemma 6.13 is proved in Section 6.4. We are now ready to prove Lemma 6.2.

Proof of Lemma 6.2. Let s =
⌊
q

2
3

⌋
. As q ≥ 64∆

3
k−5 , we have

q ≥ 4s, s ≥ 16∆
2

k−5 − 1 ≥ 6∆
2

k−2 ,

and by k ≥ 20, ⌊q
s

⌋
≥ 4∆

1
k−5 − 1 ≥ 2(k∆) 1

k−5 .

Therefore ⌊q
s

⌋k
≥ 2k−5(k∆)

⌊q
s

⌋5
≥ 211 · 4ek∆ ·

⌊q
s

⌋5
≥ 4eqs∆k,

where the second inequality is by k ≥ 20, and the last inequality is by 8
⌊q
s

⌋2 ≥ s and 8
⌊q
s

⌋3 ≥ q from
s =

⌊
q

2
3

⌋
. Therefore the conditions in Lemma 6.13 are met. We use ApproxMarginColouring-Set(S,γ)

to sample from the distribution µS . By Lemma 6.10, the running time is O(∆6k11 log2 1
γ · q

8∆3k6 log 1
γ).

It is straightforward to verify that Algorithm 8 uses at most 8∆2k5
⌈
log 1

γ

⌉
+ 1 random variables with

domain size at most q + 1. By combining Lemma 6.12 and Lemma 6.13, the output is a random sample
that is γ -close to µv in the total variation distance. This proves the lemma. □

6.4. Truncation error of hypergraph colouring. We now prove Lemma 6.13.
We need some notations from Section 5. Recall TS(e, t) in (17) for each e ∈ E and t ≤ 0. Also recall

the witness graphGH = (VH , EH) in Definition 5.10. Note that the maximum degree ofGH is bounded
by 2∆k2 − 2 by Lemma 5.11.

Fix a k-uniform hypergraph H = (V , E) with the maximum degree at most ∆ together with a set [q]
of colours, a projection scheme with parameter s , a subset of vertices S ⊆ V , and a real number γ > 0
satisfying the condition in Lemma 6.13. We analyse the algorithm ApproxMarginColouring-Set(S,γ).

As we want to resolve the marginal distribution for a set S of vertices, we modify the definition of
GH to obtain another graphGS

H = (V S
H , E

S
H) by adding a new vertex representing the last update times

of all v ∈ S before 0 and corresponding edges.

Definition 6.14 (modified witness graph). For a hypergraphH = (V , E) and a subset of vertices S ⊆ V ,
if S ∈ E, define the modified witness graphGS

H = GH ; otherwise, let TS(S, 0) =
{
predu (0) | u ∈ S

}
, and

define the modified witness graph GS
H = (V S

H , E
S
H) with respect to S as follows:

• V S
H = VH ∪ {TS(S, 0)},

• ESH = EH ∪ {(x, TS(S, 0)) | x ∈ VH ∧ x ∩ TS(S, 0) , �},
whereGH = (VH , EH) is defined in Definition 5.10.

Note that in the modified graphGS
H , there exists a vertex TS(S, 0) for the subset S . Let eH (TS(S, 0)) =

S . We can then define Nself (TS(S, 0)),Nout(TS(S, 0)) and N (TS(S, 0)) as in (18). That is, Nself (TS(S, 0)) =
� and Nout(TS(S, 0)) = N (TS(S, 0)) = {w ∈ V S

H | (w, TS(S, 0)) ∈ ESH }; And for all w ∈ N (TS(S, 0)), it
holds that TS(S, 0) ∈ Nout(w).

The next result follows from the proof of Lemma 5.11.

Corollary 6.15. If |S | ≤ k , then the maximum degree of GS
H is bounded by 2∆k2 − 1.

35

Proof. Note that compared to GH , the degree of all vertices x ∈ VH = V S
H \ {TS(S, 0)} increases by at

most one and is therefore bounded by 2∆k2 − 1 by Lemma 5.11.
It then remains to bound the degree of TS(S, 0). We have two cases:
• If S = e for some e ∈ E, then following the proof of Lemma 5.11, |Nout(x)| = |Nout(TS(e, 0))| ≤
(2k−1)(∆−1)k and |Nself (x)| ≤ 2k−1. This together shows |N (x)| ≤ 2k2(∆−1)+2k ≤ 2k2∆−1.
• Otherwise, |Nself (x)| = 0. Following the proof of Lemma 5.11, we have |Nout(x)| ≤ k∆·(2k−1) ≤
2k2∆ − 1. This shows |N (x)| ≤ 2k2∆ − 1.

Combining the above proves the lemma. □

Fix an integer t0 ≤ 0. ApproxMarginColouring(t0,γ ;M,R) can only be evoked by:
(1) ApproxMarginColouring-Set(S,γ) in Line 5 when it processes S , and in this case, it holds that

t0 = predu (0) for some u ∈ S ; or
(2) ApproxMarginColouring-Set(S,γ) in Line 10 when it processes e ∈ E, and in this case, it holds

that t0 = predu (0) for some u ∈ e; or
(3) ApproxMarginColouring(t1,γ ;M,R) in Line 9 when it processes e ∈ E, and in this case, it holds

that t0 < t1 ≤ 0 and t0 = predu (t1) for some u ∈ e .
In the first case, we say an instance ofApproxMarginColouring(t0,γ ;M,R) is triggered by TS(S, 0) ∈ V S

H .
In the second case, we say such an instance is triggered by TS(e, 0) ∈ V S

H . In the last case, we say such
an instance is triggered by TS(e, t1) ∈ V S

H . Conversely, for any x ∈ V S
H in the witness graph, we say x

triggers some instance of ApproxMarginColouring if any of the above happens with the trigger being
x during the whole process.

Define the following random subset of vertices in GS
H :

V col
B = {x ∈ V

S
H | x triggers some instance of ApproxMarginColouring},(30)

where the randomness of V col
B comes from the random variables {rt }t ≤0 and the samples drawn from

padding distribution in Line 16 of ApproxMarginColouring. Since Line 5 always happens, it holds that

TS(S, 0) ∈ V col
B .

After Algorithm 8 terminates, it generates setsV col
B and R. Similar to Lemma 5.12, the following lemma

shows that the size of R can be upper bounded in terms of |V col
B |.

Lemma 6.16. If |S | ≤ k , then |R | ≤ 2∆k3 |V col
B |.

Proof. We first arbitrarily fix values of all random variables (rt)t ≤0 and the outcomes of samples drawn
from the padding distribution in Line 16 in ApproxMarginColouring. Then, the whole algorithm is
deterministic. We show that the lemma always holds.

We claim that for each (t, rt) ∈ R, there exist x,y ∈ V S
H (possibly x = y) such that t ∈ x , y ∈ V col

B and
x ∩ y , �. Namely either x = y or (x,y) ∈ ESH . For any (t, rt) ∈ R, we define a map f (t, rt) = x ∈ V col

B ,
where x is chosen arbitrarily from those satisfying the claim, such as the lexicographically first. Since
|S | ≤ k , by Corollary 6.15, the maximum degree ofGS

H is at most 2∆k2 − 1. As |x | ≤ k there are at most
2∆k3 different (t, rt) ∈ R such that f (t, rt) maps to the same y. Hence,

|R | ≤ |V col
B |2∆k

3.

To prove the claim, we first show the following result for ApproxMarginColouring-Set (Algorithm 8)
and ApproxMarginColouring (Algorithm 7):

∀u ∈ V ′, ∃ x ∈ V col
B s.t. predu (t0) ∈ x,(31)

where t0 = 0 for ApproxMarginColouring-Set(S,γ) and t0 = t for ApproxMarginColouring(t,γ ;M,R).
• For ApproxMarginColouring-Set(S,γ), If u ∈ S , we can take x = TS(S, 0). If u ∈ V ′ \ S , then u

must be added into V ′ when the algorithm is processing e ∈ E in Line 11. Then TS(e, 0) ∈ V col
B

by Line 10 and predu (0) ∈ TS(e, 0).
36

• ForApproxMarginColouring(t,γ ;M,R). Note thatApproxMarginColouring(t,γ ;M,R) itselfmust
be triggered by some x∗ ∈ V col

B and t = predvi (t)(t) ∈ x
∗. If u = vi(t), (31) holds for x = x∗. If

u ∈ V ′\{vi(t)}, thenu must be added intoV ′ when the algorithm is processing e ∈ E in Line 10.
Then TS(e, t) ∈ V col

B by Line 9 and predu (t) ∈ TS(e, t).
Now we turn to show x,y ∈ V S

H in the claim exist. A pair (t, rt) can be added into R only through
the call of LB-Sample(R, t). There are 3 cases.

• It happens in Line 8 of Algorithm 8 when some edge e ∈ E is processed and for some u ∈ e ,
t = predu (0). It holds that e ∩V ′ , �. Let x = TS(e, 0) so that t ∈ x . Fix an arbitraryw ∈ e ∩V ′.
By (31), there is y ∈ V col

B such that predw (0) ∈ y. Since predw (0) ∈ x , x ∩ y , �.
• It happens in Line 3 of Algorithm 7 in ApproxMarginColouring(t,γ ;M,R). Note that vi(t) ∈
V ′ in ApproxMarginColouring(t,γ ;M,R). Hence, by (31), there is y ∈ V col

B such that t =
predvi (t)(t) ∈ y. We can take x = y.
• It happens in Line 7 of Algorithm 7 when some edge e ∈ E is processed in an instance of
ApproxMarginColouring(t0,γ ;M,R) for some t0 ≥ t . It holds that e ∩V ′ , �. Let x = TS(e, t0)
so that t ∈ x . Fix an arbitrary w ∈ e ∩ V ′. By (31), there is y ∈ V col

B such that predw (t0) ∈ y.
Since predw (t0) ∈ x , x ∩ y , �.

Finally, we remark that we do not need to consider Line 13 / Line 15 in Algorithm 8 nor Line 12 / Line 14
in Algorithm 7, because if LB-Sample(t ;R) is evoked in these lines, it must have been evoked in Line 8
of Algorithm 8 or Line 7 of Algorithm 7 already. This finishes the proof. □

Lemma 6.16 shows that to upper bound the probability that |R | is large, it suffices to upper bound
the probability that |V col

B | is large. The following lemma says that V col
B is connected on GS

H , and the
proof is also similar to the proof of Lemma 5.13.

Lemma 6.17. TS(S, 0) ⊆ V col
B and the subgraph in GS

H induced by V col
B is connected.

Proof. Fix arbitrary random choices of all random variables (rt)t ≤0 and outcomes of samples drawn
from the padding distribution in Line 16 in ApproxMarginColouring. Then the algorithm is determin-
istic. We prove that the lemma always holds. Note that TS(S, 0) ∈ V col

B is trivial and we only need to
prove the second property.

Consider the whole execution of ApproxMarginColouring-Set(S,γ). During the algorithm, we say
x ∈ V S

H joinsV col
B once the condition in (30) is met by x . Note that all vertices joinV col

B in order during
the execution of the algorithm. LetV col

B = {x
(1), x (2), . . . , x (ℓ)}, where x (i) is the i-th vertex that joins the

setV col
B . Note that x (1) = TS(S, 0). This ℓ is finite because ApproxMarginColouring-Set(S,γ) terminates

within a finite number of steps. We show that for any i ∈ [ℓ], there exists a path P = (y1,y2, . . . ,ym)
in GS

H such that
• y1 = TS(S, 0) and ym = x (i);
• for all 1 ≤ j ≤ m, yj ∈ V col

B .
This result immediately proves the lemma.

