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Abstract. For Markov chain Monte Carlo methods, one of the greatest discrepancies between
theory and system is the scan order — while most theoretical development on the mixing time
analysis deals with random updates, real-world systems are implemented with systematic scans.
We bridge this gap for models that exhibit a bipartite structure, including, most notably, the
Restricted/Deep Boltzmann Machine. The de facto implementation for these models scans vari-
ables in a layer-wise fashion. We show that the Gibbs sampler with a layerwise alternating scan
order has its relaxation time (in terms of epochs) no larger than that of a random-update Gibbs
sampler (in terms of variable updates). We also construct examples to show that this bound
is asymptotically tight. Through standard inequalities, our result also implies a comparison on
the mixing times.

1. Introduction

Gibbs sampling, or the Markov chain Monte Carlo method in general, plays a central role in
machine learning and has been widely implemented as the backbone algorithm for models such as
Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009), latent Dirichlet allocations (Blei
et al., 2003), and factor graphs in general. Given a set of random variables and a target
distribution π, the Gibbs sampler iteratively updates one variable at a time according to the
distribution π conditioned on the values of all other variables. If the ergodicity condition is met,
then the Gibbs sampler eventually converges to the target distribution.

There are two ways to choose which variable to update at the next iteration: (1) Random
Update, where in each epoch (or round) one variable is picked uniformly at random with re-
placement; and (2) Systematic Scan, where in each epoch all variables are updated using some
pre-determined order. Although most theoretical development on analyzing Gibbs sampling
deals with random updates (Jerrum, 2003; Levin et al., 2009), systematic scans are prevalent
in real-world implementations due to their hardware-friendly nature (cache locality for factor
graphs, SIMD for Deep Boltzmann Machines, etc.). It is natural to wonder, whether using sys-
tematic scan, rather than random updates, would delay the mixing time, the number of iterations
the Gibbs sampler requires to reach the target distribution.

The mixing time of these two update strategies can differ by some high polynomial factors
in either directions (He et al., 2016; Roberts and Rosenthal, 2015). Even more pathological
examples were constructed for non-Gibbs Markov chains such that systematic scan is not even
ergodic whereas the random-update sampler is rapidly mixing (Dyer et al., 2008). Indeed, even
for a system as simple as the Ising model, a comparison result remains elusive (Levin et al.,
2009, Open problem 5, p. 300). As a consequence, theoretical results on rapid mixing, such as
(Bubley and Dyer, 1997; Mossel and Sly, 2013), do not readily apply to the scan algorithms
used in practice.

1.1. Main results. In this paper, we bridge this gap between theory and system. We focus
on bipartite distributions, in which variables can be divided into two partitions — conditioned
on one of the partitions, variables from the other partition are mutually independent. This
bipartite structure arises naturally in practice, including Restricted/Deep Boltzmann Machines.
For a bipartite distribution, the de facto implementation is that in each epoch, we scan all
variables from one of the partitions first, and then the other. We call this the alternating-scan
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sampler. Note that in order to define a valid Markov chain, we have to consider systematic
scans in epochs, in which all variables are updated once. Our main theorem is the following.
Theorem 1 (Main Theorem). For any bipartite distribution π, if the random-update Gibbs
sampler is ergodic, then so is the alternating-scan sampler. Moreover, the relaxation time of the
alternating-scan sampler (in terms of epochs) is no larger than that of the random-update one
(in terms of variable updates).

The relaxation time (inverse spectral gap) measures the mixing time from a “warm” start. It
is closely related to the (total variation distance) mixing time, and governs mixing times under
other metrics as well (Levin et al., 2009). Through standard inequalities, Theorem 1 also implies
a comparison result in terms of mixing times, Corollary 10. As we count epochs in Theorem 1,
the alternating-scan sampler is implicitly slower by a factor of n, the number of variables. We
also show that Theorem 1 is asymptotically tight via Example 11. Thus this implicit factor n
slowdown cannot be improved in general.

More specifically, we summarize our contribution as follows.
(1) In Section 4, we establish Theorem 1. By focusing on bipartite systems, we are able

to obtain a much stronger result than recent studies in the more general setting (He
et al., 2016). We note that standard Markov chain comparison results, such as (Diaconis
and Saloff-Coste, 1993), do not seem to fit into our setting. Instead, we give a novel
analysis via estimates of operator norms of certain carefully defined matrices. One key
observation is to consider an artificial but equivalent variant of the alternating-scan
sampler, where we insert an extra random update between updating variables from the
two partitions. This does not change the algorithm since the extra random update is
either redundant with the updates in the first partition or with those in the second.

(2) In Section 5, we discuss bipartite distributions that arise naturally in machine learning.
In particular, our result is a rigorous justification of the popular layer-wise scan sampler
for Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009). Our result also applies
to other models such as Restricted Boltzmann Machines (Smolensky, 1986) and, more
generally, any bipartite factor graph.

(3) In Section 6, we conduct experiments to verify our theory and analyze the gap between
our worst case theoretical bound and numerical evidences. We observe that in the rapidly
mixing regime, the alternating-scan sampler is usually faster than the random-update
one, whereas in the slow mixing regime, the alternating-scan sampler can be slower
by a factor O(n). We hope these observations shed some light on more fine-grained
comparison bounds in the future.

