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Abstract. We show that spin systems with bounded degrees and coupling independence admit
fully polynomial time approximation schemes (FPTAS). We design a new recursive deterministic
counting algorithm to achieve this. As applications, we give the first FPTASes for q-colourings on
graphs of bounded maximum degree ∆ ≥ 3, when q ≥ (11/6 − ε0)∆ for some small ε0 ≈ 10−5, or
when ∆ ≥ 125 and q ≥ 1.809∆, and on graphs with sufficiently large (but constant) girth, when
q ≥ ∆+ 3. These bounds match the current best randomised approximate counting algorithms by
Chen, Delcourt, Moitra, Perarnau, and Postle (2019), Carlson and Vigoda (2024), and Chen, Liu,
Mani, and Moitra (2023), respectively.

1. Introduction

The power of randomness is a classical topic in the theory of computing. Randomised algorithms
have found many early successes in the field of approximate counting. A striking example is
the polynomial-time volume estimation algorithm for convex bodies by Dyer, Frieze, and Kannan
[DFK91], whereas deterministic approximation algorithms requires at least exponential membership
queries [Ele86, BF87]. However, this lower bound is valid only for membership query models,
and does not rule out efficient deterministic approximation algorithms in general. While volume
estimation remains difficult for efficient deterministic approximation, deterministic approximate
counting algorithms have been quickly catching up with their randomised counterparts for many
other problems, since the introduction of the correlation decay technique [Wei06, BG06].

By now, a number of different deterministic approximate counting techniques have been devel-
oped. In addition to the correlation decay method, one may utilise zero-freeness of polynomials
[Bar16, PR17], linear programming based methods [Moi19, GLLZ19, JPV21], statistical physics
related techniques [HPR20, JPP23, JPSS22], or even direct derandomisation of Markov chains
[FGW+23]. In many occasions, these methods have achieved optimal results, or at least match or
even outperform the best randomised algorithms, such as for the hardcore gas model [Wei06, PR17],
for Holant problems with log-concave signatures [HLQZ25], or in the local lemma settings [WY24].

Despite all these successes, there is one problem where deterministic algorithms are still lagging
behind, namely counting the number of proper colourings. The study of this problem was initiated
by Jerrum [Jer95], who showed a rapid mixing bound for Glauber dynamics for q-colourings on
graphs of maximum degree ∆, when q > 2∆. This was subsequently improved by Vigoda [Vig00]
to q > 11/6∆ by considering the flip dynamics. Via more careful analysis, the constant was
then improved to (11/6 − ε0) for some ε0 ≈ 10−5 by Chen, Delcourt, Moitra, Perarnau, and
Postle [CDM+19], and to 1.809 by Carlson and Vigoda [CV24] for ∆ ≥ 125. In contrast, on the
deterministic side, the first efficient algorithm by Gamarnik and Katz [GK07] requires q > 2.844∆
via the correlation decay method. This was later improved by Lu and Yin [LY13] to q > 2.581∆.
With the more recent technique using zero-freeness of polynomials, Liu, Srivastava, and Sinclair
[LSS19a] gave a fully polynomial time approximation schemes (FPTAS) when q ≥ 2∆, and this
bound was very recently improved to q ≥ (2− ε1)∆ for some ε1 ≈ 0.002 by Bencs, Berrekkal, and
Regts [BBR24].
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In this paper, we close this gap between deterministic and randomised algorithms for approx-
imate counting colourings. We introduce a new algorithm that takes inspiration from both the
linear programming method and the correlation decay method. We show that this algorithm is
efficient as long as coupling independence holds and there is a marginal lower bound. Here cou-
pling independence is a method to establish the so-called spectral independence [ALO20, AL20], a
relatively new tool to analyse mixing times of Markov chains. The notion of coupling independence
is formally introduced in [CZ23], although it has been implicitly established before that, such as in
[FGYZ22, BCC+22, Liu21]. Previously, coupling independence is mainly used to analyse Markov
chains, and here we show that it also implies deterministic approximate counting algorithms. We
also show that contractive coupling for Markov chains can be used to establish coupling indepen-
dence. Thus, with our technique, the contractive couplings from [CDM+19, CV24] imply FPTASes
with matching bounds. We describe our main results in more detail in Section 1.1, and give a
high-level technical overview in Section 1.2.

1.1. Main results. We state our main results in the general context of spin systems. A spin
system is specified by the tuple S = (G, q,AE , AV ). Given a graph G = (V,E) and an integer
q > 0, a state of the system is a configuration σ : V → [q]. Namely, the state space is [q]V . The
weight of a configuration are characterised by the matrix AE ∈ Rq×q

≥0 and vector AV ∈ Rq
≥0. The

Gibbs distribution µ of S is defined by

µ(σ) ∝ w(σ) :=
∏

{u,v}∈E

AE(σ(u), σ(v))
∏
v∈V

AV (σ(v)).

The normalising factor of µ, namely the so-called partition function of S, is defined by

Z :=
∑

σ∈[q]V
w(σ).

When AE =

(
1 1
1 0

)
and Av =

(
1
λ

)
, this encodes the hardcore gas model. When AE = J − I,

where J is the all-1 matrix and I is the identity matrix, and Av = 1 is the all-1 vector, µ is uniform
over proper q-colourings, and Z is the number of them.

To introduce coupling independence, we need to define Hamming and Wasserstein distances. For
two configurations σ and τ , let their Hamming distance be

dist{σ, τ} := |{v | v ∈ V, σ(v) ̸= τ(v)}| .
The Wasserstein distance is defined next.

Definition 1. Let (Ω, d) be a finite metric space. For any two distributions µ and ν on Ω, the
1-Wasserstein distance (W1-distance) with respect to the metric d between µ and ν is defined as

Wd(µ, ν) := inf
C

E(X,Y )∼C [d(X,Y )],(1)

where the infimum is taken over all the possible couplings C between µ and ν.

For two Ω-valued random variables X,Y with distribution µ, ν, we may also use Wd(X,Y ) to
denote Wd(µ, ν). When the distance d is the Hamming distance, we also omit the subscript and
write W(µ, ν).

Definition 2 (Coupling independence). We say a Gibbs distribution µ satisfies C-coupling inde-
pendence if, for any two partial configurations σ and τ on Λ ⊆ V such that dist{σ, τ} = 1,

W(µσ, µτ ) ≤ C,

where µσ and µτ denote the Gibbs distribution conditional on σ and τ , respectively.
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In addition to coupling independence (CI), our main theorem also requires marginal lower bound.
Let µσ

v be the marginal distribution at v conditional on σ.

Definition 3 (Marginal lower bound). We say a Gibbs distribution µ over [q]V is b-marginally
bounded if for any partial configuration σ ∈ [q]Λ on Λ ⊆ V , any vertex v /∈ Λ, any spin c ∈ [q] with
µσ
v (c) > 0,

µσ
v (c) ≥ b.(2)

Now we are ready to state our main theorem.

Theorem 4. Let q ≥ 2, b > 0, C > 0,∆ ≥ 3 be constants. There exists a deterministic algorithm
such that given a permissive spin system S = (G, q,AE , AV ) and error bound 0 < ε < 1, if the Gibbs
distribution of S is b-marginally bounded and satisfies C-coupling independence, and the maximum
degree of G is at most ∆, then it returns Ẑ satisfying (1− ε)Z ≤ Ẑ ≤ (1+ ε)Z in time (nε )

f(q,b,C,∆),
where f(q, b, C,∆) = ∆O(C(log b−1+logC+log log∆)) log q is a constant.

Being permissive is a mild technical condition we need (see Theorem 9). It roughly requires that
all the conditional distributions are well-defined. All applications considered in this paper satisfy
it. The marginal lower bound is also a mild requirement, since if we treat q, ∆, AE , and AV all as
constants, then there is a constant b such that any permissive system is b-marginally bounded (see
Theorem 10). However, for concrete systems, there are usually better lower bound than the generic
one in Theorem 10. Thus, we choose to make it explicit in the statement of Theorem 4. We also
note that the exponent f(q, b, C,∆) is not optimised – our goal is to present the new algorithm as
simple and as clearly as possible.

Theorem 4 together with coupling independence from [CLMM23] and the marginal lower bound
[GKM15, Lemma 3]1 directly implies the following result.

Corollary 5 (Colouring: high-girth graphs). Let q and ∆ be two integers satisfying ∆ ≥ 3 and
q ≥ ∆ + 3. There eixsts a constant g0 > 0 depending only on ∆ such that the following holds.
There exists an FPTAS for the number of proper q-colourings on graphs G of maximum degree ∆
and girth at least g0.

The bound in Theorem 5 matches the rapid mixing result by Chen, Liu, Mani and Moitra [CLMM23].
Prior to our work, no FPTAS is known in this setting.

To establish coupling independence for colourings in general bounded degree graphs, we make
use of contractive coupling, a tool typically used to bound the mixing time of Markov chains. Given
two copies of a Markov chain, a contractive coupling ensures that after a step, the expected distance
decreases multiplicatively. See (18) and (19) for some examples. Previously, contractive couplings
have been used to establish spectral independence [BCC+22, Liu21]. In fact, their proof implicitly
established the stronger result of coupling independence. In Section 5, we give a simpler and more
direct argument on how to establish coupling independence from contractive coupling. Using the
contractive couplings from [CV24] and [CDM+19], as well as the marginal lower bound [LY13,
Lemma 3],2 we have the following result.

Corollary 6 (Colouring: general graphs). Let q and ∆ be two integers satisfying either
• ∆ ≥ 125, q ≥ 1.809∆;
• or ∆ ≥ 3, q ≥ (11/6− ε0)∆ for some fixed parameter ε0 ≈ 10−5.

There exists an FPTAS for the number of proper q-colourings on graphs of maximum degree ∆.

1The bound yields b ≥ q−1
(
2
3

)∆ in the setting of Theorem 5.
2The bound yields b ≥ q−1e−

1
α−1 in the setting of Theorem 6, where α is the constant in the assumption q ≥ α∆.
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The bounds in Theorem 6 are the same ones as the rapid mixing of Markov chains results by
Carlson and Vigoda [CV24] or by Chen, Delcourt, Moitra, Perarnau and Postle [CDM+19]. As
mentioned before, prior to our work, the best FPTAS [BBR24] requires q ≥ (2 − ε1)∆ for some
ε1 ≈ 0.002.

Theorem 4 also implies FPTASes for spin systems satisfying the Dobrushin-Shlosman condition.

Definition 7 (Dobrushin-Shlosman condition). Let µ be a Gibbs distribution on [q]V . The Do-
brushin influence matrix ρ ∈ RV×V

≥0 is defined by

∀u, v ∈ V, ρ(u, v) := max
σ,τ∈[q]V−v

σ⊕τ⊆{u}

dTV(µ
σ
v , µ

τ
v),(3)

where we use dTV(·, ·) to denote the TV-distance. The Gibbs distribution µ is said to satisfy the
Dobrushin-Shlosman condition with gap δ ∈ (0, 1) if

∥ρ∥1 = max
u∈V

∑
v∈V

ρ(u, v) ≤ 1− δ.