We prove the result by induction on index i . The base case trivially holds by taking P = (TS(S, 0)).
Fix an integer 1 < k ≤ ℓ. Suppose the result holds for all x (i) for i < k . We prove the result for x (k).

We have the following cases:
(1) If x (k) joinsV col

B in ApproxMarginColouring-Set(S,γ ;M,R)when some edge e ∈ E is processed,
then we have x (k) = TS(e, 0). By the condition in Line 6, there must exist somew ∈ V ′∩ e . The
setV ′ is initially set as S in Line 3 and is updated only in Line 11 after recursive calls. We have
two further cases:
(a) Ifw ∈ S , it suffices to take P = (x (1), x (k)).
(b) Otherwise w must have been added into V ′ in Line 11 after some instance is triggered in

Line 10, which implies that there exists e ′ ∈ E and i < k such that w ∈ e ′ and x (i) =
TS(e ′, 0). By the induction hypothesis, there is a path P = (y1,y2, . . . ,ym′) for x (i) with
ym′ = x (i). Note that predw (0) ∈ x (k) = TS(e, 0) and predw (0) ∈ x (i) = TS(e ′, 0). It suffices
to take the path P ′ = (P, x (k)).

37

(2) If x (k) joins V col
B in ApproxMarginColouring(t0,γ ;M,R) when some edge e ∈ E is processed,

then we have x (k) = TS(e, t0). By the condition in Line 5, there must exist some w ∈ V ′ ∩ e .
Here the set V ′ is initially set as

{
vi(t0)

}
in Line 4 and is updated only in Line 10 after some

recursive calls are triggered in Line 9. We have two further cases:
(a) Ifw = vi(t0), we consider what parent evoked ApproxMarginColouring(t0,γ ;M,R).

(i) It is evoked by ApproxMarginColouring-Set(S,γ) when the latter processes some
e ′ ∈ E or e ′ = S . Then w ∈ e ′ and there exists i < k such that x (i) = TS(e ′, 0). By
the induction hypothesis, there is a path P = (y1,y2, . . . ,ym′) for x (i) with ym′ = x (i).
Because x (i) triggers a recursive call of ApproxMarginColouring(t0,γ ;M,R), t0 ∈ x (i).
Also, t0 = predw (t0) ∈ x (k) = TS(e, t0). It suffices to take the path P ′ = (P, x (k)).

(ii) It is evoked by ApproxMarginColouring(t1,γ ;M,R) for some t1 < t0 when the lat-
ter processes some e ′ ∈ E. Then w ∈ e ′ and there exists i < k such that and
x (i) = TS(e ′, t1). By the induction hypothesis, there is a path P = (y1,y2, . . . ,ym′)
for x (i) with ym′ = x (i). Note that t0 ∈ x (i) because x (i) triggers a recursive call of
ApproxMarginColouring(t0,γ ;M,R) and t0 = predw (t1) ∈ x (k) = TS(e, t0). It suffices
to take the path P ′ = (P, x (k)).

(b) Otherwise w must have been added into V ′ in Line 10 after some recursive calls, which
implies that there exists e ′ ∈ E and i < k such that w ∈ e ′ and x (i) = TS(e ′, t0). By the
induction hypothesis, there is a path P = (y1,y2, . . . ,ym′) for x (i) with ym′ = x (i). Note
that predw (t0) ∈ x (k) = TS(e, t0) and predw (t0) ∈ x (i) = TS(e ′, t0). It suffices to take
P ′ = (P, x (k)).

This finishes the induction proof. □

Next, we show the following property for the set V col
B .

Lemma 6.18. For all x ∈ V col
B \ {TS(S, 0)}, there exists j ∈ [s] and t0 ∈ x such that rt ′ =⊥ or rt ′ = j for

all t ′ ∈ x \ {t0}.
Proof. Fix x ∈ V col

B \ {TS(S, 0)}. Then x joins V col
B in the following two cases.

(1) x = TS(e, 0) triggers an instance of ApproxMarginColouring(t0,γ ;M,R) for some t0 ≤ 0 when
ApproxMarginColouring-Set(S,γ) processes some hyperedge e ∈ E in Line 10. Thus, e must
satisfy the condition in Line 8, which shows that there exists j ∈ [s] such that rt ′ =⊥ or rt ′ = j
for all t ′ ∈ x .

(2) x = TS(e, t0) triggers an instance of ApproxMarginColouring(t1,γ ;M,R) for some t1 < t0 when
ApproxMarginColouring(t0,γ ;M,R) processes some hyperedge e ∈ E in Line 9. Thus, e must
satisfy the condition in Line 7, which shows that there exists some j ∈ [s] such that rt ′ =⊥ or
rt ′ = j for all t ′ ∈ x \ {t0}.

This finishes the proof. □

Recall the definition of 2-tree in Definition 5.15. We are now ready to prove Lemma 6.13.

Proof of Lemma 6.13. By Lemma 6.16, it suffices to show Pr
[��V col
B

�� ≥ 2∆k2 · η
]
≤ 2−η for each η ≥ 1 as

Pr
[
|R | ≥ 4∆2k5 · η

]
≤ Pr

[
|V col
B |2∆k

3 ≥ 4∆2k5 · η
]
= Pr

[
|V col
B | ≥ 2∆k2 · η

]
≤

(
1
2

)η
.

Fix η ≥ 1. Assume
��V col
B

�� ≥ 2∆k2 · η. Note that V col
B is finite because ApproxMarginColouring

terminates within a finite number of steps. By Corollary 6.15, Lemma 6.17, and Lemma 5.17 there
exists a 2-tree T ⊆ V col

B of size i such that TS(S, 0) ∈ T . For each η ≥ 1, denote by T η
S the set of 2-trees

T in GS
H of size η such that TS(S, 0) ∈ T . Then by a union bound, we have

Pr
[���V col
B

��� ≥ 2∆k2 · η
]
≤

∑
T ∈TηS

Pr
[
T ⊆ V col

B
]
.

By Lemma 6.18, the eventT ⊆ V col
B implies for each x ∈ T \ {TS(S, 0)}, there exists t0 ∈ x and j ∈ [s]

such that rt ′ =⊥ or rt ′ = j for all t ′ ∈ x \ {t0}. Due to ⌊q/s⌋k ≥ 4eqs∆k and Lemma 6.7, for any
38

x ∈ T \ {TS(S, 0)}, this happens with probability at most

sk

(⌈q
s

⌉
q

(
1 +

1
s

)
+

1
4s

)k−1
≤ sk

(
5
4s

(
1 +

1
s

)
+

1
4s

)k−1
≤ 2k

(
2
s

)k−2
,

where we obtain the first term by a union bound over all possible t0 ∈ x and j ∈ [s] and noting q ≥ 4s ,
and the second inequality is by s ≥ 6∆

2
k−2 ≥ 6.

Since for any 2-tree T ⊆ V S
H , the timestamps in vertices of T are pairwise disjoint, and the event

above are all mutually independent. Thus, we have Pr
[
T ⊆ V col

B
]
≤ (2k)(|T |−1)(2/s)(k−2)·(|T |−1) and by

Corollary 6.15 and Lemma 5.16, it holds that∑
T ∈TηS

Pr
[
T ⊆ V col

B
]
≤ (4e∆

2k4)η−1
2

· (2k)η−1 ·
(
2
s

) (k−2)(i−1)
≤ 1

2

(
8e∆2k5

(s/2)k−2

)η−1
≤ 2−η,

where the last inequality holds because s ≥ 2
(
8e∆2k5

) 1
k−2 from k ≥ 20 and s ≥ 6∆

2
k−2 . □

6.5. Improved bounds for linear hypergraphs. We now give a marginal sampler for linear hyper-
graphs, and prove Lemma 6.3. Let δ > 0 be a constant k ≥ 50(1+δ)2

δ 2 , and q ≥ 50∆
2+δ
k−3 . Given as inputs

a linear k-uniform hypergraph H = (V , E) with the maximum degree ∆, a set of vertices S ⊆ V that
|S | ≤ k , and a parameter γ > 0, The algorithm is almost the same, except that we replace the truncation
condition in Line 20 of Algorithm 8 and Line 18 of Algorithm 7 with

|R | ≥ 3 · 104
(
1 + δ
δ

)2
∆3k10

⌈
log

1
γ

⌉
(32)

Like what we have done for linear hypergraph independent sets in Section 5.3, much of the analysis
of the general hypergraph colourings can be applied to the linear case. We also reuse some other
proved results from Section 5.3.

The running time of the modified algorithm is bounded the same way as Lemma 6.10, whose proof
we shall omit again.

Lemma 6.19. The running time of the modified algorithm is

O

((
1 + δ
δ

)4
∆8k21 log2

1
γ
q6·10

4(1+δδ)
2∆4k11 log 1

γ

)
.

Next, we bound the truncation error.

Lemma 6.20. Denote η = ⌈log 1
γ ⌉. If the projection scheme [q] → [s] satisfies (a) q ≥ 4s , (b) s ≥

6∆
1+1/(1+2/δ)

k , and (c) ⌊q/s⌋k ≥ 4eqs∆k , then upon the termination of the modified algorithm, the size of R
satisfies

Pr

[
|R | ≥ 3 · 104

(
1 + δ
δ

)2
∆3k10 · η

]
≤ 2−η .(33)

Assuming this for now, we prove Lemma 6.3.

Proof of Lemma 6.3. Choose s = ⌊q 1
2 ⌋, and then verify the three conditions of Lemma 6.20.

(a) Because k ≥ 50(1 + δ)2/δ 2 ≥ 50 > 3, it holds that q ≥ 50∆(2+δ)/(k−3) ≥ 50 > 16, and hence
q > 4

√
q ≥ 4s .

(b) This is derived as follows.

s ≥ √q − 1 > 7∆
1+δ /2
(k−3) − 1 ≥ 7∆

1+1/(1+2/δ)
k−3 − 1 ≥ 7∆

1+1/(1+2/δ)
k − 1 ≥ 6∆

1+1/(1+2/δ)
k .

39

(c) For all k ≥ 50, we have

k
1+1/(1+2/δ)

k−3 ≤ k
2

k−3 < 1.2 < 2.

This gives ⌊q
s

⌋
≥ 3 × 2 × ∆

1+1/(1+2/δ)
k−3 > 3(k∆)

1+1/(1+2/δ)
k−3 ,

and hence ⌊q
s

⌋k
≥ 3k−3(k∆)

⌊q
s

⌋3
≥ 340 · 4ek∆ ·

⌊q
s

⌋3
≥ 4eqs∆k .

We use the modified ApproxMarginColouring-Set(S,γ) to sample from the distribution µS . By
Lemma 6.19, the running time isO((1+δδ)4∆8k21 log2 1

γ q
6·104(1+δδ)

2∆4k11 log 1
γ). It is straightforward to ver-

ify that Algorithm 8 uses at most 6 · 104
(
1+δ
δ

)2
∆3k10

⌈
log 1

γ

⌉
+ 1 random variables with domain size at

most q + 1. By combining Lemma 6.12 and Lemma 6.13, the output distribution is γ -close to µS . This
proves the lemma. □

The rest of this section is dedicated to the proof of Lemma 6.20. Recall from Section 5.3 that we intro-
duce the self-neighbourhood powered witness graphs to make use of linearity under the hypergraph
independent set setting. We provide an analogous definition regarding the modified witness graph
(Definition 6.14) whilst dealing with hypergraph colourings.