2. Related Work

Probably the most relevant work is the recent analysis conducted by He et al. (2016) about
the impact of the scan order on the mixing time of the Gibbs sampling. They (1) constructed
a variety of models in which the scan order can change the mixing time significantly in several
different ways and (2) proved comparison results on the mixing time between random updates
and a variant of systematic scans where “lazy” moves are allowed. In this paper, we focus on a
more specific case, i.e., bipartite systems, and so our bound is stronger — in fact, our bound can
be exponentially stronger when the underlying chain is torpidly mixing. Moreover, our result
does not modify the standard scan algorithm.

Another related work is the recent analysis by Tosh (2016) considering the mixing time of an
alternating sampler for the Restricted Boltzmann Machine (RBM). Tosh showed that, under
Dobrushin-like conditions (Dobrushin, 1970), i.e., when the weights in the RBM are sufficiently
small, the alternating sampler mixes rapidly. For models other than RBM, mixing time results
for systematic scans are relatively rare. Known examples are usually restricted to very specific
models (Diaconis and Ram, 2000) or under conditions to ensure that the correlations are suffi-
ciently weak (Dyer et al., 2006; Hayes, 2006; Dyer et al., 2008). Typical conditions of this sort
are variants of the classical Dobrushin condition (Dobrushin, 1970). See also (Blanca et al.,
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2018) for very recent results on analyzing the alternating scan sampler (among others) on the
2D grid under conditions of the Dobrushin-type. In contrast, our work focuses on the relative
performance between random updates and systematic scan, and does not rely on Dobrushin-like
conditions. In particular, our results extend to the torpid mixing regime as well as the rapid
mixing one.

Our primary focus is on discrete state spaces. The scan order question has also been asked
and explored in general state spaces. Despite a long line of research (Hastings, 1970; Peskun,
1973; Caracciolo et al., 1990; Liu et al., 1995; Roberts and Sahu, 1997; Roberts and Rosenthal,
1997; Tierney, 1998; Maire et al., 2014; Roberts and Rosenthal, 2015; Andrieu, 2016), to the
best of our knowledge, no decisive answer is known.

Another line of related research is about the scan order in stochastic gradient descent (Recht
and Ré, 2012; Shamir, 2016; Gürbüzbalaban et al., 2017). Our setting in this paper is very
different and the techniques are different as well.

3. Preliminaries on Markov Chains

Let Ω be a discrete state space and P be a |Ω|-by-|Ω| stochastic matrix describing a (discrete
time) Markov chain on Ω. The matrix P is also called the transition matrix or the kernel of
the chain. Thus, P t(σ0, ·) is the distribution of the chain at time t starting from σ0. Let π(·)
be a stationary distribution of P . The Markov chain defined by P is reversible (with respect to
π(·)) if P satisfies the detailed balance condition:

π(σ)P (σ, τ) = π(τ)P (τ, σ)(1)

for any σ, τ ∈ Ω. We note that in general the systematic scan sampler is not reversible. The
Markov chain is called irreducible if P connects the whole state space Ω, namely, for any σ, τ ∈ Ω,
there exists t such that P t(σ, τ) > 0. It is called aperiodic if gcd{t > 0 : P t(σ, σ) > 0} = 1 for
every σ ∈ Ω. We call P ergodic if it is both irreducible and aperiodic. An ergodic Markov chain
converges to its unique stationary distribution (Levin et al., 2009).

The total variation distance ∥·∥TV for two distributions µ and ν on Ω is defined as

∥µ− ν∥TV = max
A⊂Ω
|µ(A)− ν(A)| = 1

2

∑
σ∈Ω
|µ(σ)− ν(σ)| .

The mixing time Tmix is defined as

Tmix(P ) := min

{
t ≥ 0 : max

σ∈Ω

∥∥P t(σ, ·)− π
∥∥
TV
≤ 1

2e

}
,

where the choice of the constant 1
2e is merely for convenience and is not significant (Levin et al.,

2009).
When P is ergodic and reversible, the eigenvalues (ξi)i∈[|Ω|] of P satisfies −1 < ξi ≤ 1, and

additionally, Pf = f if and only if f is constant (see (Levin et al., 2009, Lemma 12.1)). The
spectral gap of P is defined by

λ(P ) := 1−max{|ξ| : ξ is an eigenvalue of P
and ξ ̸= 1}.(2)

The relaxation time for a reversible P is defined as

Trel(P ) := λ(P )−1.(3)

The relaxation time and the mixing time differ by at most a factor of log
(

2e
πmin

)
where πmin =

minσ∈Ω π(σ), shown by the following theorem (see, for example, (Levin et al., 2009, Theorem
12.4 and 12.5)). In fact, the relaxation time governs mixing properties with respect to metrics
other than the total variation distance as well. See (Levin et al., 2009, Chapter 12) for more
details.
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Theorem 2. Let P be the transition matrix of a reversible and ergodic Markov chain with the
state space Ω and the stationary distribution π. Then

Trel(P )− 1 ≤ Tmix(P ) ≤ Trel(P ) log

(
2e

πmin

)
,

where πmin = minσ∈Ω π(σ).