Corollary 8. Let q ≥ 2, ∆ ≥ 3, AE ∈ Rq×q
≥0 , AV ∈ Rq

≥0, and δ ∈ (0, 1) be constant parameters.
There exists an FPTAS for the partition function of permissive spin systems S = (G, q,AE , AV )
if S satisfies the Dobrushin-Shlosman condition with gap δ and the maximum degree of G is at
most ∆.

The Dobrushin-Shlosman condition [Dob70, DS85] is a sufficient condition for the uniqueness
of the Gibbs measure in infinite graphs. It is well-known that the Dobrushin-Shlosman condition
implies rapid mixing of Glauber dynamics [BD97, Hay06]. However, before our result, its implica-
tion on deterministic counting algorithms is not well-understood, especially for general multi-spin
(q > 2) systems.

In addition, Theorem 4 provides a unified framework to derive FPTASes for a few problems for
which FPTASes are known before via different methods. Similar to our method, all these FPTASes
require a bounded maximum degree ∆ for the input graph. Examples in this category include
q-colourings for triangle-free graphs if q > 1.764∆ + C for some constant C > 0 [LSS19a] (where
CI is established in [FGYZ22, CGSV21, CF24]), antiferromagnetic two-state spin systems in the
uniqueness regime [SST14] (where CI is established in [CF24, CLV23]), ferromagnetic Ising models
with non-zero external fields [LSS19b] (where CI is established in [CZ23]), and Holant problems
with log-concave signatures [HLQZ25] (where CI is established in [CG24]).3

After this paper appeared on the arXiv, Chen, Wang, Zhang, and Zhang [CWZZ25] used Theo-
rem 4 to give an FPTAS for edge colourings when q ≥ 3∆.

1.2. Our technique. We first show that coupling independence implies decay of total influences.
Here, the influence from u to v is defined as dTV(µ

σ
v , µ

τ
v) such that σ and τ are partial configuations

that differ only at u. Note that this is different from Doburshin’s influence defined in (3). See
Theorem 11 for the formal definition of influences. Suppose C-coupling independence holds. By
a simple averaging argument, there is 1 ≤ ℓ ≤ 2C such that the total influence of a vertex v to
vertices of distance ℓ from v is at most 1/2. We repeatedly use this fact to show that, roughly, for
every 2C distance, the total influence decays multiplicatively by a factor 1/2, which leads to an
exponential decay in the distance from v. This is in Section 3. Given the decay of total influence,
we may choose a sufficiently large but constant R such that the total influence at distance R is less
than a quantity that is linear in R. (To be precise, the requirement is given in (10).) This choice
is a key guarantee in our error analysis.

3Technically Holant problems are not spin systems, but our technique generalises to that setting easily.
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Our main algorithm estimates marginal probabilities of a vertex v under arbitrary conditioning.
The basic building block of our algorithm does this task but requires a constant number of other
conditional marginal probabilities. These marginal probabilities are either of the same vertex v
but with different boundary conditions at distance R, or of some other vertices at distance R. We
use the aforementioned bounds for R to show that the output relative error is roughly half of the
relative error of the input marginals. Thus, we achieved a recursive step with constant error decay.
To achieve an ε relative error, we just need to run this up to log ε−1 depth, resulting in polynomial
total running time.

On a high level, the structure of our algorithm is very similar to the correlation decay algorithms
such as [Wei06, BG06]. Namely, in each step, we use the marginal probabilities in smaller instances
to compute the desired one, and the computation is truncated at logarithmic depth. However, a
key difference is that in previous algorithms, the recursive step is exact and often via a closed form
formula, whereas ours is algorithmic and approximate. This is achieved via a linear programming
(LP) algorithm inspired by [Moi19]. We use the LP to simulate a coupling similar to the one in
[CLMM23], which is to couple vertices randomly chosen at distance R one at a time. However,
the coupling in [CLMM23] is recursive, and it appears difficult for the LP to handle recursion. We
instead only use the LP to simulate a partial coupling up to the recursive point. Because this is
a partial coupling, certain quantities in the LP cannot be computed efficiently. We rewrite these
quantities in terms of marginal probabilities of smaller instances, and use recursion to solve this
issue. To control the evolution of relative errors, we need to find some new linear constraints that
can be computed efficiently and characterise the failure probability of the coupling process. These
constraints, together with our choice of the radius R, ensure that the relative error decay by a
constant factor each time. The description and analysis of our algorithm are given in Section 4.
For readers not familiar with Moitra’s approach, we also provide some heuristics and intuition
behind it in Section A.

Comparing with all previous instantiation of the LP-based approximate counting algorithm
[Moi19, GLLZ19, JPV21, WY24, HLQZ25], we do not write a polynomial-sized LP to solve. In-
stead, our LP is only of constant size, but we recursively construct polynomially many of them.
Technically, because each of our sub-instances has only constant size, we are not obliged to use
LP. (For example, we could write a quadratic system to solve.) We choose LP just for technical
convenience. Moreover, because the (partial) coupling we use the LP to simulate has not been
considered in this context before, we need to write a new set of constraints to certify this coupling.

The coupling in [CLMM23] establishes coupling independence for high-girth graphs when q ≥
∆+ 3. Thus our algorithm works in this setting, resulting in Theorem 5. To apply our algorithm
on general bounded degree graphs, we still need to establish coupling independence. To this end,
we show that contractive coupling for Markov chains (which is the main technique behind the rapid
mixing results of [CDM+19] and [CV24]) can be used to establish coupling independence. This
argument is given in Section 5.

2. Preliminaries

Let µ over [q]V be a Gibbs distribution on G = (V,E) with matrix AE and vector AV . Recall
that µ is defined by for any configuration σ ∈ [q]V ,

µ(σ) =
w(σ)

Z
, where w(σ) =

∏
{u,v}∈E

AE(σ(u), σ(v))
∏
v∈V

AV (σ(v)) and Z =
∑

τ∈[q]V
w(τ).

We call w(σ) the weight of σ and Z the partition function.
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For any subset S ⊆ V , we use subscript S to denote the marginal distribution, namely, for any
τ ∈ [q]S , µS(τ) :=

∑
τ ′∈[q]V \S µ(τ ∪ τ ′). When S = {v} is a singleton set, we may also write µv

instead of µ{v}.
Let σ ∈ [q]V \Λ be a partial configuration on V \ Λ, where σ is allowed to be infeasible, namely

we allow µV \Λ(σ) = 0. For any τ ∈ [q]V , define the conditional weight

wσ(τ) = 1τ(V \Λ)=σ ·
∏
v∈Λ

AV (τ(v))
∏

{u,v}∈E:u∈Λ∧v ̸∈Λ

AE(τ(u), σ(v))
∏

{u,v}∈E:u∈Λ∧v∈Λ

AE(τ(u), τ(v)).

Define the conditional distribution µσ over [q]V by for any τ ∈ [q]V ,

µσ(τ) =
wσ(τ)

Zσ
, where Zσ =

∑
τ∈[q]V

wσ(τ).(4)

The above definition works for all partial configurations σ. In particular, if σ is a feasible par-
tial configuration, then µσ is the distribution µ conditional on σ. Let µσ

S denote the marginal
distribution on S conditional on the partial configuration σ.

As mentioned before, when AE = J − I, where J is the all-1 matrix and I is the identity matrix,
and Av = 1 is the all-1 vector, µ is uniform over proper q-colourings, and Z is the number of them.
For technical purposes, we also need to consider list colourings later, where each v may have a list
Lv of available colours, and no edge can be monochromatic. This can also be modelled as a spin
system, with q being the total number of possible colours of all vertices, and Av encoding what
colours are available for v. Let µ be the uniform distribution over all proper colourings. Our list
colouring instances in fact come from µσ for some partial configuration σ. This is because fixing a
colour c at a vertex v is equivalent to removing the vertex v and removing c from the lists of all
neighbours of v. Note that if q −∆ ≥ k for some k, then for any list colouring instances obtained
this way, for any v, |Lv| − degG(v) ≥ k as well.

More generally, in this paper, we consider the permissive spin systems so that all µσ are well-
defined.

Definition 9. A spin system µ is permissive if for any Λ ⊆ V , any σ ∈ [q]Λ, Zσ > 0.

Remark. All spin systems with soft constraints (AE(i, j) > 0 and AV (i) > 0 for all i, j ∈ [q]) are
permissive. Many natural spin systems with hard constraints are also permissive. For example, the
hardcore model and any list colouring instance (G,L) such that |Lv| ≥ degG(v) + 1 for any v ∈ V
are permissive.

Note that in Theorem 9, σ is allowed to be infeasible, as wσ does not consider the weight
contributed from inside Λ. This allows µσ to be well-defined, even for infeasible σ. Our definition
of coupling independence, Theorem 2, indeed allows infeasible partial configurations. Essentially,
for any (feasible or infeasible) σ on Λ ⊂ V , only the values on the boundary of Λ matters for µσ,
and the values inside Λ do not.

On the other hand, for any partial configuration σ on Λ, if σ is locally feasible, then σ is also
globally feasible. Formally,∏

v∈Λ
AV (σ(v))

∏
{u,v}∈E:u∈Λ∧v∈Λ

AE(σ(u), σ(v)) > 0 =⇒ µΛ(σ) > 0.(5)

We use supp(µσ
S) to denote the support of µσ

S . Formally,

supp(µσ
S) :=

{
τ ∈ [q]S | µσ

S(τ) > 0
}
.

Note that by (5), the set supp(µσ
S) is easy to compute as we only need to consider local assignments.

Let us also observe that permissive systems always have a marginal lower bound.
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Observation 10. Let q, ∆, AE, and AV be constants. Then there is a constant b = bq,∆,AE ,AV
such

that for any G with maximum degree ∆, any permissive spin system (G, q,AE , AV ) is b-marginally
bounded.

Proof. Given a partial configuration σ on Λ and a vertex v ∈ V \ Λ, let S be the set of 2-hop
neighbours of v that is not in Λ. For any c ∈ supp(µσ

v ), we have that

µσ
v (c) =

∑
τ∈supp(µσ

S)

µσ
S(τ)µ

σ∪τ
v (c).

For any c ∈ supp(µσ
v ) and τ ∈ supp(µσ

S), as S is not adjacent to v and the system is permissive,
µσ∪τ
v (c) > 0. As both supp(µσ

S) and supp(µσ
v ) are finite, there is a minimum of µσ∪τ

v (c), say b, over
all choices of τ ∈ supp(µσ

S) and c ∈ supp(µσ
v ). Note that this b may depend on q, ∆, AE , and AV .

It implies that

µσ
v (c) ≥ b

∑
τ∈supp(µσ

S)

µσ
S(τ) = b. □

3. Total influence decay

Given a graph G = (V,E), let Bℓ(v) denote the ball of radius ℓ centered at v. Namely, Bℓ(v) :=
{u | u ∈ V, distG(u, v) ≤ ℓ}, where the distance is graph distance in G. Let Sℓ(v) denote the
sphere of radius ℓ centered at v, namely, Sℓ(v) := {u | u ∈ V, distG(u, v) = ℓ}. In other words,
Sℓ+1(v) = ∂Bℓ(v), where ∂Bℓ(v) denote the out-boundary of Bℓ(v).