Definition 6.21. Let GS
H = (V S

H , E
S
H) be the modified witness graph in Definition 6.14. The self-

neighbourhood powered witness graph GS ,self
H = (V S

H , E
S ,self
H) is defined on the same vertex set and

the edge set ES ,selfH = ESH ∪ E ′ such that

E ′ = {{x,y} | (∃w ∈ V S
H s.t. w ∈ Nself (x) ∧w ∈ N (y)) ∨ (∃w ∈ V S

H s.t. w ∈ N (y) ∧w ∈ Nself (x))}.

Observe thatGS ,self
H modifiesGself

H by only adding the new vertex TS(S, 0) and some additional edges
that connects TS(S, 0) with several other vertices, if S < E.

The next lemma is an analogue of Lemma 5.21.

Lemma 6.22. If |S | ≤ k , then the maximum degree of GS ,self
H is at most 10k3∆ − 1.

Proof. For any x ∈ V S
H , by Lemma 5.11, |Nself (x)| ≤ 2k and by Corollary 6.15, N (x) ≤ 2∆k2 − 1. Hence,

the maximum degree of GS ,self
H is at most 2∆k2 − 1 + 2 × 2k × (2∆k2 − 1) ≤ 10k3∆ − 1. □

We also have the following lemma as a counterpart of Lemma 5.22.

Lemma 6.23. Given a k-uniform linear hypergraph H = (V , E) with the maximum degree ∆, and a
subset of vertices S ⊆ V , letGS

H = (V S
H , E

S
H) be the modified witness graph with respect to S . LetV col

B ⊆ V
S
H

be a finite subset containing TS(S, 0) ∈ V col
B and connected inGS

H . Then, there exists V lin
B ⊆ V

col
B such that

(C1) TS(S, 0) ∈ V lin
B and |V lin

B | ≥ ⌊
|VB |
2k+1⌋,

(C2) the induced subgraph GS ,self
H [V lin

B] is connected, and
(C3) for any two distinct vertices x1, x2 ∈ V lin

B \ {TS(S, 0)}, it holds that |x1 ∩ x2 | ≤ 1.

Proof. The proof is almost the same as the proof of Lemma 5.22: we apply the explicit construction
algorithm there starting from the vertex TS(S, 0). To see (C1), note that the number of self-neighbours
is at most 2k for any vertex in GS

H . (C2) follows from the construction and the same argument as (L2)
in Lemma 5.22. (C3) also follows the same argument as (L3) in Lemma 5.22. We remark that the artifact
TS(S, 0) needs to be excluded as there is no control on how the set S intersects with the hyperedges in
H . □

Now we prove Lemma 6.20. Recall from the last section the toolkit of 2-block-trees, including Defi-
nition 5.23, Lemma 5.24, and Lemma 5.25.

40

Proof of Lemma 6.20. Let V col
B be the set generated by the modified algorithm (see (32)) as defined in

(30). Again,V col
B ⊆ V

S
H is a finite subset because the algorithm terminates after a finite number of steps.

Define a parameter

θ :=

⌈
6(1 + δ)

δ

⌉
,

and by this choice, Pr
[
|R | ≥ 3 · 104(1+δδ)2k10∆3η

]
≤ Pr

[
|R | ≥ 600θ 2k10∆3η

]
. Using Lemma 6.16, it

holds for any positive integer η that

Pr
[
|R | ≥ 600θ 2k10∆3η

]
≤ Pr

[
|V col
B |2k

3∆ ≥ 600θ 2k10∆3η
]
≤ Pr

[
|V col
B | ≥ 300θ 2k7∆2η

]
.

Hence, it suffices to show

Pr
[
|V col
B | ≥ 300θ 2k7∆2η

]
≤

(
1
2

)η
for any integer η ≥ 1.

Fix an integer η ≥ 1, and assume |V col
B | ≥ 300θ 2k7∆2η, by Lemma 6.17 and Lemma 6.23, we can find

the set V lin
B ⊆ V col

B with size |V lin
B | ≥ ⌊

|V col
B |

2k+1 ⌋ ≥ ⌊
|V col
B |
3k ⌋ ≥ θ 2(10k3∆)2η such that TS(S, 0) ∈ V lin

B and the
conditions in Lemma 6.23 get fulfilled. Moreover, it is straightforward to find a subset U ⊆ V lin

B with
size exactly |U | = θ 2(10k3∆)2η such that TS(S, 0) ∈ U and the rest of Lemma 6.23 are satisfied byU . By
Lemma 6.22, the maximum degree ofGS ,self

H [U] is at most 10k3∆. SinceGS ,self
H [U] is a finite connected

subgraph inGS ,self
H , by Lemma 5.24, we can find a 2-block-tree {C1,C2, . . . ,Cη} inGS ,self

H with block size
θ and tree size η such that TS(S, 0) ∈ C1 and Cj ⊆ U ⊆ V col

B for all j ∈ [η]. By Item (C3) in Lemma 6.23,
for any distinct x1, x2 ∈ (∪ηj=1Cj) \ {TS(S, 0)}, it holds that |x1 ∩ x2 | ≤ 1.

Define by T η,θ
S the set of all 2-block-trees {C1,C2, . . . ,Cη} with block size θ and tree size η in graph

GS ,self
H such that

• TS(S, 0) ∈ C1;
• let C = (∪ηj=1Cj) \ {TS(S, 0)}, then for anyw1,w2 ∈ C , |w1 ∩w2 | ≤ 1.

Hence, if |V col
B | ≥ 300θ 2k7∆2η, then there exists a 2-block-tree {C1,C2, . . . ,Cη} ∈ T η,θ

S such that
Cj ⊆ V col

B for all j ∈ [η]. By a union bound over all 2-block-trees in T η,θ
S , we have

Pr
[
|V col
B | ≥ 3θ 2k∆2η

]
≤

∑
{C1, ...,Cη }∈Tη,θS

Pr
[
∀j ∈ [η],Cj ⊆ V col

B
]
.

Fix a 2-block-tree {C1, . . . ,Cη} ∈ T η,θ
S . By definition, for any j and ℓ that j , ℓ, we have distGS ,self

H
(Cj ,Cℓ) ≥

2, and thus for any x j ∈ Cj and xℓ ∈ Cℓ , it holds that x j ∩ xℓ = �. For any j ∈ [η], and any two
w1,w2 ∈ Cj \ {TS(S, 0)}, it holds that |w1 ∩w2 | ≤ 1 by the definition of T η,θ

S . Let Cj = {e j1, e
j
2, . . . , e

j
θ }.

Without loss of generality, assume TS(S, 0) = e jθ if TS(S, 0) ∈ Cj . For each ℓ ∈ [θ], define

B j
ℓ
: There exists x ∈ [s] and y ∈ e j

ℓ
s.t., for all t ′ ∈ e j

ℓ
\ ({y} ∪ {TS(S, 0)}), either rt ′ =⊥ or rt ′ = x .

(34)

41

We then have

Pr
[
∀j ∈ [η],Cj ⊆ V col

B
]

(By Lemma 6.18 and chain rule) ≤
∏

1≤j≤η

∏
1≤ℓ≤θ

Pr

B
j
ℓ
|

∧
(j′,ℓ′):

j′<j∨(j′=j∧ℓ′<ℓ)

B j′

ℓ′


(By e j

ℓ
∩ e j

′

ℓ′ = � for j , j ′) =
∏

1≤j≤η

∏
1≤ℓ≤θ

Pr

[
B j
ℓ
|
∧
ℓ′<ℓ

B j
ℓ′

]
(⋆) ≤

∏
1≤j≤η

∏
1≤ℓ≤θ−1

©­«sk ·
(⌈q

s

⌉
q

(
1 +

1
s

)
+

1
4s

)k−θ ª®¬
(By q ≥ 4s and s ≥ 6) ≤(sk)(θ−1)η

(
2
s

)η(k−θ)(θ−1)
≤ (2k)(θ−1)η

(
2
s

)η(k−θ−1)(θ−1)
The inequality (⋆) is due to (1) a union bound according to the definition in (34); (2) the local uniformity
property in Lemma 6.7; and (3) (C3) in Lemma 6.23 for each e j

ℓ
where j ∈ [θ − 1].

Next, we count the number of possible 2-block-trees in T η,θ
S , which can be upper bound by the num-

ber of all 2-block-trees {C1,C2, . . . ,Cη}with block size θ and tree sizeη inGS ,self
H such that TS(S, 0) ∈ C1.

By Lemma 5.25 and Lemma 6.22, we have���T η,θ
S (U)

��� ≤ (θeθ (10k3∆)θ+1)η .
Hence, we only need to prove that

(θeθ (20k4∆)θ+1)η
(
2
s

) (k−θ−1)(θ−1)η
≤

(
1
2

)η
which is equivalent to(s

2

) (k−θ−1)(θ−1)
≥ 2θeθ (20k4∆)θ+1 ⇐⇒

(s
2

) (k−θ−1)
≥ (2θ)1/(θ−1)eθ/(θ−1)(20k4∆)(θ+1)/(θ−1).

We derive this as follows. Observe the following inequalities

k ≥ 50(1 + δ)2
δ 2

≥ θ 2 − 1 =⇒ k − θ − 1 ≥ (1 − 1/(θ − 1))k,(35)

k ≥ 50 =⇒ (120k4)2/k < 2.3 < 3.(36)

Then we have

s ≥ 6∆
1+1/(1+2/δ)

k(By condition)

≥ 2
(
120k4

) 2
k ∆

1+1/(1+2/δ)
k(By (36))

≥ 2
(
120k4∆

) 1+1/(1+2/δ)
k

≥ 2
(
6

θ−1
k (θ−2) (20k4∆)

θ+1
k (θ−2)

)
(Use 6 + 6

δ ≤ θ ≤ 7 + 6
δ)

≥ 2

(
6
(
20k4

) θ+1
θ−1

) 1
k−θ−1

.(By (35))

The desired inequality then follows by noticing that θ ≥ 6. □
42

6.6. Proof of Lemma 6.12. Nowwe prove Lemma 6.12, verifying the correctness of Algorithm 8. We
follow the same proof strategy as in Section 4. We will first define a forward version marginal sampler
A in Algorithm 9 for any finite T , and then give its backward counterpart B in Algorithm 10. Using
the same randomness, A and B are perfectly coupled. Algorithm 8 is the same as B taking T → ∞
and with truncation. Lemma 6.12 then follows in a similar manner as in Theorem 4.8.

For the rest of this subsection, we fix a k-uniform hypergraphH = (V , E)with the maximum degree
at most ∆ together with a set of colours [q], a projection schemeh with parameter s , a subset of vertices
S ⊆ V and a real number γ > 0 satisfying the condition in Lemma 6.12. Fix an integer T ≥ 0. For the
forward marginal sampler, recall that the systematic scan Glauber dynamics on the distribution ψ is
defined as follows:

• let Y−T ∈ [s]V be an arbitrary feasible configuration;
• for each t from −T + 1 to 0, the transition Yt−1 → Yt is defined as follows:

(1) letw = vi(t), where i(t) = (t mod n) + 1, and let Yt (u) = Yt−1(u) for all u , w ;
(2) sample rt ∼ ψ LB, if rt ,⊥, then let Yt (w) = rt ; otherwise, let

σΛ = Boundary(t)

where Boundary is defined in Algorithm 6.
(3) sample Yt (w) ∼ ψ pad,σΛ

w ;
• output Y0.