The factor log π−1
min is usually bounded by a polynomial in the number of variables, in the

context of Gibbs sampling which is our primary focus later. Theorem 2 is tight, and there is no
good way of avoiding losing this log π−1

min factor in general, with the spectral method.
Unfortunately, the systematic-scan sampler is not reversible, and therefore Theorem 2 does

not apply. Instead, we use an extension developed by Fill (1991). For a non-reversible transition
matrix P , let the multiplicative reversiblization be R(P ) := PP ∗, where P ∗ is the adjoint of P
defined as

P ∗(σ, τ) =
π(τ)P (τ, σ)

π(σ)
.(4)

Then R(P ) is reversible. Let the relaxation time for a (not necessarily reversible) P be

Trel(P ) :=
1

1−
√
1− λ(R(P ))

.(5)

In particular, if P is reversible, then (5) recovers (3) (see Proposition 4). In general, the
multiplicative reversibilization mixes similarly to the original non-reversible chain. See (Fill,
1991) for more details.

The following theorem is a simple consequence of (Fill, 1991, Theorem 2.1).

Theorem 3. Let P be the transition matrix of an ergodic Markov chain with the state space Ω
and the stationary distribution π. Then

Tmix(P ) ≤ log

(
4e2

πmin

)
Trel(P ),

where πmin = minσ∈Ω π(σ).

Note that our definition of relaxation times (5) for non-reversible Markov chains yields asymp-
totically the same upper bound in Theorem 2.

Proof of Theorem 3. We first restate (Fill, 1991, Theorem 2.1) (note that the norm in (Fill,
1991) is twice the total variation distance):

∥∥P t(σ, ·)− π
∥∥2
TV
≤ (1− λ(R(P )))t

π(σ)
.(6)

Let λ := λ(R(P )) and T := log
(

4e2

πmin

)
Trel(P ) = 1

1−
√
1−λ

log
(

4e2

πmin

)
. Then it is easy to verify

that

T ≥ 2

λ
log

(
2e
√
πmin

)
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and by (6), we have that

max
σ∈Ω

∥∥P T (σ, ·)− π
∥∥
TV
≤ (1− λ)T/2

√
πmin

≤ (1− λ)
λ−1 log

(
2e√
πmin

)
√
πmin

≤ e
− log

(
2e√
πmin

)
√
πmin

=
1

2e
.

In other words,

Tmix(P ) ≤ T = log

(
4e2

πmin

)
Trel(P ). □

3.1. Operator Norms and the Spectral Gap. We also view the transition matrix P as an
operator that mapping functions to functions. More precisely, let f be a function f : Ω → R
and P acting on f is defined as

Pf(x) :=
∑
y∈Ω

P (x, y)f(y).

This is also called the Markov operator corresponding to P . We will not distinguish the matrix
P from the operator P as it will be clear from the context. Note that Pf(x) is the expectation
of f with respect to the distribution P (x, ·). We can regard a function f as a column vector
in RΩ, in which case Pf is simply matrix multiplication. Recall (4) and P ∗ is also called the
adjoint operator of P . Indeed, P ∗ is the (unique) operator that satisfies ⟨f, Pg⟩π = ⟨P ∗f, g⟩π.
It is easy to verify that if P satisfies the detailed balanced condition (1), then P is self-adjoint,
namely P = P ∗.

The Hilbert space L2(π) is given by endowing RΩ with the inner product

⟨f, g⟩π :=
∑
x∈Ω

f(x)g(x)π(x),

where f, g ∈ RΩ. In particular, the norm in L2(π) is given by

∥f∥π := ⟨f, f⟩π.

The spectral gap (2) can be rewritten in terms of the operator norm of P , which is defined
by

∥P∥π := max
∥f∥π ̸=0

∥Pf∥π
∥f∥π

.

Indeed, the operator norm equals the largest eigenvalue (which is just 1 for a transition matrix
P ), but we are interested in the second largest eigenvalue. Define the following operator

Sπ(σ, τ) := π(τ).(7)

It is easy to verify that Sπf(σ) = ⟨f,1⟩π for any σ. Thus, the only eigenvalues of Sπ are 0 and
1, and the eigenspace of eigenvalue 0 is {f ∈ L2(π) : ⟨f,1⟩π = 0}. This is exactly the union of
eigenspaces of P excluding the eigenvalue 1. Hence, the operator norm of P − Sπ equals the
second largest eigenvalue of P , namely,

λ(P ) = 1− ∥P − Sπ∥π .(8)

The expression in (8) can be found in, for example, (Ullrich, 2014, Eq. (2.8)). In particular,
using (8), we show that the definition (5) coincides with (3) when P is reversible.

5



Algorithm 1 Gibbs sampling with random updates
Input: Starting configuration σ = σ0

for t = 1, . . . , Tmix do
With probability 1/2, do nothing.
Otherwise, select a variable x ∈ V uniformly at random.
Set σ ← σx,s with probability π(σx,s)∑

t∈S π(σx,t) .
end for
return σ

Proposition 4. Let P be the transition matrix of a reversible matrix with the stationary dis-
tribution π. Then

1

λ(P )
=

1

1−
√

1− λ(R(P ))
.