Definition 11 (Total influence decay). Let δ : N → R be a non-increasing function. We say a
Gibbs distribution µ satisfies total influence decay with rate δ if for any two partial configurations
σ and τ on Λ ⊆ V such that they disagree only on some v ∈ Λ, for any integer ℓ > 0,∑

u∈Sℓ(v)

dTV(µ
σ
u, µ

τ
u) ≤ δ(ℓ).(6)

The influence defined in (6) was often used in recent works for spectral independence [ALO20,
FGYZ22, CGSV21]. The definition in (6) should be distinguished from the definition of Dobrushin’s
influence in (3). The following theorem shows that the coupling independence implies total influence
decay.

Theorem 12. Suppose µ satisfies C-coupling independence. Let R > 0 be an integer. For any
two partial configurations σ and τ on Λ ⊆ V such that they disagree only on some v ∈ Λ, there is
a coupling C between µσ and µτ such that

E(σ′,τ ′)∼C

 ∑
u∈SR(v)

1σ′(u) ̸=τ ′(u)

 ≤ 2C

(
1

2

)⌈ R
2C
⌉
.

As a consequence, µ satisfies total influence decay with rate δ(x) = 2C · 2−⌈
x
2C
⌉.

Proof. Let T := ⌈ R
2C ⌉. We construct C via a T -step coupling procedure as follows. The whole

procedure will generate a random pair X,Y ∈ [q]V such that X ∼ µσ and Y ∼ µτ .
Step 1. Since µ satisfies C-coupling independence, there exists a coupling C1 of µσ and µτ such

that
∑

w∈V Pr(σ′,τ ′)∼C1 [σ
′(w) ̸= τ ′(w)] ≤ C. By an averaging argument, there exists an integer

1 ≤ ℓ(1) ≤ 2C such that the expected disagreement on the sphere Sℓ(1)(v) is at most C
2C = 1

2 , i.e.,∑
w∈Sℓ(1)(v)

Pr(σ′,τ ′)∼C1 [σ
′(w) ̸= τ ′(w)] ≤ 1

2
.
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If there are multiple choices of such ℓ(1), pick the smallest one. Denote B1 = Bℓ(1)(v) and S1 =
Sℓ(1)(v). We use the coupling C1 to draw a pair of random configurations and project them to the
set D = B1 \ Λ. We then extend σ, τ on Λ to a pair of random configurations X,Y on Λ ∪ B1.
Formally, X(Λ) = σ, Y (Λ) = τ , and

X(D) ∼ µσ
D, Y (D) ∼ µτ

D, and E[dist{X(S1), Y (S1)}] ≤
1

2
.(7)

Step k for 1 < k < T . Suppose we have obtained a pair of partial configurations X and Y
on Bk−1 ∪ Λ, where Bk−1 = Bℓ(k−1)(v) and ℓ(k − 1) ≥ 1 is an integer. Next we extend the two
configurations X,Y onto a larger set Bk ∪ Λ, where Bk = Bℓ(k)(v) for some ℓ(k) > ℓ(k − 1). Let
H = V \ Bk−1 be the set of vertices outside the ball Bk−1. Let ΛH = Λ ∩ H. By conditional
independence, µX

H = µ
X(ΛH∪Sk−1)
H and µY

H = µ
Y (ΛH∪Sk−1)
H . The two pinnings X(ΛH ∪ Sk−1) and

Y (ΛH∪Sk−1) can disagree only at the set Sk−1 = Sℓ(k−1)(v), the sphere of radius ℓ(k−1) centered at
v. Suppose the disagreements of X(Sk−1) and Y (Sk−1) can be listed as v1, v2, . . . , vm ∈ Sk−1, where
m = dist{X(Sk−1), Y (Sk−1)}. We can define a sequence of pinnings σ0, σ1, . . . , σm on Sk−1 ∪ ΛH

such that σ0 = X(ΛH ∪ Sk−1), σi is obtained from σi−1 by changing the value at vi from X(vi) to
Y (vi), and so σm = Y (ΛH ∪ Sk−1). By the coupling independence, for any i ∈ [m], one can couple
µσi and µσi−1 such that the expected hamming distance is at most C.4 By the triangle inequality
of the Wasserstein distance, we can couple µσ0 and µσm so that the expected Hamming distance is
at most mC. By projecting this coupling into the subset H, we obtain a coupling Ck of µX

H = µσ0
H

and µY
H = µσm

H such that E(σk,τk)∼Ck [dist{σk, τk}] ≤ mC. Again, by an averaging argument, there
exists ℓ(k) such that ℓ(k − 1) + 1 ≤ ℓ(k) ≤ ℓ(k − 1) + 2C and∑

w∈Sℓ(k)(v)

Pr(σk,τk)∼Ck [σk(w) ≠ τk(w)] ≤
mC

2C
=

m

2
=

dist{X(Sk−1), Y (Sk−1)}
2

.

If there are multiple choices of such ℓ(k), pick the smallest one. Let Bk = Bℓ(k)(v) and Sk =
Sℓ(k)(v). Similar to Step 1, we use the coupling Ck to draw a pair of configurations (σk, τk). Let
Dk = Bk \ (Bk−1 ∪ Λ). We further extend X,Y to the set Dk by setting X(Dk) = σk(Dk) and
Y (Dk) = τk(Dk). We have

X(Dk) ∼ µ
X(Bk−1∪Λ)
Dk

, Y (Dk) ∼ µ
Y (Bk−1∪Λ)
Dk

.

In other words, X and Y are now partial configurations on set Bk−1 ∪ Λ ∪Dk = Bk ∪ Λ. It holds
that

E[dist{X(Sk), Y (Sk)} | X(Bk−1 ∪ Λ), Y (Bk−1 ∪ Λ), ℓ(k − 1)] ≤ dist{X(Sk−1), Y (Sk−1)}
2

.(8)

Step T . The last step is similar to the general step k. Assume X,Y are two fixed configurations
on BT−1 ∪Λ, where BT−1 = Bℓ(T−1)(v) and ℓ(T − 1) is a fixed integer. Let H = V \BT−1. Let CT
be the coupling obtained in the same way as the general step from the triangle inequality. We use
the coupling CT to sample a pair of configurations (σT , τT ). We then further extend X,Y to the
set DT = V \ (BT−1 ∪ Λ) by setting X(DT ) = σ′(DT ) and Y (DT ) = τ ′(DT ). We have

X(DT ) ∼ µ
X(BT−1∪Λ)
DT

, Y (DT ) ∼ µ
Y (BT−1∪Λ)
DT

.

Note that ℓ(T − 1) ≤ 2C(T − 1) = 2C(⌈ R
2C ⌉ − 1) < R, so that SR(v) ⊆ H. It holds that

E[dist{X(SR(v)), Y (SR(v))} | X(BT−1 ∪ Λ), Y (BT−1 ∪ Λ), ℓ(T − 1)]

≤C · dist{X(ST−1), Y (ST−1)}.(9)

4Two pinnings σi, σi−1 can be improper partial configurations but conditional distributions µσi and µσi−1 are
defined in (4). The coupling independence condition holds for all possible pinnings including infeasible ones.
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The above inequality holds because the expected disagreement on SR(v) is at most the total ex-
pected disagreement produced by CT , which is at most C · dist{X(ST−1), Y (ST−1)}.

We now show that the above procedure is a valid coupling between µσ and µτ . The procedure can
be viewed as follows. Initially, X and Y are partial configurations on D0 = Λ with X = σ and Y = τ .
In the k-th step, we extend X,Y to a new set Dk. Hence X,Y are partial configurations on ∪i≤kDi

after the k-th step. The tricky part here is that all D1, D2, . . . , DT are random variables. The
following property is the key to proving the correctness of the coupling: for every step 1 ≤ k ≤ T ,
the coupling satisfies

• given (Di)i<k, X(D0:k−1), and Y (D0:k−1), the set Dk is fixed, where D0:k−1 = ∪0≤i≤k−1Di;
• X(Dk) ∼ µ

X(D0:k−1)
Dk

and Y (Dk) ∼ µ
Y (D0:k−1)
Dk

.
This property is easy to verify from the construction of X and Y .

Next we show X ∼ µσ. A similar proof shows that Y ∼ µτ . In every step, we sample X(Dk) and
Y (Dk) jointly from a coupling. This can be viewed as a two-step process. We first sample X(Dk),
and given the value of X(Dk), the coupling specifies a conditional distribution of Y (Dk). Then we
sample Y (Dk) from this conditional distribution using independent randomness Rk (e.g., Rk can
be a uniform real number in (0, 1)). We fix the randomness R1,R2, . . . ,RT . For any configuration
ρ ∈ [q]V , we compute the probability that X = ρ. Initially, D0 = Λ, X(D0) = σ and Y (D0) = τ .
Hence, X = ρ only if ρ(Λ) = σ. In the first step, by the property above, D1 is fixed, and X = ρ

implies that X(D1) = ρ(D1), which happens with probability µ
ρ(D0)
D1

(ρ(D1)). Also, Y (D1) is fixed
because X(D1) = ρ(D1) andR1 is fixed. By induction, in the k-th step, Dk is fixed, X(Dk) = ρ(Dk)

with probability µ
ρ(D0:k−1)
Dk

(ρ(Dk)), and Y (Dk) is fixed by X(Dk) and Rk. By the chain rule,

Pr[X = ρ | R1,R2, . . . ,RT ] = 1ρ(Λ)=σ ·
T∏

k=1

µ
ρ(D0:k−1)
Dk

(ρ(Dk)) = µσ(ρ).

Taking expectation over R1,R2, . . . ,RT in both sides shows that X ∼ µσ.
Finally, using (7), (8), and (9), the expected disagreement on SR(v) can be bounded as

E[dist{X(SR(v)), Y (SR(v))}] ≤ C E[dist{X(ST−1), Y (ST−1)}]

≤ C

2T−2
E[dist{X(S1), Y (S1)}]

≤ C

2T−1
.

The total influence decay consequence follows from the coupling inequality. □

4. A recursive marginal estimator

We show Theorem 4 in this section. As in the condition of Theorem 4, throughout the section, we
assume that the underlying graphs G for the Gibbs distributions have constant maximum degree ∆.
Moreover, we assume a marginal lower bound 0 < b < 1 as in Theorem 3, and exponential total
influence decay, namely the bound in (6) with δ(ℓ) = exp(−Ω(ℓ)).

Our algorithm requires a parameter R, the radius at which we couple vertices. For an integer
k ≥ 0, let H(k) be the harmonic sum defined by H(k) :=

∑k
i=1

1
i with the convention that H(0) = 0.

We choose a sufficiently large integer R such that

30δ(R)H(∆R) < b4.(10)

By Theorem 12, we can take δ(R) = 2C2−⌈
R
2C
⌉, where C is the coupling independence constant.

Since H(∆R) = O(R log∆), some R = O(C(log b−1 + logC + log log∆)) suffices.
9



In Section 4.1, we introduce an LP based algorithm that takes as inputs estimated ratios of
marginal probabilities of some partial configurations, and outputs an estimation of the marginal
ratio of a particular vertex, with a better approximation guarantee. The error analysis of this
algorithm is given in Section 4.2. These input ratios can be written as the product of two ratios,
each of which is regarding a single vertex. Thus, we have a recursive algorithm to estimate the
marginal probability, described in Section 4.3.