Here we sample from the padding distribution by themethod in (10) using a sequence of real random
variables {Ut }−T <t ≤0.

Denote by Y P(T)0 ∈ [s]V the output of the above process. We will always consider T ≥ n. It holds
that for any u ∈ V , Y P(T)0 (u) = Yt (vi(t)), where t = predu (0).

Given Y P(T)0 generated by the process P(T), what we are really interested in is a sample from µ

(instead of ψ) conditioned on Y P(T)0 . To this end, we introduce the algorithm A (S,Y0, {rt }−T <t ≤0),
described in Algorithm 9, that takes a configuration Y0 and a set {rt }−T <t ≤0 as its input. This al-
gorithm is similar to Algorithm 6 in that it uses BFS to find a boundary so that S is independent
from the outside, and in addition it enumerates all possibilities inside to generate a sample. Let
X (T)S = A

(
S,Y P(T)0 , {rt }−T <t ≤0

)
, where Y P(T)0 and {rt }−T <t ≤0 are generated by P(T). Note that{

X (T)S

}
T ≥n

is an infinite sequence of random variables. The next lemma shows that it converges to
the desired marginal distribution.

Lemma 6.24. If ⌊q/s⌋k ≥ 4eqs∆k , then dTV
(
X (T)S , µS

)
= 0 as T →∞.

Proof. FixY = Y P(T)0 ∈ [s]V and {rt }−T <t ≤0 generated byP(T). We first show that the outputXS = X (T)S
follows the distribution µYS . For each hyperedge e ∈ E, if e is picked in Line 3 , then after the loop,
either e ⊆ V ′ or e is satisfied by σ , and thus e cannot be picked in Line 3 again. The algorithm A
always terminates. Suppose the final σ is defined on a subset Λ ⊆ V , namely σ ∈ [s]Λ. Note that X is
sampled from µσS . We show that the configuration σ satisfies:

• σ = YΛ and S ⊆ V ′ ⊆ Λ;
• for all e ∈ E such that e ∩V ′ , � and e ∩ (V \V ′) , �, e is satisfied by σ .

If these two properties are true, then conditioned on σ , all constraints on hyperedges in the boundary
of V ′ are satisfied by σ , which implies µYS = µ

σ
S . This is similar to the argument in Lemma 6.9.

Note that S ⊆ V ′ because V ′ is initialised as S and it does not remove vertices. The fact V ′ ⊆ Λ
follows from Line 6 and Line 7. Since both Y and {rt } are generated by P(T), for any u ∈ V , if
rpredu (0) ,⊥, then Yu = rpredu (0). Hence, it is straightforward to see σ = YΛ. The second property
follows from the fact that the while-loop has terminated.

By Lemma 6.9, Boundary (Algorithm 6) satisfies Condition 4.2. The processP(T) faithfully simulates
the systematic scan Glauber dynamics onψ . By Lemma 6.7, the systematic scan Glauber dynamics on

43

Algorithm 9: A (S,Y0, {rt }−T <t ≤0)
Input: a hypergraph H = (V , E), a set of colours [q], a projection scheme h : [q] → [s] that

defines the projected distributionψ , a subset S ⊆ V , a configuration Y0 ∈ [s]V , and
random variables rt ∈ [s] ∪ {⊥} for −T ≤ t ≤ 0;

Output: σ ∈ [s]Λ for some S ⊆ Λ ⊆ V
1 σ ← Y0(S) and V ′← S ;
2 while ∃e ∈ E s.t. e ∩V ′ , �, e ∩ (V \V ′) , � and e is not satisfied by σ do
3 choose such e with the lowest index;
4 if ∃j ∈ [s] s.t. ∀u ∈ e , rpredu (0) ∈ {⊥, j} then
5 forall u ∈ e do
6 σ (u) ← Y0(u) ;
7 V ′← V ′ ∪ e;
8 else
9 U ← {u ∈ e | rpredu (0) ,⊥};

10 forall u ∈ U do
11 σ (u) ← rpredu (0);

12 enumerate all colourings X ∈ ⊗u ∈V ′h−1(σu) on V ′ to compute the marginal distribution of S on
the sub-hypergraph H [V ′], which is equivalent to µσS ;

13 sample XS ∼ µσS ;
14 return XS ;

ψ is irreducible, which implies that Y P(T)0 follows the distribution ψ as T → ∞. Since X (T)S ∼ µ
Y P(T)0
S ,

dTV
(
X (T)S , µS

)
= 0 as T →∞. □

The algorithmA uses too much randomness and next we give its backwards versionB that achieves
the same output distribution. Fix the initial configuration Y−T of P(T) as an arbitrary feasible config-
uration, say Y−T (u) = 1 for all u ∈ V . Given the description of the distribution ψ , an integer T ≥ n
and a subset S ⊆ V , the algorithm B returns a random variable that follows the same distribution as
XS = A

(
S,Y P(T)0 , {rt }−T <t ≤0

)
.

To construct B, we need yet another algorithm C = CT (t ;M,R), which is to plug Algorithm 6 as
Boundary into ResolveT (t ;M,R) (Algorithm 1) in this context. As before, C maintains two global data
structures M and R, initialised as ⊥Z and � respectively. All recursive calls of C access the same M
and R. The algorithm C uses LB-Sample(t ;R) to draw random samples from ψ LB, and samples from
the padding distribution by the method in (10). Given the random variables {rt ,Ut }−T <t ≤0, C and
LB-Sample become deterministic. We define C ∈ [s]V where C(u) = CT (predu (0);M,R) for all u ∈ V .
Note that C is a function of {rt ,Ut }−T <t ≤0, and is thus a random vector.

Lemma 6.25. Use the same random variables {rt ,Ut }−T <t ≤0 in CT (predu (0);M,R) for all u ∈ V and in
P(T) to generate C and Y0, respectively. The distribution of C is the same as that of Y0.

Proof. By Lemma 6.9, the subroutine Boundary satisfies Condition 4.2. Following the proof of Theo-
rem 4.5, once we used the same random variables {rℓ,Uℓ}−T <t ≤0, C and the P(T) are perfectly coupled
and the lemma follows. □

Lemma 6.25 says that we can use C to simulate Y0 in P(T). We may also use LB-Sample to access
{rt }−T <t ≤0 “on demand”. The algorithm B = BT (S) (Algorithm 10) takes S as an input, and is the same
as A except that any access to Y0 is replaced by a call to C, and any access to {rt }−T <t ≤0 is replaced
by a call to LB-Sample. Similar to Algorithm 8, B together with its subroutines maintains two global
data structures M and R, which are initialised respectively as M0 =⊥Z and R0 = �.

44

Algorithm 10: BT (S)
Input: a hypergraph H = (V , E), a set of colours [q], a projection scheme h : [q] → [s] that

defines the projected distributionψ , a subset S ⊆ V , an integer T ≤ −n and a parameter
γ > 0;

Global variables: a map M : Z→ [q] ∪ {⊥} and a set R;
Output: a random assignment in τ ∈ [q]S

1 M ←⊥Z and R ← �;
2 σ ← �,V ′← S ;
3 σ (u) ← CT (predu (0);M,R) for all u ∈ S ;
4 while ∃e ∈ E s.t. e ∩V ′ , �, e ∩ (V \V ′) , � and e is not satisfied by σ do
5 choose such e with the lowest index;
6 if ∃j ∈ [s] s.t. ∀u ∈ e , LB-Sample(predu (0);R) ∈ {⊥, j} then
7 forall u ∈ e do
8 σ (u) ← CT (predu (0);M,R) ;
9 V ′← V ′ ∪ e;

10 else
11 U ← {u ∈ e | LB-Sample(predu (0);R) ,⊥};
12 forall u ∈ U do
13 σ (u) ← LB-Sample(predu (0);R);

14 enumerate all colourings X ∈ ⊗u ∈V ′h−1(σu) on V ′ to compute the marginal distribution of S on
the sub-hypergraph H [V ′], which is equivalent to µσS ;

15 sample XS ∼ µσS ;
16 return XS ;

Denote by BT (S) to the output of the algorithm BT (S). Recall that X (T)S denotes the output of
A

(
S,Y P(T)0 , {rt }−T <t ≤0

)
. Suppose ⌊q/s⌋k ≥ 4eqs∆k . By Lemma 6.25, it holds that

∀T ≥ n, dTV
(
BT (S),X (T)S

)
= 0.(37)

By Lemma 6.7, if ⌊q/s⌋k ≥ 4eqs∆k , Condition 4.4 is satisfied. By Lemma 6.9, the subroutine Boundary
satisfies Condition 4.2. Following the same proof ofTheorem 4.5, one can verify that in this case B∞(S)
terminates with probability 1 and its output B∞(S) satisfies

lim
T→∞

dTV (B∞(S),BT (S)) = 0.(38)

Note that

lim sup
T→∞

dTV (µS ,BT (S)) ≤ lim sup
T→∞

dTV
(
µS ,X

(T)
S

)
+ lim sup

T→∞
dTV

(
X (T)S ,BT (S)

)
= 0.(by Lemma 6.24 and (37))

Combining the above with (38), we have

dTV (B∞(S), µS) ≤ lim sup
T→∞

dTV (B∞(S),BT (S)) + lim sup
T→∞

dTV (µS ,BT (S)) = 0.(39)

Now, we can prove Lemma 6.12.

Proof of Lemma 6.12. Let K = 4∆2k5⌈log 1
γ ⌉ be the truncation threshold of |R | in Algorithm 8. We

couple ApproxMarginColouring-Set(S,γ) and the algorithm B∞(S) by using the same random choices
{rℓ,Uℓ}ℓ≤0, where {Uℓ}ℓ≤0 are used to realise the padding distribution as in (10). Furthermore, we
use the same uniformly at random real number U ∗ ∈ [0, 1] to realise both Line 17 of Algorithm 8 and
Line 15 of B∞(S).

45

LetXS be output of Algorithm 8. Similar to the proof ofTheorem 4.8, B∞(S) and Algorithm 8 couple
perfectly unless truncation happens. Thus,

Pr
coupling

[B∞(S) , XS] ≤ Pr [Etrun(K)] ,

where B∞(S) denotes the output of the algorithm B∞(S), and the the second Pr refers to Algorithm 8.
The random variable B∞(S) is well-defined since B∞(S) terminates with probability 1. Then,

dTV (XS , µS) ≤ dTV (XS ,B∞(S)) + dTV (B∞(S), µS)
= dTV (XS ,B∞(S))(by (39))
≤ Pr

coupling
[B∞(S) , XS] ≤ Pr [Etrun(K)] . □

7. Concluding remarks

In this paper, we propose a new framework for derandomising MCMC algorithms. We introduce
a method called coupling towards the past (CTTP) for evaluating a small amount of variables in their
stationary states without simulating the entire chain, which gives light-weight samplers that can draw
from marginal distributions. Under strong enough marginal lower bound guarantees, CTTP termi-
nates in logarithmic steps with high probability. This provides a direct-sum style decomposition of the
randomness used in MCMC sampling: a marginal sampler that can draw one random variable using
onlyO(logn) random bits is extracted from an existing machinery for generating n jointly distributed
random variables using O(n logn) random bits. A direct consequence to this is that, derandomising
such marginal sampler becomes easy in polynomial time by a brute-force enumeration of all possible
random choices, which gives efficient deterministic counting algorithms via standard self-reductions.