Proof. Since P is reversible, P is self-adjoint, namely, P ∗ = P . Hence (P − Sπ)
∗ = P ∗−Sπ and

(P − Sπ) (P − Sπ)
∗ = (P − Sπ) (P

∗ − Sπ)

= PP ∗ − PSπ − SπP
∗ + SπSπ

= PP ∗ − Sπ,

where we use the fact that PSπ = SπP
∗ = SπSπ = Sπ. It implies that

1− λ(R(P )) = ∥R(P )− Sπ∥π(by (8))
= ∥PP ∗ − Sπ∥π
= ∥(P − Sπ) (P − Sπ)

∗∥π
= ∥P − Sπ∥2π
= (1− λ(P ))2 .

Rearranging the terms yields the claim. □

4. Alternating Scan

In this section we describe the random update and the alternating scan sampler, and compare
these two. Let V = {x1, . . . , xn} be a set of variables where each variable takes values from
some finite set S. Let π(·) be a distribution defined on SV .

Let σ ∈ SV be a configuration, namely σ : V → S. Let σx,s be the configuration that agrees
with σ except at x, where σx,s(x) = s for s ∈ S. In other words, for any y ∈ V ,

σx,s(y) :=

{
σ(y) if y ̸= x;

s if y = x.

The lazy1 Gibbs sampler is defined in Algorithm 1. Let n = |V | be the total number of
variables. The transition kernel PRU (where RU stands for “random updates”) of the sampler
in Algorithm 1 is defined as:

PRU (σ, τ) =


1
2n ·

π(σx,s)∑
t∈S π(σx,t) if τ ̸= σ and there are x ∈ V

and s ∈ S such that τ = σx,s;

1/2 +
∑

x∈V
1
2n ·

π(σx,σ(x))∑
t∈S π(σx,t) if τ = σ;

0 otherwise,
where σ, τ are two configurations. It is not hard to see, for example, by checking the detailed
balance condition (1), that π(·) is the stationary distribution of PRU . Note that this Markov

1We choose to present the lazy sampler due to its popularity in theoretical analysis. Our arguments later in
fact also apply to non-lazy samplers as well. See the remarks after the proof of Theorem 1.

6



Algorithm 2 Alternating-scan sampler
Input: Starting configuration σ = σ0

for t = 1, . . . , Tmix do
for i = 1, . . . , n1 do

Set σ ← σxi,s with probability π(σxi,s)∑
t∈S π(σxi,t)

.
end for
for j = 1, . . . , n2 do

Set σ ← σyj ,s with probability π(σyj,s)∑
t∈S π(σyj,t)

.
end for

end for
return σ

chain is lazy, i.e., it remains at its current state with probability at least 1/2. This self-loop
probability is higher than 1/2 because when we update a variable there is positive probability of
no change. Lazy chains are often studied in the literature because of their technical conveniences.
The self-loop eliminates potential periodicity, and all eigenvalues of a lazy chain are non-negative.
In the context of Gibbs sampling, these are merely artifacts of the available techniques and
considering the lazy version is not really necessary (Rudolf and Ullrich, 2013; Dyer et al., 2014).
Our main result actually applies to both lazy and non-lazy versions. See the remarks after the
proof of Theorem 1.

Our main focus is bipartite distributions, defined next. These distributions arise naturally
from bipartite factor graphs, including, most notably, Restricted Boltzmann Machines.

Definition 5. The joint distribution π(·) of random variables V = {x1, . . . , xn} is bipartite, if
V can be partitioned into two sets V1 and V2 (namely V1 ∪ V2 = V and V1 ∩ V2 = ∅), such that
conditioned on any assignment of variables in V2, all variables in V1 are mutually independent,
and vice versa.

In the following we consider a particular systematic scan sampler for bipartite distributions.
For a configuration σ, let σi := σ|Vi be its projection on Vi where i = 1, 2. The alternating-scan
sampler is given in Algorithm 2, where n1 = |V1| and n2 = |V2|.

In other words, the alternating-scan sampler sequentially resamples all variables in V1, and
then resamples all variables in V2. Note that since we are considering a bipartite distribution,
in order to resample xi ∈ V1, we only need to condition on σ2. In other words, for any i ∈ [n1],
the distribution

(
π(σxi,s)∑
t∈S π(σxi,t)

)
s∈S

that we draw from depends only on σ2. Similarly, resampling
yj ∈ V2 only depends on σ1. We will denote the transition kernel of the alternating-scan sampler
as PAS , where AS stands for “alternating scan”.

An unusual feature of systematic-scan samplers (including the alternating-scan sampler) is
that they are not reversible. Namely the detailed balance condition (1) does not in general hold.
This is because updating variables x and y in order is in general different from updating y and
x in order. This imposes a technical difficulty as most of the theoretical tools for analyzing
these chains are not suitable for irreversible chains, such as the Dirichlet form (Diaconis and
Saloff-Coste, 1993) or conductance bounds (Jerrum and Sinclair, 1993; Sinclair, 1992).