4.1. Marginal estimation via linear programming. Suppose we want to estimate the mar-
ginal probability of some vertex u. It is equivalent to approximate the ratio between marginals
where any two different values are assigned to u. The basic building block of our algorithm is an
estimator which takes estimations of marginal ratios of certain partial configurations, and outputs
an estimation of the marginal ratio for u with a better approximation guarantee. We construct a
linear program, similar to the one used by Moitra [Moi19], to certify a coupling between assigning
u to two different values. However, the “coupling” we choose is different, and is inspired by the one
used by Chen, Liu, Mani, and Moitra [CLMM23]. For readers not familiar with Moitra’s approach,
we provide some heuristics and intuition behind it in Section A.

Given two partial configurations σ and τ on Λ ⊆ V which differ at only one vertex u ∈ Λ, we
want to couple µσ and µτ by coupling vertices in SR(u) = ∂BR(u) for some radius R > 0. We
choose a vertex v from SR(u) uniformly at random and couple it optimally (in the sense of TV
distance) between its two marginal distributions. If the coupling failed, we immediately stop the
whole process, and otherwise we continue to couple the next randomly chosen vertex. The process
also ends when all of SR(u) has been considered. One may have noticed that this is not a complete
coupling, but rather a partial one. Formally it is described in Algorithm 1. For σ ∈ [q]Λ and v ̸∈ Λ,
the notation σv←c means a partial configuration which agrees with σ on Λ and assigns c to v.

Algorithm 1: The partial coupling
1 Partial-Coupling (σ, τ);

Input : Partial configurations σ, τ ∈ [q]Λ that only differ at a vertex u ∈ Λ
Output : A pair of partial configurations σ′ and τ ′ over some Λ′ ⊇ Λ

2 σ′ ← σ, τ ′ ← τ ;
3 while SR(u) \ Λ ̸= ∅ do
4 Choose v from SR(u) \ Λ uniformly at random;
5 Draw (c1, c2) from the optimal coupling between µσ′

v and µτ ′
v ;

6 σ′ ← σ′v←c1 , τ ′ ← τ ′v←c2 ;
7 Λ← Λ ∪ {v};
8 if c1 ̸= c2 then
9 return (σ′, τ ′);

10 return (σ′, τ ′);

Note that our algorithm does not really need to construct the partial coupling described in
Algorithm 1. Instead, we construct linear programs that mimic the coupling process. We start by
defining the coupling tree T with root rt. This tree essentially enumerates all possible intermediate
states of Algorithm 1. Formally the coupling tree is constructed by Algorithm 2.

Denote by V(T ) the set of nodes of T and L(T ) the set of leaves. Each node w of the tree
represents an intermediate state of Algorithm 1. Its label (σ, τ,Λ, D) represents the two partial
configurations σ and τ , the pinned vertex set Λ, and the set D of differing vertices other than the
initial disagreement u. In fact, D can only be either some vertex v or the empty set ∅, because
Algorithm 1 stops whenever the first disagreement other than u is introduced. Thus, if D ̸= ∅, then

10



Algorithm 2: Construction of the coupling tree
1 Coupling-Tree (σ, τ);

Input : Partial configurations σ, τ ∈ [q]Λ that only differ at a vertex u ∈ Λ
Output : A coupling tree T with its root rt
Parameter : A positive integer R

2 Construct a tree T containing a single root node rt with label(rt)← (σ, τ,Λ, ∅) ;
3 for v ∈ SR(u) \ Λ do
4 for (c1, c2) ∈ supp(µσ

v )× supp(µτ
v) do

5 if c1 = c2 = c then
6 (Tv,c, rtv,c)← Coupling-Tree (σv←c, τv←c);
7 Append Tv,c to rt by connecting rt and rtv,c;
8 else
9 Introduce a leaf node w with label(w)← (σv←c1 , τv←c2 ,Λ ∪ {v}, v);

10 Connect rt and w;

11 return (T , rt);

the node must be a leaf. We call a leaf node good if its D = ∅. Namely, denote by GL(T ) = {w ∈
L(T ) | label(w) = (∗, ∗, ∗, ∅)} the set of good leaves, where ∗ denotes any possible value at that
position. The rest of the leaves BL(T ) = L(T ) \ GL(T ) are bad. Moreover, denote by C(w) the set
of children of a node w.

The linear program is introduced in Algorithm 3. Again, some intuition and heuristics for
this approach are given in Section A. For each w ∈ V(T ) whose label is (σw, τw,Λw, ∗), we call
rw := µΛw (σw)

µΛw (τw) its marginal ratio. Our goal is to estimate the marginal ratio r = rrt =
µΛ(σ)
µΛ(τ)

for the
root of the coupling tree. We do so by combining the LP with a binary search. For some guessed
upper and lower bounds r+ and r− for r, ideally, we want to construst an LP such that it is feasible
if and only if r− ≤ r ≤ r+. Because of the presence of errors, eventually, we will only establish an
approximation version of this claim.

The LP contains two variables xw and yw for each node w ∈ V(T ) of the coupling tree. Intuitively,
xw represents zwµΛ(σ)

µΛw (σw) and yw represents zwµΛ(τ)
µΛw (τw) , where zw is the probability that the coupling

reaches the node w. The four types of constraints in Algorithm 3 can be intuitively interpreted
when xw = zwµΛ(σ)

µΛw (σw) and yw = zwµΛ(τ)
µΛw (τw) as follows. We only explain the intuitions for xw, and the

same applies to yw.
(1) Validity constraints: When w = rt is the root, we have that zw = 1 and xw = µΛ(σ)

µΛ(σ)
= 1.

(2) Recursive constraints: Given a node w with label (σw, τw,Λw, ∅), fix a vertex v ∈ SR(u)\Λw

and a value c ∈ supp(µσw

v ). We verify the following identity from the coupling process∑
w′∈C(w):

label(w′)=(σw
v←c,∗,∗,∗)

xw′

xw
=

1

µσw

v (c)

∑
w′∈C(w):

label(w′)=(σw
v←c,∗,∗,∗)

zw′

zw
=

1

ℓ(w)
,(11)

where ℓ(w) := |SR(u) \ Λw| for a node w ∈ V(T ) with label (∗, ∗,Λw, ∗). The first equality
holds because xw = zwµΛ(σ)

µΛw (σw) . The second equality holds because zw′
zw

is the probability of
the coupling reaches w′ from w. Thus, the summation of zw′

zw
is the probability that the

vertex v is chosen in this step of the coupling, and is given the value c on σ’s side. This
happens with probability µσw

v (c)
ℓ(w) .
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(3) Leaf constraints: The ratio xw
yw

= µΛ(σ)
µΛ(τ)

· µΛw (τw)
µΛw (σw) is a product of two ratios. Assume

Rw ≈ µΛw (σw)
µΛw (τw) and r− ≤ µΛ(σ)

µΛ(τ)
≤ r+. We have r−R

−1
w ≲ xw

yw
≲ r+R

−1
w . Note that for

good leaves, the ratio Rw can be efficiently computed and the constraint contains no error.
However, for bad leaves, we have to settle on an approximate version.

(4) Overflow constraints: These control the probability of going to a bad leaf:∑
w′∈C(w)∩BL(T )

xw′

xw
=

1

µσw

v (c)

∑
w′∈C(w)∩BL(T )

zw′

zw
≤ Pr[ coupling goes from w to a bad leaf ]

b
,

where the last inequality follows from the marginal lower bound µσw

v (c) ≥ b and the proba-
bility that w goes to a bad leaf is at most δ(R)

ℓ(w) due to the influence bound. Here we need to
use b−1 to upper bound µσw

v (c)−1 because the latter is a hard to compute quantity. Because
of the inequality above, we set the parameter η to

η := b−1δ(R) where R is defined in (10).(12)

Theorem 15 formally verifies that xw = zwµΛ(σ)
µΛw (σw) and yw = zwµΛ(τ)

µΛw (τw) do satisfy all the constraints.
When applying Moitra’s method [Moi19], it is standard to choose these variables and constraints
(1) and (2), as well as the constraints for good leaves where there is no error. On the other hand,
typical applications of Moitra’s method involve some local uniformity constraints to control the
probability of reaching bad leaves, and put no constraints on the bad leaves themselves. Local
uniformity no longer holds in our setting. Instead, we include the overflow constraints to bound
the effect of bad leaves. These constraints can only reduce bad leaves’ effects on the overall error
by some constant factor.5 Thus, we also introduce the leaf constraints on the bad leaves. Their
marginal ratios are involved in these constraints, which we recursively solve. Overall, the error in
our algorithm decreases by a constant factor in each iteration of the recursive call.

In other words, to construct our LP, we need the coupling tree T , as well as the marginal ratios
for all the leaf nodes of T . The ratios for good leaves can be efficiently computed, and the ratios
for bad leaves are recursively fed and are denoted R. The LP is combined with a binary search to
find an estimate to r, and the other two inputs r− and r+ are our current guesses of the upper and
lower bounds of r, which we will keep adjusting during the binary search. When R has no error,
a solution of this LP is guaranteed to exist for r− = r+. However, as our R may contain errors,
we can only rely on binary search to reduce the gap r+ − r− to an appropriate level, rather than
require r+ = r−.

With the coupling tree T for (σ, τ) (in Algorithm 2) and the linear program (in Algorithm 3) in
hand, we then estimate the marginal ratio r = µΛ(σ)

µΛ(τ)
by the binary search mentioned above. We

formally state this binary search in Algorithm 4.
The following bound is the main guarantee of the vector R.

Condition 13 (ε-error bound). Let ε > 0 be a parameter. Let µ be a Gibbs distribution on [q]V .
Let T be the coupling tree of (σ, τ), where σ, τ ∈ [q]Λ are two partial configurations on Λ ⊆ V that
only differ at some vertex u ∈ Λ. Then, let R ∈ RL(T )≥0 be a vector defined on the leaves of T . For
any leaf node w ∈ L(T ) with label(w) = (σw, τw,Λw, ∗),

• if w ∈ GL(T ), Rw = µΛw (σw)
µΛw (τw) ;

5A sharp-eyed reader may have noticed that we can reduce the effect of bad leaves to polynomially small by setting
the radius R to Ω(log n). This is correct, but doing so would increase the size of SR(u) to polynomially large, and
the overall LP would be exponentially large.
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Algorithm 3: The linear program
1 LP (r−, r+, T ,R, ε);

Input : Positive real values r− ≤ r+, a coupling tree T , marginal ratio estimates
R ∈ RL(T )>0 , and their error margin ε

Output : A Boolean value, indicating whether the LP has a feasible solution
Parameter : η > 0

2 return true if and only if the following LP has a feasible solution
(1) Validity constraints:

∀w ∈ V(T ), xw, yw ≥ 0

xrt = yrt = 1

(2) Recursive constraints:
For any non-leaf node w with label(w) = (σw, τw,Λw, ∅), and v ∈ SR(u) \ Λw,

∀c ∈ supp(µσw

v ),
∑

w′∈C(w):
label(w′)=(σw

v←c,∗,∗,∗)

xw′ =
xw
ℓ(w)

∀c ∈ supp(µτw

v ),
∑

w′∈C(w):
label(w′)=(∗,τwv←c,∗,∗)

yw′ =
yw
ℓ(w)

(3) Leaf constraints:
∀w ∈ GL(T ), r−R

−1
w yw ≤ xw ≤ r+R

−1
w yw

∀w ∈ BL(T ), r−(1 + ε)−1R−1w yw ≤ xw ≤ r+(1 + ε)R−1w yw

(4) Overflow constraints: let η := b−1δ(R), where R is defined in (10),

∀w ∈ V(T ) \ L(T ),
∑

w′∈C(w)∩BL(T )

xw′ ≤
η

ℓ(w)
xw

∀w ∈ V(T ) \ L(T ),
∑

w′∈C(w)∩BL(T )

yw′ ≤
η

ℓ(w)
yw

• if w ∈ BL(T ), it holds that

(1 + ε)−1 ≤ Rw ·
µΛw(τw)

µΛw(σw)
≤ (1 + ε).