As concrete applications, we obtain efficient deterministic approximate counting algorithms for
hypergraph independent sets and hypergraph colourings, in regimes matching the state-of-the-art
achieved by randomised counting/sampling algorithms.

The current work makes the first step towards the goal of derandomising general Markov chain
Monte Carlo algorithms. We summarize some challenges to the current framework which may lead to
interesting future directions:

• Our current CTTP method relies crucially on the marginal lower bound being non-trivial,
namely Condition 4.4. This condition seems necessary for our current implementation (see
Remark 4.6), and it restricts problems our method can be applied to. For example, for graph
colourings, no such lower bound holds, and yet efficient deterministic algorithms exist [LSS22].
Not only that, the algorithm in [LSS22] requires q > 2∆, where q is the number of colours
and ∆ is the maximum degree of the graph. This is close to the condition q > (11/6 − ε)∆,
where ε ≈ 10−5 is a small constant, for the best randomised algorithms [CDM+19]. It would be
very interesting to find alternative ways to implement CTTPwithout marginal lower bounds to
match the bounds from other methods. One idea is to expand ⊥ to a set of possible values, sim-
ilar to bounding chains [Hub04], and yet for this modified method to be efficient it apparently
requires a condition of the order q = Ω(∆2).

In fact, our CTTP method implies perfect sampling algorithms, and the bound q = Ω(∆2)
(for the modified implementation) matches other general purpose perfect sampling algorithms
[Hub04, FGY22, AJ22] applied to graph colourings. With refined techniques specific to this
problem, the bounding chain approach can be made efficient under the condition q ≥ (8/3 +
o(1))∆ [BC20, JSS21]. It would be interesting to explore if these refined techniques can help our
method as well.
• Even if marginal lower bounds exist, our method still has a constant or lower order term gap

in the conditions comparing to randomised algorithms. This is true for the two applications
we consider in this paper, as is for problems such as estimating the partition function of the
hardcore model. In the latter problem, efficient deterministic algorithms [Wei06] work all the
way up to the computational complexity transition threshold, and actually predate randomised
counterparts with matching bounds [ALO20, CLV21, CFYZ21, AJK+22, CE22, CFYZ22]. How-
ever, none of these results use coupling techniques, which our method crucially relies on. An

46

interesting direction is to find CTTP matching these results, and one potential lead is through
finding more refined couplings.
• Our current direct-sum style proof for theMCMC sampling, effectively decomposes anO(n logn)-

stepMarkov chain to anO(logn)-stepmarginal sampler, whose random choices are enumerable
in polynomial time. It is then a challenge to derandomise those MCMC algorithms with signif-
icantly higher mixing time bounds to have, for example, low-cost marginal samplers for graph
matchings or bipartite perfect matchings.
• So far, all known deterministic approximate counting algorithms suffer from running time

bounds whose exponents depend on the parameters of the problem and/or the instance. It is
still wide open to give a deterministic approximate counting algorithm with a polynomial run-
ning time where the exponent of the polynomial is an absolute constant, especially when the
instance is close enough to the critical threshold. We hope our framework of derandomising
MCMC can be combined with some classical derandomisation techniques, e.g. k-wise indepen-
dence, or their variants, to make progress towards such a breakthrough.

References

[AJ22] Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin systems via strong
spatial mixing. SIAM Journal on Computing, 51(4):1280–1295, 2022.

[AJK+22] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.
Entropic independence: optimal mixing of down-up random walks. In STOC, pages 1418–
1430. ACM, 2022.

[Alo91] Noga Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms,
2(4):367–378, 1991.

[ALO20] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-
dimensional expanders and applications to the hardcore model. In FOCS, pages 1319–1330.
IEEE, 2020.

[ALOV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polyno-
mials II: high-dimensional walks and an FPRAS for counting bases of a matroid. In STOC,
pages 1–12. ACM, 2019.

[AMMB05] Dimitris Achlioptas, Mike Molloy, Cristopher Moore, and Frank Van Bussel. Rapid mix-
ing for lattice colourings with fewer colours. Journal of Statistical Mechanics: Theory and
Experiment, 2005(10):P10012, 2005.

[Ava08] Jean-Christophe Aval. Multivariate Fuss-Catalan numbers. Discrete Mathematics,
308(20):4660–4669, 2008.

[Bar16] Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of
Algorithms and combinatorics. Springer, 2016.

[BC20] Siddharth Bhandari and Sayantan Chakraborty. Improved bounds for perfect sampling of
k-colorings in graphs. In STOC, pages 631–642. ACM, 2020.

[BCC+22] Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and
Eric Vigoda. On mixing of Markov chains: Coupling, spectral independence, and entropy
factorization. In SODA, pages 3670–3692. SIAM, 2022.

[BDK06] Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. Stopping times, metrics and
approximate counting. In ICALP, volume 4051 of Lecture Notes in Computer Science, pages
108–119. Springer, 2006.

[BDK08] Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. Path coupling using stopping
times and counting independent sets and colorings in hypergraphs. Random Struct. Algo-
rithms, 32(3):375–399, 2008.

[BF87] Imre Bárány and Zoltán Füredi. Computing the volume is difficult. Discret. Comput. Geom.,
2:319–326, 1987.

[BGG+19] Ivona Bezáková, Andreas Galanis, Leslie AnnGoldberg, Heng Guo, and Daniel Štefankovič.
Approximation via correlation decay when strong spatial mixing fails. SIAM J. Comput.,
48(2):279–349, 2019.

47

[BGK+07] Mohsen Bayati, David Gamarnik, Dimitriy A. Katz, ChandraNair, and Prasad Tetali. Simple
deterministic approximation algorithms for counting matchings. In STOC, pages 122–127.
ACM, 2007.

[CDFS10] Joshua N. Cooper, Benjamin Doerr, Tobias Friedrich, and Joel Spencer. Deterministic ran-
dom walks on regular trees. Random Struct. Algorithms, 37(3):353–366, 2010.

[CDM+19] Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Im-
proved bounds for randomly sampling colorings via linear programming. In SODA, pages
2216–2234. SIAM, 2019.

[CE22] Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing
bounds for Markov chains. arXiv, abs/2203.04163, 2022. (To appear in FOCS’22).

[CFYZ21] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Rapid mixing of glauber
dynamics via spectral independence for all degrees. In FOCS, pages 137–148. IEEE, 2021.

[CFYZ22] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Optimal mixing for two-
state anti-ferromagnetic spin systems. arXiv, abs/2203.07771, 2022. (To appear in FOCS’22).

[CGM21] MaryCryan, HengGuo, andGiorgosMousa. Modified log-Sobolev inequalities for strongly
log-concave distributions. Ann. Probab., 49(1):506–525, 2021.

[CGŠV21] Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Rapid mixing for
colorings via spectral independence. In SODA, pages 1548–1557. SIAM, 2021.

[CLV20] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to
uniqueness via contraction. In FOCS, pages 1307–1318. IEEE, 2020.

[CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: en-
tropy factorization via high-dimensional expansion. In STOC, pages 1537–1550. ACM,
2021.

[CMT15] Pietro Caputo, Georg Menz, and Prasad Tetali. Approximate tensorization of entropy at
high temperature. Ann. Fac. Sci. Toulouse Math. (6), 24(4):691–716, 2015.

[CS06] Joshua N. Cooper and Joel Spencer. Simulating a random walk with constant error. Comb.
Probab. Comput., 15(6):815–822, 2006.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[DS14] Anindya De and Rocco A. Servedio. Efficient deterministic approximate counting for low-
degree polynomial threshold functions. In STOC, pages 832–841. ACM, 2014.

[DSVW04] Martin E. Dyer, Alistair Sinclair, Eric Vigoda, and Dror Weitz. Mixing in time and space
for lattice spin systems: A combinatorial view. Random Struct. Algorithms, 24(4):461–479,
2004.

[EL75] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland,
Amsterdam, 1975.

[Ele86] György Elekes. A geometric inequality and the complexity of computing volume. Discret.
Comput. Geom., 1(4):289–292, 1986.

[FGW22] Weiming Feng, Heng Guo, and Jiaheng Wang. Improved bounds for randomly colouring
simple hypergraphs. In RANDOM, volume 245 of LIPIcs, pages 25:1–25:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. (full version in arXiv:2202.05554).

[FGY22] Weiming Feng, Heng Guo, and Yitong Yin. Perfect sampling from spatial mixing. Random
Struct. Algorithms, 61(4):678–709, 2022.

[FGYZ21a] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Fast sampling and counting
k-SAT solutions in the local lemma regime. J. ACM, 68(6):Art. 40, 42, 2021.

[FGYZ21b] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid mixing from spectral
independence beyond the Boolean domain. In SODA, pages 1558–1577. SIAM, 2021.

[FHY21] Weiming Feng, Kun He, and Yitong Yin. Sampling constraint satisfaction solutions in the
local lemma regime. In STOC, pages 1565–1578. ACM, 2021.

[FM11] Alan M. Frieze and Páll Melsted. Randomly coloring simple hypergraphs. Inf. Process. Lett.,
111(17):848–853, 2011.

48

[GGW22] Andreas Galanis, HengGuo, and JiahengWang. Inapproximability of counting hypergraph
colourings. ACM Trans. Comput. Theory, 2022. To appear.

[GK07] David Gamarnik and Dmitriy Katz. Correlation decay and deterministic FPTAS for count-
ing list-colorings of a graph. In SODA, pages 1245–1254. SIAM, 2007.

[GLLZ19] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Counting hypergraph colorings in
the local lemma regime. SIAM J. Comput., 48(4):1397–1424, 2019.

[GMP05] Leslie Ann Goldberg, Russell A. Martin, and Mike Paterson. Strong spatial mixing with
fewer colors for lattice graphs. SIAM J. Comput., 35(2):486–517, 2005.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster de-
terministic counting algorithm. Comput. Complex., 22(2):275–310, 2013.

[HPR19] Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic Pirogov-Sinai theory. In STOC,
pages 1009–1020. ACM, 2019.

[HS07] Thomas P. Hayes and Alistair Sinclair. A general lower bound for mixing of single-site
dynamics on graphs. Ann. Appl. Probab., 17(3):931–952, 2007.

[HSS11] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. J. ACM, 58(6):28, 2011.

[HSW21] Kun He, Xiaoming Sun, and KewenWu. Perfect sampling for (atomic) Lovász local lemma.
arXiv, abs/2107.03932, 2021.

[HSZ19] Jonathan Hermon, Allan Sly, and Yumeng Zhang. Rapid mixing of hypergraph indepen-
dent sets. Random Struct. Algorithms, 54(4):730–767, 2019.

[Hub98] Mark Huber. Exact sampling and approximate counting techniques. In STOC, pages 31–40.
ACM, 1998.

[Hub04] Mark Huber. Perfect sampling using bounding chains. Ann. Appl. Probab., 14(2):734–753,
2004.