On the other hand, the scan sampler is aperiodic. Any potential state σ of the chain must be
in the state space Ω. Therefore π(σ) > 0 and the probability of staying in σ is strictly positive.
Moreover, if the Gibbs sampler is irreducible (namely the state space Ω is connected via single
variable flips), then so is the scan sampler. This is because any single variable update can be
simulated in the scan sampler, with small but strictly positive probability. Hence if the Gibbs
sampler is ergodic, then so is the scan sampler.

We restate our main theorem here in formal terms.
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Theorem 1. For any bipartite distribution π, if PRU is ergodic, then so is PAS. Moreover,
Trel(PAS) ≤ Trel(PRU ).

We will prove Theorem 1 next. The transition matrix of updating a particular variable x is
the following

Tx(σ, τ) =

{
π(σx,s)∑

s∈S π(σx,s) if τ = σx,s for some s ∈ S;

0 otherwise.
(9)

Moreover, let I be the identity matrix that I(σ, τ) = 1(σ, τ).

Lemma 6. Let π be a bipartite distribution, and PRU , PAS, Tx be defined as above. Then we
have that

(1) PRU =
I

2
+

1

2n

∑
x∈V

Tx;

(2) PAS =

n1∏
i=1

Txi

n2∏
j=1

Tyj .

Proof. Note that Tx is the transition matrix of resampling σ(x). For PRU , the term I
2 comes

from the fact that the chain is “lazy”. With the other 1/2 probability, we resample σ(x) for a
uniformly chosen x ∈ V . This explains the term 1

2n

∑
x∈V Tx.

For PAS , we sequentially resample all variables in V1 and then all variables in V2, which yields
the expression. □
Lemma 7. Let π be a bipartite distribution and Tx be defined as above. Then we have that

(1) For any x ∈ V , Tx is a self-adjoint operator and idempotent. Namely, Tx = T ∗
x and

TxTx = Tx.
(2) For any x ∈ V , ∥Tx∥π = 1.
(3) For any x, x′ ∈ Vi where i = 1 or 2, Tx and Tx′ commute. In other words Tx′Tx = TxTx′

if x, x′ ∈ Vi for i = 1 or 2.

Proof. For Item 1, the fact that Tx is self-adjoint follows from the detailed balance condition
(1). Idempotence is because updating the same vertex twice is the same as a single update.

Item 2 follows from Item 1. This is because
∥Tx∥π = ∥TxTx∥π = ∥TxT

∗
x∥π = ∥Tx∥2π .

For Item 3, suppose i = 1. Since π is bipartite, resampling x or x′ only depends on σ2.
Therefore the ordering of updating x or x′ does not matter as they are in the same partition. □

Define

PGS1 :=
I

2
+

1

2n1

n1∑
i=1

Txi , and PGS2 :=
I

2
+

1

2n2

n2∑
j=1

Tyj .

Then, since n1 + n2 = n,

PRU =
1

n
(n1PGS1 + n2PGS2) .(10)

Similarly, define

PAS1 :=

n1∏
i=1

Txi , and PAS2 :=

n2∏
j=1

Tyj .

Then
PAS = PAS1PAS2.(11)

With this notation, Lemma 7 also implies the following.

Corollary 8. The following holds:
8



(1) ∥PAS1∥π ≤ 1 and ∥PAS2∥π ≤ 1.
(2) PAS1PGS1 = PAS1 and PGS2PAS2 = PAS2.

Proof. For Item 1, by the submultiplicity of operator norms:

∥PAS1∥π =

∥∥∥∥∥
n1∏
i=1

Txi

∥∥∥∥∥
π

≤
n1∏
i=1

∥Txi∥π

= 1.(By Item 2 of Lemma 7)

The claim ∥PAS2∥π ≤ 1 follows similarly.
Item 2 follows from Item 1 and 3 of Lemma 7. We verify the first case as follows.

PAS1PGS1 =

n1∏
i=1

Txi

I

2
+

1

2n1

n1∑
j=1

Txj


=

1

2
·
n1∏
i=1

Txi +
1

2n1
·
n1∏
i=1

Txi

n1∑
j=1

Txj

=
1

2
·
n1∏
i=1

Txi +
1

2n1
·

n1∑
j=1

Txj

n1∏
i=1

Txi

=
1

2
·
n1∏
i=1

Txi +
1

2n1
·

n1∑
j=1

Tx1Tx2 · · ·TxjTxj · · ·Txn1
(By Item 3 of Lemma 7)

=
1

2
·
n1∏
i=1

Txi +
1

2n1
·

n1∑
j=1

n1∏
i=1

Txi(By Item 1 of Lemma 7)

=
1

2
·
n1∏
i=1

Txi +
1

2
·
n1∏
i=1

Txi

= PAS1.

The other case is similar. □

Item 2 of Corollary 8 captures the following intuition: if we sequentially update all variables
in Vi for i = 1, 2, then an extra individual update either before or after does not change the
distribution. Recall Eq. (5).

Lemma 9. Let π be a bipartite distribution and PRU and PAS be defined as above. Then we
have that

∥R(PAS)− Sπ∥π ≤ ∥PRU − Sπ∥2π .