When Theorem 13 holds, we say R satisfies the ε-error bound.
Our marginal estimator (Algorithm 4) takes (T ,R, ε) as input and outputs an estimate r̂ of

r. The key property of this estimator is that if R satisfies the ε-error bound, then the error of r̂
shrinks by a constant factor.
Lemma 14. Let (T ,R, ε) be the input of Algorithm 4 such that R satisfies the ε-error bound
(namely Theorem 13 holds) for some ε ≤ 3b−2. Then the output r̂ of Algorithm 4 satisfies

(1 + ε̂)−1 ≤ r̂

r
≤ 1 + ε̂,

where r = µΛ(σ)
µΛ(τ)

and ε̂ := 5b−2ηH(∆R) · ε.

Note that our choices of R in (10) and η in (12) are stronger than requiring 5b−2ηH(∆R) < 1.
This is because in the full algorithm, we need to rewrite each Rw into a product of two marginal
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Algorithm 4: Marginal estimation based on LP
1 Marginal-estimator (T ,R, ε)

Input : A coupling tree T with root rt, marginal ratio estimates R ∈ RL(T )>0 and their
error margin ε

Output : An estimate r̂
Parameters : An integer R > 0 and a real number η > 0

2 rlow ← b and rupp ← b−1;
3 ε̂← ηH(∆R) · ε;
4 while rupp > (1 + ε̂)2rlow do
5 Let m← (rupp + rlow)/2;
6 if both LP(rlow,m, T ,R, ε) and LP(m, rupp, T ,R, ε) are true then
7 return m;

// Assertion: otherwise either LP(rlow,m, T ,R, ε) or LP(m, rupp, T ,R, ε) is
true

8 if LP(rlow,m, T ,R, ε) is true then
9 rupp ← m;

10 else
11 rlow ← m;

12 return r̂ =
√
rlowrupp;

ratios so that the recursion can continue. Thus, at each recursion step, the error first increases
because of this product, and then shrinks by Theorem 14.

Theorem 14 is a direct consequence of the following two lemmas.

Lemma 15. Suppose Theorem 13 holds. If the input r− and r+ to Algorithm 3 satisfies r− ≤ r ≤
r+, then the LP is feasible.

Lemma 16. Suppose Theorem 13 holds with ε ≤ 3b−2. If Algorithm 3 returns true for parameters
r− and r+, then

(1 + ε̂)−1r− ≤ r ≤ (1 + ε̂)r+.

The proofs of Theorem 15 and Theorem 16 are deferred to the next section, Section 4.2.

Proof of Theorem 14. First suppose the binary search terminates early in Algorithm 4 of Algo-
rithm 4. In this case, both LP(rlow,m, T ,R, ε) and LP(m, rupp, T ,R, ε) return true. Theorem 16
implies that r ≤ (1 + ε̂)m and r ≥ (1 + ε̂)−1m. Thus m satisfies the desired approximation bound.

Otherwise, only one of the two LPs is feasible until the while loop ends. By induction r ∈
[rlow, rupp] throughout the while loop due to Theorem 15. The binary search exits the while loop
when rupp ≤ (1 + ε̂)2rlow. Thus the output satisfies the desired approximation bound. □

4.2. Error analysis of the LP. In this section, we prove Theorem 15 and Theorem 16.

Proof of Theorem 15. For each node w ∈ V(T ) with label(w) = (σw, τw,Λw, ∗), let zw be the
probability that Algorithm 1 reaches the node w in the coupling tree. Furthermore, let xw = zwµΛ(σ)

µΛw (σw)

and yw = zwµΛ(τ)
µΛw (τw) . It suffices to verify that (x,y) is a feasible solution to the LP. We verify the

four sets of constraints one by one.
• Validity constraints: it is obvious that xw, yw ≥ 0 and xrt = yrt = zrt = 1.
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• Recursive constraints: By symmetry, we only verify the first set. For each non-leaf node
w ∈ V(T ) with label(w) = (σw, τw,Λw, ∅), it holds that

∀v ∈ SR(u) \ Λw, c ∈ supp(µσw

v ),
∑

w′∈C(w):
label(w′)=(σw

v←c,∗,∗,∗)

zw′ = zw ·
1

ℓ(w)
·
µΛw∪{v}(σ

w
v←c)

µΛw(σw)
.

The left hand side is the total probability of reaching w′ ∈ C(w) whose first label is σw
v←c.

This can only happen by first reaching w, with probability zw, and randomly chosen v, with
probability 1

ℓ(w) . Then, as Algorithm 1 of Algorithm 1 is a valid coupling, the probability of

getting σw
v←c is µΛw∪{v}(σ

w
v←c)

µΛw (σw) . This is exactly the right hand side. The recursive constraints
then hold for xw = zwµΛ(σ)

µΛw (σw) .
• Leaf constraints: For each leaf node w ∈ L(T ) with label(w) = (σw, τw,Λw, ∗), we have

xw
yw

= r · µΛw(τw)

µΛw(σw)
.

By Theorem 13, the term µΛw (τw)
µΛw (σw) is either exactly R−1w (when w is a good leaf) or ap-

proximated by R−1w up to 1 + ε relative error (when w is bad). As r− ≤ r ≤ r+, the leaf
constraints hold.
• Overflow constraints: By symmetry, we only verify the first set. For each non-leaf node
w ∈ V(T ), ∑

w′∈C(w)∩BL(T )

zw′ ≤
bη

ℓ(w)
zw.(13)

This is because by Theorem 11, the probability that Algorithm 1 reveals a disagreement
is bounded by δ(R)

ℓ(w) = bη
ℓ(w) . Note that for any w′ ∈ C(w), Λw′ takes the form Λw ∪ {v} for

some v ∈ SR(u) \ Λw, and σw′ takes the form σw
v←c for some c ∈ supp(σw

v ). By Theorem 3,
the definition of the marginal lower bound b, we have

µΛw′ (σw′)

µΛw(σw)
=

µΛw∪{v}(σ
w
v←c)

µΛw(σw)
≥ b.

Therefore, by (13),∑
w′∈C(w)∩BL(T )

xw′ =
∑

w′∈C(w)∩BL(T )

zw′µΛ(σ)

µΛw′ (σw′)
≤ b−1

∑
w′∈C(w)∩BL(T )

zw′µΛ(σ)

µΛw(σw)

≤ η

ℓ(w)
· zwµΛ(σ)

µΛw(σw)
=

η

ℓ(w)
xw. □

From the proof above, one can observe that the overflow constraints are weaker than what the
values we plug in for xw and yw really satisfy. However, to write the exact constraints these values
satisfy, some marginal probabilities are required. There appears to be no efficient way to compute
these marginal probabilities. Thus, we choose to use the marginal lower bound to enforce a weaker
set of constraints.

Next we show Theorem 16. Suppose there exists a solution, say, (x,y), to the linear program.
For each 1 ≤ i ≤ ℓ where ℓ = |SR(u) \ Λ|, define

Γx,i :=
∑

w∈BL(T ): ℓ(w)=i−1

µΛw(σw)xw,
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where we use Λw and σw to denote the corresponding labels for w. Intuitively, Γx,i is the sum of
µΛw(σw)xw over all bad leaves of a certain depth. Furthermore, let

Γx,0 :=
∑

w∈GL(T )

µΛw(σw)xw.

Similarly, we define Γy,i for 0 ≤ i ≤ ℓ by replacing xw with yw. Before proving Theorem 16, we
derive some basic properties of Γ·,·.

Lemma 17. Assuming Theorem 13, the following holds:
(1)

∑ℓ
i=0 Γx,i = µΛ(σ) and

∑ℓ
i=0 Γy,i = µΛ(τ);

(2) For all 1 ≤ i ≤ ℓ, Γx,i ≤ η
i

∑i
j=0 Γx,j and Γy,i ≤ η

i

∑i
j=0 Γy,j;

(3) r−Γy,0 ≤ Γx,0 ≤ r+Γy,0;
(4) For any 1 ≤ i ≤ ℓ, (1 + ε)−2r−Γy,i ≤ Γx,i ≤ (1 + ε)2r+Γy,i.

Proof. Note that for any non-leaf node w ∈ V(T ),∑
w′∈C(w)

µΛw′

(
σw′
)
xw′ =

∑
v∈SR(u)\Λw

∑
c∈supp(µσw

v )

∑
w′∈C(w):

label(w′)=(σw
v←c,∗,∗,∗)

µΛw∪{v}(σ
w
v←c)xw′

=
∑

v∈SR(u)\Λw

∑
c∈supp(µσw

v )

µΛw∪{v}(σ
w
v←c)xw

ℓ(w)

=
∑

v∈SR(u)\Λw

µΛw(σw)xw
ℓ(w)

= µΛw(σw)xw,(14)

where the second equality follows from recursive constraints of x, and the fourth equality follows
from the definition of ℓ(w). Recursively applying (14) gives us that

ℓ∑
i=0

Γx,i = µΛ(σ)xrt = µΛ(σ),

as xrt is set to 1 by the LP. A similar proof works for Γy,·. The first item holds.
For any non-leaf node w ∈ V(T ) and w′ ∈ C(w), σw′ must have the form σw

vw′←cw′
for some

vw′ ∈ SR(u) \ Λw and cw′ ∈ supp(µσw

vw′
), and Λw′ must be Λw ∪ {vw′}. Thus,∑

w′∈C(w)∩BL(T )

µΛw∪{vw′}

(
σw
vw′←cw′

)
xw′ ≤

∑
w′∈C(w)∩BL(T )

µΛw(σw)xw′ ≤
η

ℓ(w)
µΛw(σw)xw,

where the first inequality follows from the fact that µΛw∪{v}(σ
w
v←c) ≤ µΛw(σw) for any v ∈ SR(u)\Λw

and c ∈ supp(µσw

v ), and the second inequality follows from the overflow constraints in Algorithm 3.
Also notice that ℓ(w) = ℓ(w′) + 1. It implies

Γx,i ≤
η

i

∑
w∈V(T )\L(T ): ℓ(w)=i

µΛw(σw)xw.

On the other hand, recursively applying (14), we have
i∑

j=0

Γx,j =
∑

w∈V(T )\L(T ): ℓ(w)=i

µΛw(σw)xw.