[HWY22a] Kun He, Chunyang Wang, and Yitong Yin. Deterministic counting Lovász local lemma
beyond linear programming. To appear in SODA’23, 2022.

[HWY22b] Kun He, Chunyang Wang, and Yitong Yin. Sampling Lovász local lemma for general con-
straint satisfaction solutions in near-linear time. arXiv, abs/2204.01520, 2022. (To appear
in FOCS’22).

[Jal09] Markus Jalsenius. Strong spatial mixing and rapid mixing with five colours for the Kagome
lattice. LMS Journal of Computation and Mathematics, 12:195–227, 2009.

[JPP22] Matthew Jenssen, Aditya Potukuchi, and Will Perkins. Approximately counting indepen-
dent sets in bipartite graphs via graph containers. In SODA, pages 499–516. SIAM, 2022.

[JPSS22] Vishesh Jain, Will Perkins, Ashwin Sah, and Mehtaab Sawhney. Approximate counting
and sampling via local central limit theorems. In STOC, pages 1473–1486. ACM, 2022.

[JPV21a] Vishesh Jain, Huy Tuan Pham, and Thuy Duong Vuong. On the sampling Lovász local
lemma for atomic constraint satisfaction problems. arXiv, abs/2102.08342, 2021.

[JPV21b] Vishesh Jain, Huy Tuan Pham, andThuy Duong Vuong. Towards the sampling lovász local
lemma. In FOCS, pages 173–183. IEEE, 2021.

[JS93] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993.

[JSS21] Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. Perfectly sampling k ≥ (8/3 + o(1))∆-
colorings in graphs. In STOC, pages 1589–1600. ACM, 2021.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algo-
rithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697,
2004.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

[Liu21] Kuikui Liu. From coupling to spectral independence and blackbox comparison with the
down-up walk. In RANDOM, volume 207 of LIPIcs, pages 32:1–32:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[LP17] David A. Levin and Yuval Peres. Markov chains and mixing times. American Mathematical
Soc., 2017.

49

[LSS22] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Correlation decay and partition
function zeros: Algorithms and phase transitions. SIAM J. Comput., 2022. To appear.

[LV91] Michael Luby and Boban Velickovic. On deterministic approximation of DNF. In STOC,
pages 430–438. ACM, 1991.

[LVW93] Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting
of depth-2 circuits. In ISTCS, pages 18–24. IEEE, 1993.

[Moi19] Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical
models. J. ACM, 66(2):10:1–10:25, 2019.

[MRSV21] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Deterministic approxi-
mation of random walks in small space. Theory Comput., 17:1–35, 2021.

[PR17] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms
for partition functions and graph polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.

[PV22] Edward Pyne and Salil P. Vadhan. Deterministic approximation of random walks via
queries in graphs of unbounded size. In SOSA, pages 57–67. SIAM, 2022.

[PW96] James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Struct. Algorithms, 9(1-2):223–252, 1996.

[QWZ22] Guoliang Qiu, Yanheng Wang, and Chihao Zhang. A perfect sampler for hypergraph in-
dependent sets. In ICALP, volume 229 of LIPIcs, pages 103:1–103:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[ST19] Rocco A. Servedio and Li-Yang Tan. Pseudorandomness for read-k DNF formulas. In SODA,
pages 621–638. SIAM, 2019.

[SYKY17] Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Total varia-
tion discrepancy of deterministic random walks for ergodic Markov chains. Theor. Comput.
Sci., 699:63–74, 2017.

[SYKY18] Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, andMasafumi Yamashita. Deterministic
random walks for rapidly mixing chains. SIAM J. Discret. Math., 32(3):2180–2193, 2018.

[Wei06] Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149.
ACM, 2006.

Appendix A. Construction of 2-block-tree

Proof of Lemma 5.24. The lemma is proved by a greedy algorithm similar to Algorithm 4 in [FGW22].
We can assume |C | ≥ θ as otherwise the lemma holds trivially by setting ℓ = 0. Let GC = G[C] be the
connected subgraph ofG induced byC . For any u ∈ C , we use ΓGC (u) to denote the neighbourhood of
u in GC . For any Λ ⊆ C , define ΓGC (Λ) = {u ∈ C \ Λ | ∃w ∈ Λ s.t. u ∈ ΓGC (w)}.

Let ℓ = 0 and R = C . The algorithm repeats the following process until R = �:
(1) ℓ ← ℓ + 1, if ℓ = 1, let u = v , if ℓ > 1, let u be an arbitrary vertex in ΓGC (C \ R);
(2) find an arbitrary connected component Cℓ in G[R] satisfying |Cℓ | = θ and u ∈ Cℓ ;
(3) R ← R \ (Cℓ ∪ ΓGC (Cℓ));
(4) for all connected components G ′ = (V ′, E ′) in G[R] with |V ′ | < θ , let R ← R \V ′.

Output the set {C1,C2, . . . ,Cℓ}.
We first show that the above algorithm is valid. The vertex u in Line (1) can be found because if

ℓ = 1, u = v ; if ℓ > 1, we know that R , � and R , C (some vertices are deleted in previous steps),
since GC is connected, ΓGC (C \ R) is not empty as otherwise R , � and C \ R , � are disconnected,
which contradicts with the fact GC is connected. We then prove that the component Cℓ can be found
in Line (2). Note that u ∈ R. If ℓ = 1, Cℓ exists because |C | ≥ θ and GC is connected. If ℓ > 1, by Line
(4), we know that R is a set of connected components, and each component has a size at least θ , and
thus Cℓ exists.

We next show that the output is a 2-block-tree in graph G. It is straightforward to see that each Ci
has size θ and is connected in graphGC , and thus is connected in graphG. Note that after we foundCi ,
we remove all vertices in ΓGC (Ci) in Line (3). Hence, for any Ci and Cj with i , j, distGC (Ci ,Cj) ≥ 2.
Since Ci ,Cj ⊆ C , it holds that distG (Ci ,Cj) ≥ 2. Finally, fix 2 ≤ i ≤ ℓ. Consider the i-th iteration.
Let ui be the vertex picked in Line (1), we show that there exists w ∈ C1 ∪ C2 ∪ . . . ∪ Ci−1 such that

50

distG (w,ui) = 2, which implies that
∪i

j=1Ci is connected onG2. Let R denote the set R at the beginning
of the i-th iteration. Since ui ∈ ΓGC (C \R), we know that in graphGC , uℓ has a neighbour inv ′ ∈ C \R,
which is one of the vertices deleted in Line (3) or Line (4). By Line (3), we know that for any j < i ,
when Cj is removed from R, ΓGC (Cj) is also removed, which implies for any j < i , v ′ < Cj . Next, we
show thatv ′ cannot in any component removed in Line (4), which impliesv ′ must in ΓGC (Cj) for some
j < i . Hence, there is a vertex w ∈ Cj such that distGC (w,ui) = 2. Note that both w,ui ∈ C . It holds
that distG (w,ui) = 2. Suppose v ′ ∈ V ′ for some |V ′ | < θ in Line (4). Note that ui and v ′ are adjacent,
andui ∈ R belongs to a component with size at least θ , which implies |V ′ | also belongs to a component
with size at least θ , this implies a contradiction. We remark that we proved a stronger result: any prefix
{C1,C2, . . . ,Ci } for i ∈ [ℓ] is a 2-block-tree in G.

Finally, we bound the size of the output 2-block-tree. In Line (3), we remove at most θ (∆+1) vertices.
For eachV ′ in Line (4), we claim that there existsw ∈ V ′ such thatw is adjacent to ΓGC (Cℓ) in Line (3).
Before the removal of Cℓ ∪ ΓGC (Cℓ), V ′ belongs to another component V ′′ ⊃ V ′ such that |V ′′ | ≥ θ .
However, after the removal, V ′ ⊆ V ′′ becomes a component of size < θ , which implies some vertices
adjacent to V ′ must be removed. This proves the claim. Note that |V ′ | ≤ θ − 1. Hence the number
of vertices removed in Line (4) is at most (θ − 1) · θ∆2. The total number of vertices removed in each
iteration is at most θ (∆+ 1)+ (θ − 1) ·θ∆2 ≤ θ 2∆2, where the inequality holds because θ ≥ 1 and ∆ ≥ 2.
Hence, the algorithm outputs a 2-block-tree with tree size ℓ ≥ ⌊|C |/(θ 2∆2)⌋. If ℓ > ⌊|C |/(θ 2∆2)⌋, we
just take the prefix of length ⌊|C |/(θ 2∆2)⌋. □

Appendix B. Deterministic counting via derandomising the AJ algorithm

In this appendix, we apply the generic derandomising argument in Section 3 to the Anand-Jerrum
(AJ) algorithm [AJ22], and hence provides deterministic approximate counting algorithms for spin
systems on sub-exponential neighbourhood growth graphs. We start with some basic definitions.

A spin system is specified by a tuple S = (G = (V , E), [q],h,A), where G is a graph, [q] is the
spins that each vertex may take, h ∈ Rq≥0 is the external field of the system, and A ∈ Rq×q≥0 is the
interaction matrix. A configuration σ ∈ [q]V assigns each vertex a spin amongst [q]. The weight of each
configuration σ is defined by

w(σ) :=
∏
v ∈V

h(σv)
∏
(u ,v)∈E

A(σu ,σv).

The partition function of the system Z (S) is the sum of weight over all possible configurations, and the
Gibbs distribution µ is defined where the probability that each configuration is drawn is proportional
to its weight. Namely,

Z (S) :=
∑

σ ∈[q]V
w(σ) and µ(σ) := w(σ)

Z (S) .

The spin system captures a lot of other counting problems. For example, when the external field is an
all-1 vector and the interaction matrix has 0’s on the diagonal and 1’s off the diagonal, the partition
function counts the number of proper q-colourings of the underlying graph.

It is useful to consider the same spin system but with some vertices pinned to take some certain
spins. A configuration σ ∈ [q]V is called feasible ifw(σ) > 0. For Λ ⊂ V , we say a partial configuration
τΛ over the subset Λ is feasible, if it can be extended to a feasible configuration by assigning all other
vertices with the spins. Denote by µσΛ the distribution over [q]V obtained from the Gibbs distribution
µ conditional on the partial configuration σΛ. For any S ⊆ V , denote by µσΛS the marginal distribution
on S projected from µσΛ . If S = {v} is a singleton, we abbreviate the notation a bit as µσΛv for simplicity.

Definition B.1 (marginal lower bound). A distribution is said to take a marginal lower bound b, if for
any Λ ⊂ V , v < Λ, any feasible partial configuration σΛ on Λ, and any spin i ∈ [q], it holds that

either µσΛv (i) ≥ b or µσΛv (i) = 0.

To give a precise characterisation where the deterministic counting algorithm works, we need the
definition of the strong spatial mixing, a notion that is of great interest in the study of spin systems.

51

Definition B.2 (strong spatial mixing). Let δ : N→ R≥0 be a non-increasing function. A spin system
S = (G = (V , E), [q],h,A) is said to exhibits strong spatial mixing with rate δ , if for any vertex subset
Λ ⊆ V , any other vertex v < Λ, and any two feasible partial configurations σ , τ ∈ [q]Λ with ℓ =
min{distG (u,v) | u ∈ Λ and σu , τu },

dTV
(
µσv , µ

τ
v
)
≤ δ (ℓ).