Proof. Recall (7), the definition of Sπ, using which it is easy to see that

PAS1Sπ = SπPAS2 = SπSπ = Sπ.(12)

Thus,

PAS1(PRU − Sπ)PAS2 = PAS1

(n1

n
PGS1 +

n2

n
PGS2 − Sπ

)
PAS2(By (10))

=
n1

n
PAS1PGS1PAS2 +

n2

n
PAS1PGS2PAS2 − PAS1SπPAS2

=
n1

n
PAS1PAS2 +

n2

n
PAS1PAS2 − Sπ(By Item 2 of Cor 8)

= PAS1PAS2 − Sπ

= PAS − Sπ,(13)
9



where in the last step we use (11). Moreover, we have that

P ∗
AS =

 n1∏
i=1

Txi

n2∏
j=1

Tyj

∗

=

n2∏
j=1

T ∗
yn2+1−j

n1∏
i=1

T ∗
xn1+1−i

=

n2∏
j=1

Tyn2+1−j

n1∏
i=1

Txn1+1−i(By Item 1 of Lemma 7)

=

n2∏
j=1

Tyj

n1∏
i=1

Txi(By Item 3 of Lemma 7)

= PAS2PAS1.

Hence, similarly to (13), we have that

PAS2(PRU − Sπ)PAS1 = PAS2PAS1 − Sπ

= P ∗
AS − Sπ.(14)

Using (12), we further verify that

(PAS − Sπ) (P
∗
AS − Sπ) = PASP

∗
AS − PASSπ − SπP

∗
AS + SπSπ

= PASP
∗
AS − Sπ(15)

Combining (13), (14), and (15), we see that

∥R(PAS)− Sπ∥π = ∥PASP
∗
AS − Sπ∥π

= ∥(PAS − Sπ) (P
∗
AS − Sπ)∥π

= ∥PAS1 (PRU − Sπ)PAS2PAS2 (PRU − Sπ)PAS1∥π
≤ ∥PAS1∥π ∥PRU − Sπ∥π ∥PAS2∥π ∥PAS2∥π ∥PRU − Sπ∥π ∥PAS1∥π
≤ ∥PRU − Sπ∥2π ,

where the first inequality is due to the submultiplicity of operator norms, and we use Item 1 of
Corollary 8 in the last line. □

Remark. The last inequality in the proof of Lemma 9 crucially uses the fact that the distribution
is bipartite. If there are, say, k partitions, then the corresponding operators PAS1, . . . , PASk do
not commute and the proof does not generalize.

Proof of Theorem 1. For the first part, notice that the alternating-scan sampler is aperiodic.
Any possible state σ of the chain must be in the state space Ω. Therefore π(σ) > 0 and
the probability of staying at σ is strictly positive. Moreover, any single variable update can
be simulated in the scan sampler, with small but strictly positive probability. Hence if the
random-update sampler is irreducible, then so is the scan sampler.
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To show that Trel(PAS) ≤ Trel(PRU ), we have the following

Trel(PAS) =
1

1−
√

1− λ(R(PAS))
(By (5))

=
1

1−
√
∥R(PAS)− Sπ∥π

(By (8))

≤ 1

1− ∥PRU − Sπ∥π
(By Lemma 9)

=
1

λ(PRU )
(By (8))

= Trel(PRU ).(By (3))
This completes the proof. □

Remark. It is easy to check that the proof also works if we consider the non-lazy version of
PRU . To do so, we just replace I

2 + 1
2n

∑
x∈V Tx with 1

n

∑
x∈V Tx and the rest of the proof goes

through without changes.

Remark. Our argument can also handle the case of general state spaces, such as Gaussian
variables, since the essential property we use is the commutativity of updating variables from
the same partition. For general state spaces, in order to apply Theorem 1 on mixing times,
we need to replace Theorem 2 and Theorem 3 with their continuous counterparts. See for
example (Lawler and Sokal, 1988).

Using Theorem 2 and Theorem 3, we translate Theorem 1 in terms of the mixing time.

Corollary 10. For a Markov random field defined on a bipartite graph, let PRU and PAS be
the transition kernels of the random-update Gibbs sampler and the alternating-scan sampler,
respectively. Then,

Tmix(PAS) ≤ log

(
4e2

πmin

)
(Tmix(PRU ) + 1) ,

where πmin = minσ∈Ω π(σ).

Since n variables are updated in each epoch of PAS , one might hope to strengthen Theorem
1 so that nTrel(PAS) is also no larger than Trel(PRU ). Unfortunately, this is not the case
and we give an example (similar to the “two islands” example due to He et al. (2016)) where
Tmix(PAS) ≍ Tmix(PRU ) and Trel(PAS) ≍ Trel(PRU ). This example implies that Theorem 1
is asymptotically tight. However, it is still possible that Corollary 10 is loose by a factor of
log π−1

min. This potential looseness is difficult to circumvent due to the spectral approach we
took.