A similar proof works for Γy,·. The second item follows.
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For the last two items, by the leaf constraints and Theorem 13,

Γx,0 =
∑

w∈GL(T )

µΛw(σw)xw ≤
∑

w∈GL(T )

µΛw(σw)r+ ·
µΛw(τw)

µΛw(σw)
· yw = r+Γy,0;

Γx,i =
∑

w∈BL(T ): ℓ(w)=i−1

µΛw(σw)xw ≤ (1 + ε)2
∑

w∈BL(T ): ℓ(w)=i−1

µΛw(σw)r+ ·
µΛw(τw)

µSw(σw)
· yw

= (1 + ε)2r+Γy,i.

Similarly, Γx,0 ≥ r−Γy,0 and Γx,i ≥ (1 + ε)−2r−Γy,i. □

With the help of Theorem 17, we are now ready to give the proof of Theorem 16.

Proof of Theorem 16. Let ε > 0 be input to Algorithm 3. For 0 ≤ ℓ ≤ ∆R, define
εℓ := 5b−2ηH(ℓ) · ε,(15)

where the function H(ℓ) =
∑ℓ

i=1
1
i is the harmonic sum. Clearly εℓ is increasing in ℓ.

To prove Theorem 16, by Item (1) of Theorem 17, we only need to show that

(1 + εℓ)
−1r− ≤

∑ℓ
i=0 Γx,i∑ℓ
i=0 Γy,i

≤ (1 + εℓ)r+.(16)

We do an induction on ℓ. By Item (3) in Theorem 17, (16) holds for ℓ = 0. Now assume (16) holds
for ℓ− 1. We prove the upper bound first. By induction hypothesis,

ℓ−1∑
i=0

Γx,i ≤ (1 + εℓ−1)r+

ℓ−1∑
i=0

Γy,i

Furthermore, by Item (4) of Theorem 17, Γx,ℓ ≤ (1 + ϵ)2r+Γy,ℓ. Therefore,
ℓ∑

i=0

Γx,i ≤ r+

(
(1 + εℓ−1)

ℓ−1∑
i=0

Γy,i + (1 + ε)2Γy,ℓ

)
We claim that

(1 + εℓ−1)
ℓ−1∑
i=0

Γy,i + (1 + ε)2Γy,ℓ ≤ (1 + εℓ)
ℓ∑

i=0

Γy,i,

which would finish the proof. Our choice of parameters satisfy (10) and (12), which implies that

εℓ−1 < εℓ ≤ ηH(∆R)ε < ε.

Thus, the claim is equivalent to

Γy,ℓ ≤
εℓ − εℓ−1

2ε+ ε2 − εℓ

ℓ∑
i=0

Γy,i.

As ε ≤ 3b−2 and 0 < b < 1, 2ε+ ε2 − εℓ ≤ 5b−2ε, we just need to show

Γy,ℓ ≤
εℓ − εℓ−1
5b−2ε

ℓ∑
i=0

Γy,i =
η

ℓ

ℓ∑
i=0

Γy,i.

This is just Item (2) of Theorem 17.
The lower bound in (16) holds by a similar argument. Specifically, we can flip the role of x and

y and replace r+ with 1
r−

in the proof above to show the lower bound. □
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4.3. The full algorithm. With the Theorem 14 in hand, we are now able to construct the full
algorithm for Theorem 4, which is a recursive marginal estimator. It uses Algorithm 2 and Algo-
rithm 4 recursively and do a truncation at some depth k. Recall that we have set the parameter R
to satisfy (10) and η = b−1δ(R) in (12). Moreover, set the error parameter ζk of depth k to be

ζk :=

{
b−1, if k = 0;

2−k+1, if k ≥ 1.

The full algorithm is given in Algorithm 5.

Algorithm 5: Recursive marginal estimator
1 Recursive-estimator (σ, τ,Λ, k, u);

Input : Partial configurations σ, τ ∈ [q]Λ that only differ at a vertex u ∈ Λ, and
k ∈ N≥0

Output : An estimate r̃
Parameters : A positive integer R, a positive real η, and a function ζk for k ∈ N≥0

2 T ← Coupling-Tree(σ, τ);
3 if k = 0 then
4 return 1;
5 ℓ← |SR(u) \ Λ|;
6 if ℓ = 0 then
7 return r = µΛ(σ)

µΛ(τ)
, computed by brute force;

// Calculate the marginal ratio of the leaves in L(T ) via recursion
8 for w ∈ L(T ) do
9 (σw, τw,Λw, Dw)← label(w);

10 if w ∈ GL(T ) then
11 Rw ← the marginal ratio of r = µΛw (σw)

µΛw (τw) by brute force;
12 else
13 v ← Dw;
14 γw ← σw

u←τw(u);
15 X ← Recursive-estimator(σw, γw,Λw, k − 1, u);
16 Y ← Recursive-estimator(γw, τw,Λw, k − 1, v);
17 Rw ← X · Y ;

18 return Marginal-estimator (T ,R, 2ζk−1 + ζ2k−1);

Next we analyse the accuracy and the running time of Algorithm 5.

Lemma 18 (accuracy). Let r̃ be the estimation given by Algorithm 5, it holds that for k ≥ 0,

(1 + ζk)
−1 ≤ r̃/r ≤ 1 + ζk.

Proof. We prove by induction on k. When k = 0, Algorithm 5 simply returns 1. Let γ = σΛ\{u} be
the common configuration between σ and τ . Then

µΛ(σ)

µΛ(τ)
=

µΛ(σ)

µΛ\{u}(γ)
·
µΛ\{u}(γ)

µΛ(τ)
≤ b−1.

Similarly, µΛ(σ)
µΛ(τ)

≥ b. Since ζ0 = b−1, the base case holds.
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When k ≥ 1, by the induction hypothesis, we know that X and Y obtained at Algorithm 5 and
Algorithm 5 in Algorithm 5 are estimates to µΛw (σw)

µΛw (γw) and µΛw (γw)
µΛw (τw) , respectively, both with (1+ζk−1)

relative error. Note that here µΛw(γw) > 0. This is because γw is locally feasible by its definition,
and as the spin system is permissive (recall Theorem 9), by (5), γw is globally feasible. Since
Rw = X · Y , this implies that the relative error of Rw to µΛw (σw)

µΛw (τw) is

(1 + ζk−1)
2 = 1 + 2ζk−1 + ζ2k−1,

which means that R satisfies a (2ζk−1 + ζ2k−1)-error bound (recall Theorem 13).
For k = 1, (2ζ0 + ζ20 ) ≤ 3b−2 and thus Theorem 14 applies. The lemma holds because in this

case, by our choice of parameters in (10) and (12),

5b−2ηH(∆R)(2ζ0 + ζ20 ) ≤ 15b−4ηH(∆R) < 1 = ζ1.

For k ≥ 2, by (10) and (12), again,

5b−2ηH(∆R)(2ζk−1 + ζ2k−1) ≤ 15b−2ηH(∆R)ζk−1 < ζk−1/2 = ζk.

Thus the lemma follows from Theorem 14 as well. □

Now, we can finish the proof of Theorem 4.

Proof of Theorem 4. First note that the assumptions of the marginal lower bound and coupling
independence both hold with respect to an arbitrary conditioning. Thus, by standard self-reduction
[JVV86], approximating Z up to relative error 1 + ε can be reduced to approximate n marginal
probabilities up to relative error 1 + ε

n . The latter task then can be reduced to approximate q − 1
marginal ratios up to the same relative error 1 + ε

n , for which we use Algorithm 5. Suppose the
running time of Algorithm 5 with relative error 1 + ε

n is Tε/n, then the overall running time is
O(qnTε/n).

By Theorem 18, to achieve relative error 1+ ε
n , we only need to pick k = ⌈log2(n/ε)⌉+1. Denote

• by T an upper bound of the cost of Algorithm 2 and Algorithm 4 (i.e., the max cost of a
single recursive step);
• and by N maximum number of the nodes of the coupling tree.

Clearly the total cost of Algorithm 5 is bounded by T ·
∑k

i=0(2N)i ≤ 2T (2N)k. We claim that

T = O(k + log b−1) · poly(N) and N ≤ 2(q2∆R)∆
R
,

which implies

Tε/n ≤ 2T · (2N)k = log b−1(n/ε)O(∆R log(q∆R)).

By Theorem 12, we can take δ(R) = 2C2−⌈R/2C⌉, where C is the coupling independence parameter.
To satisfy (10), R = O(C(log b−1+logC+log log∆)) suffices. Thus the bound on the running time
in terms of b, C, q,∆ is

Tε/n =
(n
ε

)∆O(C(log b−1+logC+log log∆)) log q
.

To show the claim, for T , it is direct to see that it would take O(N) time to construct T in
Algorithm 2. Then, for Algorithm 4, the binary search step requires repeated calls to Algorithm 3
to estimate the marginal ratio. The number of calls is at most O(log n

bε) = O(k+log b−1). For each
call to Algorithm 3, it costs poly(N) time to construct and solve the LP.

For N , each step of the coupling tree has at most ∆R choices for the vertex v, and at most q2

choices for the colours on v. This continues for at most ∆R times, giving the bound on N . □
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For Theorem 5, the colouring instance in Theorem 5 has O∆,q(1)-CI, proved in [CLMM23, The-
orem 5.10 and Lemma 5.13].6 Thus Theorem 5 follows from Theorem 4 and Theorem 10. The
generic marginal lower bound from Theorem 10 can be improved using [GKM15, Lemma 3], which
implies b ≥ q−1

(
2
3

)∆ in this setting. Moreover, [CLMM23, Theorem 5.9 and Lemma 5.14] directly
establish influence decay for colourings in high-girth graphs. One can directly use them to set the
parameter R in (10) to obtain an algorithm with a better running time.

5. Low disagreement coupling from Markov chain coupling

In this section, we establish coupling independence from contractive coupling for Markov chains.
We note that previous results like [BCC+22, Liu21] have investigated how to establish spectral
independence by using contractive couplings of Markov chains. As a byproduct, their results already
implicitly suggested how to establish coupling independence via contractive coupling. However, the
proofs of previous works [BCC+22, Liu21] rely heavily on Stein’s method (see [BN19, RR19]), which
is analytical and arguably unintuitive. In this section, we first give a direct and simple proof that
contractive coupling can be used to establish coupling independence.

Given a Markov chain P and the current state X, we use P (X) to denote the next (random)
state of P . Also, recall the Wasserstein distance from Theorem 1.

Lemma 19. Let (Ω, d) be a finite metric space. Let C > 0 and δ ∈ (0, 1) be two parameters. Let
P,Q be Markov chains on Ω with stationary distribution µ and ν. Suppose the following conditions
are satisfied:

• (C-disagreement) for X ∈ supp(µ), Wd(P (X), Q(X)) ≤ C;
• (Q has δ-contraction) for X ∈ supp(µ), Y ∈ supp(ν), Wd(Q(X), Q(Y )) ≤ (1− δ) d(X,Y ).

Then, it holds that the W1-distance between µ, ν can be bounded by Wd(µ, ν) ≤ C/δ.

Proof. Let X,Y be sampled from µ and ν. Then we have P (X) ∼ µ and Q(Y ) ∼ ν, which implies
Wd(X,Y ) =Wd(P (X), Q(Y )) ≤ Wd(P (X), Q(X)) +Wd(Q(X), Q(Y ))

≤ C + (1− δ)Wd(X,Y ).