In particular, if δ (ℓ) = α exp(−βℓ) for some constants α, β > 0, the spin system S then is said to exhibit
the strong spatial mixing with exponential decay.

In the context of this paper, the decay rate is always exponential. We shall abbreviate the term
“strong spatial mixing with exponential decay” just as SSM.

We also need some assumptions on the graph. LetG = (V , E) be a graph. For any vertex v ∈ V , any
integer ℓ > 0, let

Sℓ(v) = {u ∈ V | distG (u,v) = ℓ}
be the sphere of radius ℓ centred atv , where distG (u,v) denotes the length of the shortest path between
u and v in the graph G.
Definition B.3 (sub-exponential neighbourhood growth). Let s : N→ N be a sub-exponential growth
function, namely, satisfying s(ℓ) = exp(o(ℓ)).3 A graph G = (V , E) is said to have sub-exponential
neighbourhood growth (SENG) within rate s , if |Sℓ(v)| ≤ s(ℓ) for any vertex v and any integer ℓ > 0.

We remark that themaximumdegree of a SENGgraphG is∆ ≤ s(1) = O(1). In statisticalmechanism,
SENG graphs are ubiquitous; for example, the d-dimensional integer lattice Zd is heavily studied.

We now state the result for spin systems.
Condition B.4. A tuple (q, δ , s), where δ (ℓ) and s(ℓ) are two functions, is said to satisfy this condition
with constant L = L(q, δ , s), if
(40) 2eq(1 + s(ℓ))δ (ℓ) ≤ 1 holds for all ℓ ≥ L.

Theorem B.5. There exists a deterministic algorithm such that, for any q ≥ 2, δ and s satisfying Con-
dition B.4 with constant L, and for any q-spin system on SENG graph with growth rate s exhibiting SSM
with decay rate δ , the algorithm outputs an estimate to the partition function of the spin system with
multiplicative error (1 ± ε) in time O((nbε)O (s(L) logq)), where b is the marginal lower bound.

In practice, the interaction matrix and the external field are fixed and considered as constants, so
that the actual input only contains the graph itself. With the assumption of SENG graphs, the marginal
lower bound is a constant b = b(h,A, s(1)) independent of the input graph.

B.1. Implications of Theorem B.5. As one of the important corollaries of Theorem B.5, we provide
an FPTAS for the number of (proper) colourings in SENG graphs.
Theorem B.6. Let q ≥ 3 and ∆ ≥ 3 be two constants satisfying q ≥ (116 − ε0)∆, where ε0 > 10−5

is a universal constant. There is an FPTAS for the number of proper q-colourings in SENG graphs with
maximum degree at most ∆.

Prior to this work, an FPTAS for the number of proper q-colourings on a graph of maximum degree
∆ is known only when q ≥ 2∆ [LSS22]. This result pushes forward the condition where FPTAS exists
to that for FPRAS [CDM+19], albeit only on SENG graphs.

Specialised to colouring lattices graphs, one can prove SSM in a more refined regime than applying
general theorems for colourings. The known SSM results, together with our main theorem for spin
systems Theorem B.5, imply the following theorem.
Theorem B.7. There is an FPTAS for the number of proper q-vertex-colourings for any finite subgraph of
the following lattice graphs:

• Z2 lattice, if q ≥ 6; (cf. [AMMB05])
• Z3 lattice, if q ≥ 10; (cf. [GMP05])

3The notation s(ℓ) = exp(o(ℓ)) means for any c > 1, there exists an integer N such that for all ℓ ≥ N , s(ℓ) < cℓ .
52

• Triangular lattice, if q ≥ 10; (cf. [GMP05])
• Honeycomb lattice, if q ≥ 5; (cf. [GMP05])
• Kagome lattice, if q ≥ 5. (cf. [Jal09])

Algorithm 11: SSMS-TruncatedT (S, (Σ,σ),v, ℓ)
Input: a spin system S = (G, [q],h,A), a set of vertices Σ ⊆ V with a configuration σ ∈ ΩΣ, a

vertex to sample v < Σ, and a distance ℓ ∈ N
Output: the partial configuration passed in with a spin at v : (Σ,σ) ⊕ (v, i) for some i ∈ [q].

1 try :
2 Decrease the global timer T ← T − 1;
3 for i ∈ [q] do
4 piv ← minτ ∈ΩSℓ\Σ µ

σ ⊕τ (i);
5 p0v ← 1 −∑

i ∈[q] p
i
v ;

6 Sample a random value X ∈ {0, 1, . . . ,q} with Pr [X = i] = piv for each 0 ≤ i ≤ q;
7 if X = 0 then
8 if T > 0 then
9 (ρ1, ρ2, . . . , ρq) ← BD-SPLIT-Truncated(S, (Σ,σ),v, ℓ, (p0v ,p1v ,p2v , . . . ,p

q
v));

10 Sample a random value Y ∈ [q] with Pr [Y = i] = ρi for each 1 ≤ i ≤ q;
11 return ((Σ,σ) ⊕ (v,Y));
12 else
13 return ((Σ,σ) ⊕ (v,X));
14 catch T < 0 :
15 Terminate all instances of SSMS-Truncated and BD-SPLIT-Truncated routines and set the

vertex the first call is on to a random feasible colour;

Algorithm 12: BD-SPLIT-Truncated(S, (Σ,σ),v, ℓ, (p0v ,p1v ,p2v , . . . ,p
q
v))

Input: a spin system S = (G, [q],h,A), a set of vertices Σ ⊆ V with a configuration σ ∈ ΩΣ, a
vertex to sample v < Σ, a distance ℓ ∈ N, and a probability distribution
(p0v ,p1v ,p2v , . . . ,p

q
v) ∈ ∆q

Output: a distribution (ρ1, ρ2, . . . , ρq) ∈ ∆q−1.
1 Give Sℓ(v) \ Σ an arbitrary ordering Sℓ(v) \ Σ = {w1,w2, . . . ,wm};
2 (Σ′,σ ′) ← (Σ,σ);
3 for 1 ≤ j ≤ m do
4 (Σ′,σ ′) ← SSMS-Truncated(S, (Σ′,σ ′),w j , ℓ);
5 for i ∈ [q] do
6 ρi ← (µσ

′
v (i) − piv)/p0v ;

7 return (ρ1, ρ2, . . . , ρq);

B.2. Truncated AJ algorithm: proof of Theorem B.5. To derandomise the AJ algorithm, we trun-
cate it à la Section 4.3. This results in Algorithm 11 and Algorithm 12. The algorithm maintains a
global timer T shared by all copies of the process. We use a subscript to represent what the timer is
initially set to, e.g., SSMS-TruncatedT or SSMS-Truncated∞. For simplicity in notation, as the input
spin system S and the parameter ℓ are never changed throughout the algorithm, we drop it from the
list of parameters.

We remark that this is slightly different from the “bounded” variant appeared in [AJ22] as that
truncates the algorithm by a certain depth instead of the number of calls. The correctness of the
untruncated algorithm is summarised as follows.

53

Theorem B.8 ([AJ22, Theorem 5.3]). Let S be a spin system exhibiting SSM, µ be its Gibbs distribution,
and ℓ ≥ 1 be an integer. If the untruncated AJ algorithm, i.e., SSMS-Truncated∞((Σ,σ),v)with the global
timer set to∞, terminates with probability 1, then it generates a spin ofv subject to the correct conditional
distribution upon terminating, i.e.,

Pr [SSMS-Truncated∞((Σ,σ),v) = i] = µσv (i),
providing the partial configuration (Σ,σ) is feasible.

As a corollary of the above theorem, the truncated variant outputs a spin close to the correct distri-
bution, the distance of which depends on the probability that Line 15 is executed.
Corollary B.9. LetS be a spin system exhibiting SSM, µ be its Gibbs distribution, andT , ℓ ≥ 1 be integers.
If the untruncated AJ algorithm SSMS-Truncated∞((Σ,σ),v) terminates with probability 1. Then, suppose
Y is the distribution of the output of SSMS-TruncatedT ((Σ,σ),v) with the global timer initially set to T ,
it holds that

dTV
(
Y , µσv

)
≤ Pr [Line 15 is executed] .

Proof. For simplicity, let A be the truncated algorithm SSMS-TruncatedT ((Σ,σ),v) and A ′ be the un-
truncated algorithm SSMS-Truncated∞((Σ,σ),v). Denote the bad event that Line 15 is executed by B.
For any spin j ∈ [q], by Theorem B.8,

µσv (j) = Pr [A ′ = j | ¬B] Pr [¬B] + Pr [A ′ = j | B] Pr [B] ,
and by definition,

Y (j) = Pr [A = j | ¬B] Pr [¬B] + Pr [A = j | B] Pr [B] .
Naturally, Pr [A ′ = j | ¬B] = Pr [A = j | ¬B], which gives��µσv (j) − Y (j)�� = Pr [B] · |Pr [A ′ = j | B] − Pr [A = j | B]|

≤ Pr [B] · (Pr [A ′ = j | B] + Pr [A = j | B])
Therefore,

dTV
(
Y , µσv

)
=

1
2

∑
j ∈[q]

��µσv (j) − Y (j)�� ≤ Pr [B] . □

To analyse the probability of truncation, we treat the algorithm as a branching process. There are
two possible scenarios each time when an iteration of SSMS-Truncated is invoked: either this iteration
vanishes without invoking any iteration, or the algorithm calls BD-SPLIT-Truncatedwhich leads to the
creation of at most ∆ℓ new copies of SSMS-Truncated. With the presence of strong spatial mixing, the
branching process is likely to terminate in finite time, which is captured by the following lemma.
LemmaB.10. Suppose (q, δ , s) is a tuple satisfying Condition B.4 with constant L. Let 0 < ε ′ < 1 be a real,
and T = 1+s(L)

log 2 · log
2
ε ′ . Given a q-spin system S = (G, [q],h,A) as an input, where S exhibits SSM with

decay rate δ andG is a SENG graph with rate s , the probability that Line 15 in SSMS-TruncatedT ((Σ,σ),v)
is executed is bounded from above by ε ′ if the global timer is initially set to T .

One of the main ingredients for the above argument is to bound the length of ZOI, which is also the
probability for branching. This is done by the following lemma [AJ22, Lemma 4.2].
Lemma B.11. Let S be a q-spin system exhibiting SSM with rate δ . In the execution of
SSMS-TruncatedT ((Σ,σ),v) where the partial assignment σ over Σ is feasible, it holds that

p0v ≤ q · δ (ℓ).
Given the exponential tail bound, Theorem B.5 can be proved.

Proof of Theorem B.5. Each random number drawn in the algorithm can take {0, 1, · · · ,q}, and hence
the domain is of size q + 1. The worst case running time is O(qT) which is straightforward to show;
note that the cost of Line 4 in BD-SPLIT-Truncated is amortised into each subroutine. The number
of random numbers drawn throughout the process is at most 2T . The conditions in Corollary 3.3 get
fulfilled if we set ε ′ = bε

10n where b is the marginal lower bound, which gives T = 1+s(L)
log 2 · log

20n
bε . The

theorem then follows by applying Corollary 3.3. □
54

B.3. Exponential tail on running time: proof of Lemma B.10. In this section we give a proof of
Lemma B.10. Each time the algorithm recurses into BD-SPLIT-Truncated, it creates at most s(ℓ) new
copies of the routine SSMS-Truncated. Such branching happens with probability p0v which is at most
q · δ (ℓ) due to Lemma B.11. This leads us to analysing a Markov process that stochastically dominates
the actual branching process.