Example 11. Let G = (L ∪ R,E) be a complete bipartite graph Kn,n and we want to sample
an uniform independent set in G. In other words, each vertex is a Boolean variable and a valid
configuration is an independent set I ⊆ L ∪ R. To be an independent set in Kn,n, I cannot
intersect both L and R. Hence the state space is Ω = {I | I ⊆ L or I ⊆ R} and the measure
π is uniform on Ω. Under single-site updates, Ω is composed of two independent copies of the
Boolean hypercube {0, 1}n with the two origins identified. The random-update Gibbs sampler
has mixing time O(2n) because the (maximum) hitting time of the Boolean hypercube is O(2n)
and the mixing time is upper bounded by the hitting time multiplied by a constant (Levin et al.,
2009, Eq. (10.24)). The relaxation time is also O(2n) by Theorem 2. In fact, it is not hard to
see that both quantities are Θ(2n).

On the other hand, the alternating-scan sampler has mixing time Ω(2n) and relaxation time
Ω(2n). For the mixing time, we partition the state space Ω into ΩL = {I | I ⊂ L} and
ΩR = {I | I ⊂ R and I ̸= ∅}. Consider the alternating scan projected down to ΩL and ΩR. If
the current state is in ΩL, then there is 2−n probability to go to ∅ after updating all vertices

11



in L, and then with probability 1 − 2−n the state goes to ΩR after updating all vertices in
R. Similarly, going from ΩR to ΩL has also probability O(2−n). Thus in each epoch of the
alternating scan, the probability to go between ΩL and ΩR is Θ(2n) and the mixing time is thus
Θ(2−n). The relaxation time can be similarly bounded using a standard conductance argument
(Sinclair, 1992).

In summary, for this bipartite distribution π, we have that Trel(PAS) ≍ Trel(PRU ) and
Tmix(PAS) ≍ Tmix(PRU ). Therefore, Theorem 1 is asymptotically tight and Corollary 10 is
tight up to the factor log π−1

min.

We conjecture that the factor log π−1
min should not be in Corollary 10. However, this factor is

inherently there with the spectral approach. To get rid of it a new approach is required.
We note that in Example 11, alternating scan is not necessarily the best scan order. Indeed,

as shown by He et al. (2016), if we scan vertices alternatingly from the left and right, rather
than scanning variables layerwise, the mixing time is smaller by a factor of n. Thus, although
Theorem 1 and Corollary 10 provide certain guarantees of the alternating-scan sampler, the
layerwise alternating order is not necessarily the best one.

5. Bipartite Distributions in Machine Learning

The results we have developed so far can be applied to probabilistic graphic models with
bipartite structures, most notably Restricted Boltzmann Machines (RBM) and Deep Boltzmann
Machines (DBM). Although real-world systems for RBM and DBM inference rely on layerwise
systematic scans, we are the first to provide a theoretical justification of such implementations.

5.1. Markov Random Fields. A Markov random field (MRF) with binary factors ⟨G,S, π⟩
is defined on a graph G = (V,E), where each edge describes a “factor” fe and each vertex
is a variable drawing from S, a set of possible values. Each factor is a function S2 → R. A
configuration σ ∈ SV is a mapping from V to S. In addition, each vertex is equipped with a
factor gv : S → R. Let Ω ⊆ SV be the state space, which is usually defined by a set of hard
constraints. When there is no hard constraint, the state space Ω is simply SV . The Hamiltonian
of σ ∈ Ω is defined as

H(σ) =
∑

e=(u,v)∈E

fe(σ(u), σ(v)) +
∑
v∈V

gv(σ(v)).

The Gibbs distribution π(·) is defined as π(σ) ∝ 1(σ ∈ Ω) exp(H(σ)). These models are
popularly used in applications such as image processing (Li, 2009) and natural language pro-
cessing (Lafferty et al., 2001).

It is easy to check that, when the underlying graph G is bipartite, the Gibbs distribution is
bipartite in the sense of Definition 5. Thus Theorem 1 and Corollary 10 apply to this setting.

5.2. Restricted/Deep Boltzmann Machines. Restricted Boltzmann Machines (RBM) was
introduced by Smolensky (1986). It is a special case of the general MRF in which all variables
are Boolean (i.e., S = {0, 1}) and are partitioned into two disjoint sets, V1 and V2. There is a
factor between each variable in V1 and V2, and the Hamiltonian is

H(σ) =
∑

u∈V1,v∈V2

Wuvσ(u)σ(v) +
∑
v∈V

Wvσ(v).

where Wuv and Wv are real-valued weights. Figure 1(a) illustrates the structure of RBMs. We
use [f00, f01, f10, f11] to describe a general binary factor defined on Boolean variables. Thus,
[0, 0, 0,W ] denotes a standard RBM factor with weight W , and [W, 0, 0,W ] denotes an Ising
model with weight W (after some renormalization).