We finish the proof by rearranging terms. □
Remark. Note that P and Q in Theorem 19 are Markov chains on Ω. This does not require the
support of µ and ν to be exactly Ω. In fact, it is possible that supp(µ) ⊂ Ω or supp(ν) ⊂ Ω, and
states in Ω \ supp(µ) or Ω \ supp(ν) are transient.

To establish coupling independence, one could apply Theorem 19 with µσ and µτ where σ and
τ are two partial configurations such that dist(µ, ν) = 1, as in the definition of Theorem 2. The
first condition typically holds for any Markov chain with local moves. This is because all new
disagreement in one step must be near where σ and τ disagrees. The second condition is implied by
the existence of contractive couplings, and there are plenty available in the literature. We will see
Theorem 19 in action in the applications next. In fact, we will design an intermediate distribution
and use triangle inequality in the next section.

5.1. Application: coupling independence for proper colourings. In this section we show
coupling independence for colourings using Theorem 19.

Theorem 20. Let G = (V,E) be a graph with maximum degree ∆. Let µ be the uniform distribution
over q-colouring of G. If either of the following holds:

• ∆ ≥ 125, q ≥ 1.809∆; or
6Theorem 5.10 in [CLMM23] is stated for spectral independnce. However, [CLMM23, Lemma 5.13] proved the

stronger coupling independence result.
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• ∆ ≥ 3, q ≥ (11/6− ϵ0)∆ for some fixed parameter ϵ0 ≈ 10−5,
then µ satisfies O∆,q(1)-coupling independence. Moreover, the CI constant is poly(q∆).

To apply Theorem 19, we consider flip dynamics, for which contractive couplings are known
under the conditions of Theorem 20 [CDM+19, CV24]. In fact, we need to consider the conditional
distribution µσ for some (not necessarily proper) partial colouring σ on Λ ⊂ V . As mentioned in
Section 2, the distribution µσ is the same as the uniform distribution over a list colouring instance,
obtained by removing Λ and letting Lv = [q] \ {σ(u) | u ∈ Λ ∩NG(v)}. Note that if q ≥ (1 + α)∆
for some α > 0, then for any list colouring instance obtained this way, |Lv| − degG(v) ≥ α∆. Also,
as long as q ≥ ∆+ 1, even if σ is not proper, the induced list colouring instance still has solutions.
Namely the system is permissive.

We define the flip dynamics for list colouring instances obtained this way. Let the remaining
graph be G = (V,E) and {Lv}v∈V be the lists. Notice Lv ⊆ [q] for all v ∈ V . Let X be a
(not necessarily proper) colouring. We say a path w1 − w2 − · · · − wℓ is an (X(w1), c)-alternating
path from w1 to wℓ if for all i, we have X(wi) ⊆ {X(w1), c} and X(wi) ̸= X(wi+1). The Kempe
component (or Kempe chain) for X, a vertex v ∈ V , and a colour c ∈ [q] is defined by:

SX(v, c) := {u ∈ V | there is a (X(v), c)-alternating path from v to u} .
Moreover, let SX(v,X(v)) := ∅. Let {pℓ}ℓ≥1 be some parameters. Given a colouring X, the flip
dynamics updates X to X ′ as follows:

(1) pick a vertex v ∈ V and a colour c ∈ [q] uniformly at random;
(2) let S = SX(v, c) and ℓ = |S|;
(3) if the colouring on S can be flipped, do so with probability pℓ/ℓ to obtain X ′;
(4) otherwise, let X ′ = X.

By flipping, we mean changing the colours of all c-coloured vertices in S to X(v) and change the
colours of all X(v)-coloured vertices in S to c. Note that the new colour may not be available in the
lists of corresponding vertices. In that case, we simply let X ′ = X. Note that a Kempe component
of size ℓ is flipped with probability at most pℓ

qn . Given a list colouring instance (G,L), the above
transition rule is defined for all X ∈ [q]V even if X is improper for the list colouring instance (G,L).

Flip dynamics was first considered by Vigoda [Vig00], who designed a set of parameters {pℓ}ℓ≥1
and a contractive coupling with respect to the Hamming distance when q > (11/6)∆. As a con-
sequence, the flip dynamics is rapidly mixing. Later, Chen, Delcourt, Moitra, Perarnau and Pos-
tle [CDM+19] improved the rapid mixing regime to q ≥ (11/6 − ϵ0)∆ for some ϵ0 ≈ 10−5. They
showed that a contractive coupling exists for the flip dynamics with some different {pℓ}ℓ≥1 by
considering either variable length coupling with Hamming distance or using an alternative metric.
Very recently, Carlson and Vigoda [CV24] showed that if ∆ ≥ 125 and q ≥ 1.809∆ (note that
1.809 < 11/6− ϵ0), there is another set of {pℓ}ℓ≥1 ensuring contractive coupling, by considering a
more refined metric.

These alternative metrics can be related to the Hamming distance. Given the metric space
(Ω, d), we say that the metric d is α-equivalent (to the Hamming distance) for some α ≥ 1, if for
all x, y ∈ Ω, it holds that

α−1 dist {x, y} ≤ d {x, y} ≤ α dist {x, y} .(17)
All metrics mentioned above are in fact 2-equivalent.

Moreover, what we really consider is list colouring instances. One can verify (see [CV24, Theorem
4.12 and Section 4.6], [CDM+19, Section 6 and Appendix E], and [BCC+22, Lemma 4.12]) that
the aforementioned contractive couplings extend to list colourings as well, summarised as follows.

Proposition 21 ([CV24]). Let ∆ ≥ 125 and q be two integers. There exists a sequence of param-
eters {pℓ}ℓ≥0 satisfying pi = 0 for all i > 6 such the the following holds. Given a list colouring

21



instance (G,L) such that for any v ∈ V , Lv ⊆ [q] and |Lv|−degG(v) ∈ [0.809∆, 5/6∆], let Ω ⊆ [q]V

denote the set of proper list colourings for (G,L), there is a 2-equivalent metric d on Ω such that the
flip dynamics P with {pℓ}ℓ≥1 satisfies the following: for any two proper list colourings X,Y ∈ Ω,

Wd(P (X), P (Y )) ≤
(
1− 10−5

nq

)
d(X,Y ),(18)

where n is the number of vertices in G.

Proposition 22 ([CDM+19]). Let ∆ ≥ 3 and q be two integers, and ϵ0 ≈ 10−5 > 0 be a constant.
There exists a sequence of parameters {pℓ}ℓ≥0 satisfying pi = 0 for all i > 6 such the the following
holds. Given a list colouring instance (G,L) such that for any v ∈ V , Lv ⊆ [q] and |Lv|−degG(v) ≥
(5/6− ε0)∆, let Ω ⊆ [q]V denote the set of proper list colourings for (G,L), there is a 2-equivalent
metric d on Ω such that the flip dynamics P with {pℓ}ℓ≥1 satisfies the following: for any two proper
colourings X,Y ∈ Ω,

Wd(P (X), P (Y )) ≤
(
1− 10−9

nq

)
d(X,Y ),(19)

where n is the number of vertices in G.

Remark (Domains of colourings). Given a list colouring instance (G,L), let Ω = supp(µ) = {σ |
σ ∈ [q]V and σ is a proper list colouring for (G,L)}, where µ denotes the uniform distribution over
all proper list colourings. In Theorem 21 and Theorem 22, the metric d is defined over Ω and
the contraction results in (18) and (19) hold for all X,Y ∈ Ω, which is sufficient for our proof.
We remark that [CDM+19, CV24] actually proved stronger results, their metric is defined over a
superset of Ω and the contraction results holds even for X,Y beyond Ω, because they both used
path coupling [BD97] which requires them to prove contraction even for improper list colourings.

Note that in Theorem 21 and Theorem 22, we state the results in terms of W1-distance. This is
implied by the contractive couplings from [CV24] and [CDM+19]. More precisely, they show that for
any X,Y ∈ Ω, there exists a coupling of P (X), P (Y ) such that E[d(P (X), P (Y ))] ≤ (1− C

nq )d(X,Y ),
where C = 10−5 or 10−9 is the constant in (18) and (19).

Now we are ready to prove Theorem 20.

Proof of Theorem 20. Let σ and τ be two (not necessarily proper) partial colourings on Λ ⊆ V
such that they differ at only v. Let µ denote the unifrom distribution over all proper q-colurings
in G = (V,E). We goal is to bound W(µσ, µτ ) to establish the CI for µ.

Let (Gσ, Lσ) and (Gτ , Lτ ) be the two list colouring instances induced by σ and τ . Note that
Gσ = Gτ and Lσ(u) ̸= Lτ (u) only if u ∈ N(v), where N(v) is the set of neighbours of v in G.
We introduce a middle list colouring instance (G′, L′) such that G′ = Gσ = Gτ = (V ′, E′), where
V ′ = V \Λ, and for all u ∈ V ′ \N(v), L′(u) = Lσ(u) = Lτ (u) and for all u ∈ V ′∩N(v), L′(u) = [q].
Note that σ and τ differ only at one vertex v. We use the following bound

W(µσ, µτ ) = 1 +W(µσ
V ′ , µ

τ
V ′) ≤ 1 +W(µσ

V ′ , µ
′) +W(µ′, µτ

V ′),(20)
where µ′ is the uniform distribution for list colouring (G′, L′).

We show how to bound W(µσ
V ′ , µ

′). The bound for W(µ′, µτ
V ′) can be obtained from the same

proof. Let the parameters {pα}α≥1 and the metric d be the same as in either Theorem 21 or
Theorem 22 for the list colouring (G′, L′). Specifically, if we assume the first condition in Theo-
rem 20, we use Theorem 21, otherwise, we use Theorem 22. The space Ω in both propositions is
the same one, Ω = supp(µ′) ⊆ [q]V

′ , which is the set of all proper list colourings for (G′, L′). Let
P and Q be flip dynamics for (Gσ, Lσ) and (G′, L′), respectively, using the same {pα}α≥1. Let
µP = µσ

V ′ and µQ = µ′ denote the uniform distributions of list colourings (Gσ, Lσ) and (G′, L′)
respectively, which are the stationary distributions of P and Q respectively. By the definition of
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(G′, L′), supp(µP ) ⊆ supp(µQ). Both P and Q can be viewed as Markov chains over the space
supp(µQ) because P (X), Q(X) ∈ supp(µQ) if X ∈ supp(µQ). Let (supp(µQ), d) be the metric
assumed in the two propositions. The contraction results in (18) and (19) hold for Q.

Next, we use Theorem 19 with P and Q to bound W(µP , µQ). For any colouring X ∈ supp(µP ),
notice that pα > 0 only for ℓ ≤ 6, and the transitions of flip dynamics P and Q can be different
only if a neighbour of v is in the Kempe component. Let N(v) denotes the set of neighbours of v
in G. This allows us to couple P (X) and Q(X) as follows:

(1) in both copies, choose the same vertex u and the same colour c and let S = SX(u, c);
(2) if |S| ≥ 7, let P (X) = Q(X) = X;
(3) if v is not adjacent to any vertex in S in graph G, couple P (X) and Q(X) perfectly;
(4) otherwise, couple P (X) and Q(X) independently.