Consider the following discrete Markov chain (Xt) where Xt ∈ Z≥0. At the beginning, X0 = 1. The
chain has an absorbing barrier at 0, and for other Xt > 0, the transition is given by

(41) Xt+1 ←
{
Xt + D with probability p;
Xt − 1 with probability 1 − p.

Intuitively, if pD < 0.99, in expectation the random walk moves towards the absorbing barrier, and
the process terminates in constant time. But for analysing the truncated algorithm, a tail bound on the
event that the process does not terminate for a long time is required. This is shown as the next lemma.

Lemma B.12. Suppose 2e(1+D)p ≤ 1 and 0 < ε ′ < 1. LetT = 1+D
log 2 · log

2
ε ′ . With probability at most ε ′,

the process (Xt) defined by (41) does not terminate in T rounds.

We need to use the following notion of the generalised Dyck path.

Definition B.13 ((D+1)-Dyck path). A sequence a1,a2, · · · ,ak ∈ {+D,−1} forms a (D+1)-Dyck path
of length k , if

∀j,
j∑

i=1

ai ≥ 0 and
k∑
i=1

ai = 0.

The number of (D + 1) Dyck path of given length is known to be the Fuss-Catalan number (see, for
example, [Ava08]).

Lemma B.14. The number of (D + 1)-Dyck paths of length (D + 1)N is 1
DN+1

((D+1)N
N

)
.

Proof of Lemma B.12. If the process (Xt) terminates exactly at (T + 1)-th round, namely XT = 1 and
XT+1 = 0, then it must hold that the sequence {Xt+1 − Xt }T−1t=0 forms a dyke path, and XT+1 = 0.
Obviously T is a multiple of D + 1. Let N := T /(D + 1). Then there are N “move-ups”, each with
probability p, and DN + 1 “move-downs”, each with probability 1 − p. The extra plus one is owing to
the move XT = 1 to XT+1 = 0. Using the count on (D + 1)-Dyck paths of length T = (D + 1)N , the
probability that (Xt) terminates at (T + 1)-th round is exactly

wN =
1

DN + 1

(
(D + 1)N

N

)
pN (1 − p)DN+1.

Using the inequality
(n
k

)
≤ (en/k)k , we have

wN ≤
1

DN + 1
· (e(1 + D))N · pN (1 − p)DN+1 ≤ (e(1 + D)p)N .

Let γ := e(1 + D)p which is at most 1/2. The probability that the process does not terminate in
T = (D + 1)N rounds is

Pr [(Xt) does not terminate in (D + 1)N rounds] =
∞∑

i=N

wi ≤ γ N
∞∑
j=0

γ j < 2γ N < 2

(
1
ε ′

) log(γ)
log 2

< ε ′. □

Proof of Lemma B.10. Let p = q · δ (ℓ) and D = s(ℓ) Suppose we are now running SSMS-Truncated∞
with the timer set to infinity. We might alter Line 4 in BD-SPLIT-Truncated a bit, by registering first
them instances of SSMS-Truncated to run, and then setting the appropriate parameter and invoking
the routine. We call an instance of SSMS-Truncated active, if it is running or has been registered but
not yet run. Let Yt be the number of active instances upon the invocation of the (t + 1)-th instance.
If there is no such (t + 1)-th instance, set Yt = 0. For each instance, it dies out and becomes no more
active if it does not recurse into BD-SPLIT-Truncated, and upon the invocation of the next instance,
the count goes down by one. Or otherwise, it registers up to Sℓ(v) new instances, so that prior to

55

the next invocation (the current instance has not died out yet) the count goes up by the number of
newly-created instances. This happens with probability p0v ≤ p, the length of ZOI.

Despite the fact that the i-th invocation may change the boundary condition for later invocations,
Lemma B.11 holds for all boundary conditions, and because each invocation use fresh random numbers,
the probability that x invocations create copies andy invocations do not is bounded bypx (1−p)y . Then
it is a simple observation that

Pr [(Yt) does not terminate in T rounds] ≤ Pr [(Xt) does not terminate in T rounds] .
This is because each time it branches out D ′ ≤ D new instances. We can just treat this as if it created D
copies, but the lastD−D ′ ones were bound to die out. The lemma then follows by applying Lemma B.12
with the aforementioned choices of p, D and T . □

B.4. FPTAS from optimal temporal mixing. As a well-known result, the notion of SSM is equiva-
lent to optimal temporal mixing of the Glauber dynamics on SENG graphs [DSVW04]. The latter notion
receives a glaring attention in recent study of Markov chains.

Fix a subset of vertices Λ ⊆ V . Define its boundary by
∂Λ := {u ∈ V \ Λ | ∃w ∈ Λ s.t. {u,w} ∈ E}.

Let (Xt)t ≥0 and (Yt)t ≥0 be two instance of the Glauber dynamics, where (Xt)t ≥0 and (Yt)t ≥0 may start
from different initial configurations X0 and Y0. The optimal temporal mixing is defined as follows.

Definition B.15 (optimal temporal mixing). The Glauber dynamics is said to have the optimal tem-
poral mixing under arbitrary pinning, if there exists γ , ζ > 0 such that for any vertex set Λ ⊆ V ,
any feasible boundary condition σ ∈ [q]∂Λ, and any two instances (Xt)t ≥0 and (Yt)t ≥0 of the Glauber
dynamics on Λ with boundary configuration σ , it holds that

∀k ∈ N, dTV (Xkn,Ykn) ≤ |Λ|γ exp(−ζk).
The above definition also impliesO(n logn)mixing time of the Glauber dynamics, by observing that

starting from an arbitrary X0, dTV
(
XT , µ

σ
Λ

)
≤ 1/4 for T = O(n logn).

One of the main results in [DSVW04] states:

Theorem B.16 ([DSVW04, Theorem 2.3]). If the spin system poses optimal temporal mixing on SENG
graphs, then the system exhibits SSM.

We remark that the definition of SSM varies slightly across the literature. However, the version in
this paper is equivalent to that in [DSVW04] on SENG graphs, and the above theorem still applies in
our context. Combining Theorem B.5 and Theorem B.16 yields:

Theorem B.17. Let A ∈ Rq×q≥0 and hq≥0 be an interaction matrix and an external field vector. There is an
FPTAS for the partition functions of the spin system defined by A and h on SENG graphs, if the Glauber
dynamics on the Gibbs distribution has the optimal temporal mixing under arbitrary pinning.

B.5. FPTAS from spectral independence. To derive optimal temporal mixing and hence apply The-
orem B.17, we utilise a powerful tool called the spectral independence, first defined by Anari, Liu and
Oveis Gharan [ALO20] to obtain rapid mixing, extended to general [q] domains by various authors
[CGŠV21, FGYZ21b], and refined by Chen, Liu and Vigoda [CLV21] for optimal mixing of the Glauber
dynamics.

The formal definition of spectral independence is given below. For any subsetΛ ⊂ V , any σ ∈ Ω(µΛ),
where Ω(µΛ) denotes the support of the distribution µΛ, define

Ṽσ =
{
(u, c) | u ∈ V \ Λ and c ∈ Ω(µσv)

}
.

For every pair (u, i), (v, j) ∈ Ṽσ withu , v , define the (signed) influence from (u, i) to (v, j)with respect
to the conditional σ by

γ σµ ((u, i), (v, j)) = µ
σ∧(u←i)
v (j) − µσv (j),

and defineγ σµ ((v, i), (v, j)) = 0 for all (v, i), (v, j) ∈ Ṽσ , where µσ∧(u←i)
v denotes themarginal distribution

on v conditional on σ and the event that u takes the value i .
56

Definition B.18 (spectral independence). Let η > 0 be a constant. A distribution µ is η-spectrally
independent if for any Λ ⊂ V , any σ ∈ Ω(µΛ), the maximum eigenvalue of γ σµ satisfies λmax(γ σµ) ≤ η.

The main result of this subsection is the following theorem.

Theorem B.19. Let A ∈ Rq×q≥0 and h
q
≥0 be an interaction matrix and an external field vector. There is

an FPTAS for the partition functions of the spin system defined by A and h on SENG graphs, if the Gibbs
distribution of the spin system is η-spectrally independent for some constant η.

The work [CLV21] establishes that, under some conditions, spectral independence implies approx-
imate tensorisation of entropy, a notion that is used to establish the decay of relative entropy and
hence optimal temporal mixing (see, for example, [CMT15]). Connecting the main theorem of [CLV21,
Theorem 2.8] (see also [BCC+22, Theorem 1.7]) with [CMT15] yields the following.

Theorem B.20. Let ∆ ≥ 3 be an integer and b,η > 0 be reals. Let µ be the distribution of a q-spin system
on a graph G = (V , E) of maximum degree at most ∆. If µ is η-spectrally independent and b-marginally
bounded, then the relative entropy of PGL decays with rate 1

C |V | , i.e.,

DKL (νPGL ∥ µ) ≤
(
1 − 1

C |V |

)
DKL (ν ∥ µ)

holds for any distribution ν over [q]V . Here the constant C =
(
∆
b

)1+2⌈ ηb ⌉ .
Theorem B.19 can be proved by iterating the above theorem. We also remark that spectral indepen-

dence holds under arbitrary pinning.

Proof of Theorem B.19. Fix the vertex set Λ. Under arbitrary feasible pinning, we apply Theorem B.20
iteratively. The distribution Xkn of the Glauber dynamics on Λ after kn rounds then satisfies

DKL
(
Xkn ∥ µσΛ

)
≤

(
1 − 1

C |Λ|

)kn
DKL

(
X0 ∥ µσΛ

)
≤ exp

{
−k
C

}
DKL

(
X0 ∥ µσΛ

)
(Using |Λ| ≤ n)

≤ exp

{
−k
C

}
log

(
1

µσΛ,min

)
(42)

where µσΛ,min = minτ ∈[q]Λ µ
σ
Λ (τ) is the minimum non-zero probability of the distribution µσΛ .

We verify optimal temporal mixing as follows.
dTV (Xkn,Ykn) ≤ dTV

(
Xkn, µ

σ
Λ

)
+ dTV

(
Ykn, µ

σ
Λ

)
≤ 2dTV

(
Xkn, µ

σ
Λ

)
(w.l.o.g.)

≤
√
2DKL

(
Xkn ∥ µσΛ

)
(Pinsker’s Inequality)

≤
√
2

√√√
log

(
1

µσΛ,min

)
exp

{
− k

2C

}
(By (42))

≤
√
2|Λ| log(1/b) exp

{
− k

2C

}
.

The theorem then follows by invoking Theorem B.17. □

Finally, Theorem B.6 can be proved.

Proof of Theorem B.6. The uniform distribution over proper q-colourings in the same regime as Theo-
rem B.6 is shown to be η-spectrally independent for some constant η = η(q,∆) [Liu21]. This theorem
then follows after Theorem B.19. □

57

	1. Introduction
	2. Preliminaries
	3. Derandomisation for deterministic counting
	4. Coupling towards the past
	5. Hypergraph independent set
	6. Hypergraph colouring
	7. Concluding remarks
	References
	Appendix A. Construction of 2-block-tree
	Appendix B. Deterministic counting via derandomising the AJ algorithm