Markov chain Monte Carlo is a common approach to perform inference for RBMs, which
involves sampling a configuration from the Gibbs distribution π. The de facto algorithm for
this task is Gibbs sampling, in which the conditional probability of each step can be calculated
from only the Hamiltonian. In this context, the alternating-scan algorithm we study corresponds
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(b) Deep 
Boltzmann Machine

(a) Restricted 
Boltzmann Machine

(c) Deep Boltzmann Machine
as a Bipartite Graph

Layer 1 Layer 3

Layer 2 Layer 4

Figure 1. Restricted Boltzmann machines and deep Boltzmann machines as
bipartite systems.

to a layerwise scan — first update all variables in V1 and then all variables in V2. This scan
order allows one to use efficient linear algebra primitives such as dense matrix multiplication
implemented with GPUs or SIMD instructions on modern CPUs.

Deep Boltzmann Machines (DBM), introduced by Salakhutdinov and Hinton (2009), is a Deep
Learning model that extends RBM to multiple layers as illustrated in Figure 1(b). This layer
structure is indeed bipartite, shown in Figure 1(c). The scan order induced is thus to update
odd layers first and even ones after. Like most deep learning models, the scan (evaluation) order
of variables has significant impact on the speed and performance of the system. The layerwise
implementation is particularly advantageous thanks to dense linear algebra primitives.

Given an RBM or DBM with n variables, it is easy to see that log π−1
min is O(n). Thus,

Corollary 10 implies that, comparing to the random-update algorithm, the layerwise systematic
scan algorithm incurs at most a O(n2) slowdown in the convergence rate. This comparison
result improves exponentially (in the worst case) upon the previous result by He et al. (2016).

6. Experiments

Empirically evaluating the mixing time of Markov chains is notoriously difficult. In general,
it is hard under certain complexity assumptions (Bhatnagar et al., 2011) and lower bounds
have been established for more concrete settings by Hsu et al. (2015) (see also (Hsu et al., 2015)
for a comprehensive survey on this topic). We evaluate the mixing time in either exact and
straightforward or approximate but tractable ways, including (1) calculating directly using the
transition matrix for small graphs, (2) taking advantage of symmetries in the state space for
medium-sized graphs, and (3) using the coupling time (defined later) as a proxy of the mixing
time for large graphs.

Mixing Time on Small Graphs. We evaluate the mixing time in a brute force way, namely, we
multiply the transition matrix until the total variation distance to the stationary distribution is
below the threshold. Since the state space is exponentially large, such a method is only feasible
in small graphs.

Figure 2 and Figure 3 contains the comparison of the mixing time for small graphs (RBMs
of up to 12 variables and DBMs with 4 layers and 3 variable per layer). We vary (1) number
of variables, (2) factor functions (shown as the entries of truth table in the caption), or (3)
the weight of factors, in different figures and report the mixing times of random updates and
layerwise scan. All solid lines count mixing time in # variable updates and the dotted line in
# epochs.

We see that, empirically, alternating scan has comparable, sometimes better, mixing time
than random updates, even when counting in the number of variable updates. On one hand, it
confirms our result that the mixing time of alternating scan and random updates are similar.
On the other, it shows that our result, although asymptotically tight for the worst case, is not
“instance optimal”. This observation indicates promising future direction for beyond-worst case
analysis.
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Figure 2. Mixing time of Gibbs samplers on Restricted Boltzmann Machines.
See Section 6.
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Figure 3. Mixing time of Gibbs samplers on Deep Boltzmann Machines. See Section 6.

Medium-sized Graphs. We now turn to Example 11, which has also been studied by He et al.
(2016) and is asymptotically the worst case of Theorem 1. Due to certain symmetries, we have
a much more succinct representation of the state space, and manage to calculate the mixing
and relaxation times for mildly larger graphs (up to 50 variables). As illustrated in Figure 4,
the alternating-scan sampler is slower than, but still comparable to the random-update sampler.
This is consistent with the discussion in Example 11.
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Figure 4. Mixing time comparison on medium-sized graphs.

Coupling Time on Large Graphs. Lastly, we use the coupling time as a proxy of the mixing
time and estimate it on large graphs with 104 variables and 5× 104 randomly chosen factors.

We use the grand coupling (Levin et al., 2009, Chapter 5). Let Tσ,τ be the first time two
copies of the same Markov chain meet, with initial states σ and τ , under certain coupling.
Then the coupling time is max(σ,τ)∈Ω2 Tσ,τ . All of the models we tested are monotone (Peres
and Winkler, 2013), in which the coupling time under the grand coupling can be easily evaluated
by simulating from the top and bottom states. The coupling time is closely related to the mixing
time (Levin et al., 2009, Chapter 5). In particular, it is an upper bound of the mixing time
regardless of the coupling, and designing a good coupling is an important technique to prove
rapid mixing (Bubley and Dyer, 1997). Our experimental findings are summarized in Figure 5.

In these experiments, we choose our parameters to stay within the rapidly mixing regime
(Mossel and Sly, 2013) and avoid exponential mixing times. As we can see in Figure 5, alter-
nating scan is faster than random updates (in terms of variable updates). Indeed, numerical
evidence suggests that the speedup factor is close to 2.
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7. Concluding Remarks

In summary, we have shown that for a bipartite distribution, the relaxation time of the
alternating-scan sampler (in terms of epochs) is no larger than that of the random-update
sampler. This is asymptotically tight and implies a (weaker) comparison result on the mixing
time. Future directions include more fine-grained comparison results, and going beyond bipartite
distributions.
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