If the coupling goes to the last step, the vertex u must be within distance 6 from v in the graph G.
There are at most ∆7 such choices. When that happens, there are at most 12 new disagreement.
Thus, W(P (X), Q(X)) ≤ 12∆7

|V ′| . As d is 2-equivalent, it implies

Wd(P (X), Q(X)) ≤ 24∆7

|V ′|
.(21)

This verifies the first condition of Theorem 19.
For the second condition of Theorem 19, we need to bound the distanceWd(Q(X), Q(Y )) for X ∈

supp(µP ) and Y ∈ supp(µQ). By the definition of the instance (G′, L′), it holds that supp(µP ) ⊆
supp(µQ), and thus X ∈ supp(µQ). Moreover, (G′, L′) has larger colour lists than (Gσ, Lσ) and
(Gτ , Lτ ). Thus (G′, L′) satisfies the condition of either Theorem 21 or Theorem 22, which implies
that Q has C/(q|V ′|)-contraction for some constant C > 0 with respect to d. Thus, together with
(21), we apply Theorem 19 with µ = µP , ν = µQ and Ω = supp(µQ) to derive

Wd(µ
σ
V ′ , µ

′) =Wd(µP , µQ) ≤
24∆7/|V ′|
C/(q|V ′|)

= poly(q∆).

As d is 2-equivalent to the Hamming distance, we have W(µσ
V ′ , µ

′) = poly(q∆). Since the same
proof works for W(µτ

V ′ , µ
′), the lemma follows from (20). □

In the proof above, all analysis except the first equation in (20) considers list colouring instances
on the subgraph G′ = G[V ′]. The intermediate instance (G′, L′) is introduced because we need
to ensure that X ∈ supp(µQ) when applying Theorem 21 or Theorem 22. When verifying the
first condition in Theorem 19, we only use the fact that the flip chain is local and the metric d is
2-equivalent. When verifying the second condition, we use the contraction results in Theorem 21
or Theorem 22 for the flip chain Q over list colourings of (G′, L′).

Theorem 6 is then a direct consequence of Theorem 4, Theorem 20, and the marginal lower
bound [LY13, Lemma 3].

5.2. Application: coupling independence via the Dobrushin-Shlosman condition. In this
section we show Theorem 8. Recall the Dobrushin-Shlosman condition from Theorem 7.

Theorem 23. Let δ ∈ (0, 1) be a parameter. Suppose µ is the Gibbs distribution of a permissive spin
system (G, q,AE , AV ) satisfying the Dobrushin-Shlosman condition with gap δ. Then, µ satisfies
(∆δ + 1)-coupling independence.

The proof of Theorem 23 follows from Theorem 19 and a well-known contractive coupling for the
Glauber dynamics when the 1-norm of the Dobrushin influence matrix ρ is bounded (see [BD97,
Hay06] and references therein). Here Glauber dynamics is a well-studied Markov chain where in
each step, we uniformly at random select a variable, and update it conditioning on the rest of the
configuration.
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Proposition 24. Let δ ∈ (0, 1) be a parameter. Suppose µ is a distribution over [q]V satisfying the
Dobrushin-Shlosman condition with gap δ. Let P be the Glauber dynamics for µ. Then for every
X,Y ∈ [q]V ,

Wdist(P (X), P (Y )) ≤
(
1− δ

n

)
dist (X,Y ).

The above contractive coupling result holds for all X,Y ∈ [q]V because the definition of Do-
brushin influence in (3) considers all possible pinnings, including improper pinnings for µ.

Proof of Theorem 23. Let σ and τ be two (not necessarily feasible) partial configuration on Λ ⊆ V
such that they differ at only v ∈ V . Let V ′ = V \ Λ. As the system is permissive, µσ

V ′ and µτ
V ′ are

well-defined. To apply Theorem 19, let P and Q be Glauber dynamics for µσ
V ′ and µτ

V ′ , respectively.
Consider the coupling where we always choose the same vertex u ∈ V ′ to update, and optimally
couple the updates at u. Clearly, only neighbours of v could be the new disagreement. Thus,

W(P (X), Q(X)) ≤ ∆

|V ′|
.

This verifies the first condition of Theorem 19.
For the second condition of Theorem 19, notice that the Dobrushin influence matrix ρτ for µτ

V ′

is dominated by the corresponding matrix ρ for µ. Thus, ∥ρτ∥1 ≤ ∥ρ∥1 ≤ 1 − δ. By Theorem 24,
Q has δ/|V ′|-contraction. Note that σ and τ differ only at a single vertex v. Thus, we can apply
Theorem 19 to derive

W(µσ, µτ ) =W(µσ
V ′ , µ

τ
V ′) + 1 ≤ ∆

δ
+ 1. □

Theorem 8 directly follows from Theorem 4, Theorem 10, and Theorem 23.
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Appendix A. Heuristics behind the linear program to solve couplings

In this section we provide some heuristics behind the linear programming approach of Moitra
[Moi19], used in Section 4.1. Let σ and τ be two partial configurations on Λ such that they differ
on one vertex, say, v. Let Ωσ be the set of states that are consistent with σ, and similarly for Ωτ .
Suppose C over Ωσ × Ωτ is a coupling between µσ and µτ .

As C is a valid coupling, it must satisfy

∀σ′ ∈ Ωσ,
∑

τ ′∈Ωτ

C(σ′, τ ′) = µσ(σ′),

∀τ ′ ∈ Ωτ ,
∑

σ′∈Ωσ

C(σ′, τ ′) = µτ (τ ′).

Using µσ(σ′) = µ(σ′)
µΛ(σ)

and µτ (τ ′) = µ(τ ′)
µΛ(τ)

, we have

∀σ′ ∈ Ωσ,
∑

τ ′∈Ωτ

C(σ′, τ ′)µΛ(σ)/µ(σ
′) = 1,

∀τ ′ ∈ Ωτ ,
∑

σ′∈Ωσ

C(σ′, τ ′)µΛ(τ)/µ(τ
′) = 1.

This gives us a linear system, where we may treat C(σ′, τ ′)µΛ(σ)/µ(σ
′) and C(σ′, τ ′)µΛ(τ)/µ(τ

′) as
variables. This system is under constrained and the coupling is not unique, while our goal is to
solve r = µΛ(σ)

µΛ(τ)
. To do so, notice that for any (σ′, τ ′) ∈ Ωσ × Ωτ ,

r =
C(σ′, τ ′)µΛ(σ)/µ(σ

′)

C(σ′, τ ′)µΛ(τ)/µ(τ ′)
· µ(σ

′)

µ(τ ′)
.(22)

Adding r as a variable and (22) to the system would make the system non-linear. Moreover, it also
makes the system less robust. Instead, we introduce variables xσ′,τ ′ to represent C(σ′, τ ′)µΛ(σ)/µ(σ

′),
yσ′,τ ′ to represent C(σ′, τ ′)µΛ(τ)/µ(τ

′), and r− and r+ as guessed lower and upper bound for r. Then
consider the following set of linear equalities and inequalities:

∀σ′ ∈ Ωσ,
∑

τ ′∈Ωτ

xσ′,τ ′ = 1,

∀τ ′ ∈ Ωτ ,
∑

σ′∈Ωσ

yσ′,τ ′ = 1,

∀(σ′, τ ′) ∈ Ωσ × Ωτ , r−yσ′,τ ′ ≤ xσ′,τ ′ ·
µ(σ′)

µ(τ ′)
≤ r+yσ′,τ ′ .

(23)

Note that while we cannot compute µ(σ′) or µ(τ ′) easily, their ratio µ(σ′)
µ(τ ′) is easy to compute exactly.
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It is easy to see that if r− ≤ r ≤ r+, then the system (23) has a solution. On the other hand, if
the system (23) has a solution, we have that

r− ≤
∑

(σ′,τ ′)∈Ωσ×Ωτ
xσ′,τ ′µ(σ

′)∑
(σ′,τ ′)∈Ωσ×Ωτ

yσ′,τ ′µ(τ ′)
≤ r+.(24)

Notice that ∑
(σ′,τ ′)∈Ωσ×Ωτ

xσ′,τ ′µ(σ
′) =

∑
σ′∈Ωσ

µ(σ′)
∑

τ ′∈Ωτ

xσ′,τ ′

=
∑

σ′∈Ωσ

µ(σ′) = µΛ(σ),

where in the second line we used the first constraint in (23). Similarly for τ . Thus, (24) implies that
r− ≤ r ≤ r+. In conclusion, the system (23) has a solution if and only if r− ≤ r ≤ r+. Therefore,
we can do a binary search to find a very accurate estimate to r by repeatedly solving the LP (23).

There is one issue with the above though, namely the system has an exponential size. Moitra
[Moi19] considered constructing the coupling in a greedy way, instead of listing all final outcomes
at once. He greedily couples vertices one by one in an exploratory way, conditioning on previous
choices at each step. Each intermediate state gets its own x and y variables, and the transition
probabilities are reflected by linear constraints.

In fact, in Moitra’s process, we can stop at any pair of intermediate partial configurations σ0
and τ0 over Λ0, and write down the corresponding LP. The main issue of doing this is that there
is no good way of computing µΛ0

(σ0)

µΛ0
(τ0)

. Moitra’s choice is to prioritise getting the same boundary
between σ0 and τ0. If this is achieved, and the inside of the boundary has a logarithmic size, then
µΛ0

(σ0)

µΛ0
(τ0)

can be computed efficiently. The key property for Moitra’s process to succeed is to have
an exponentially small (in the number of steps of the coupling process) probability of failing to get
the same boundary between the two copies. This property guarantees that one can truncate the
coupling process at an logarithmic depth, and maintain the size of the LP to be a polynomial in the
input size. To certify the exponential tail of failure probability, his LP involves linear constraints
derived from local uniformity for each transition step, which no longer holds in our setting.

The main innovation of our approach in Section 4.1 is that we do not try to efficiently compute
µΛ0

(σ0)

µΛ0
(τ0)

for intermediate states. Instead, we use recursion. To do so, notice that our partial coupling,
Algorithm 1, outputs (σ0, τ0) that either share the same boundary or differ by exactly 2 vertices.
In the first case, µΛ0

(σ0)

µΛ0
(τ0)

can be computed exactly and efficiently. In the second case, there is a

partial configuration ρ such that both (σ0, ρ) and (ρ, τ0) differ on only one vertex. As µΛ0
(σ0)

µΛ0
(τ0)

=

µΛ0
(σ0)

µΛ0
(ρ) ·

µΛ0
(ρ)

µΛ0
(τ0)

, we apply recursion to approximate both µΛ0
(σ0)

µΛ0
(ρ) and µΛ0

(ρ)

µΛ0
(τ0)

. Doing so apparently
doubles the approximation error. However, this error occurs only in the second case, where the
partial coupling exits early. Luckily, the probability of early exits is O(δ(R)R log∆). As δ(R)
decays exponentially with R, we can make this probability as small as we want. There is one more
wrinkle, that is, we cannot really write down linear constraints that exactly capture the early exit
probability, because doing so would involve probabilities that we cannot compute efficiently. Instead,
we choose to use the marginal lower bound b and the total influence bound in our linear program
to give an upper bound of the early exit probability. See the overflow constraints in Algorithm 3.
Eventually, we choose R such that δ(R) absorbs R log∆ together with some polynomial factors in
b−1. This makes sure that the error decays by a constant factor at each recursive call.
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