
Foundations and TrendsR© in
Machine Learning
Vol. 4, No. 4 (2011) 267–373
c© 2012 C. Sutton and A. McCallum
DOI: 10.1561/2200000013

An Introduction to Conditional
Random Fields

By Charles Sutton and Andrew McCallum

Contents

1 Introduction 268

1.1 Implementation Details 271

2 Modeling 272

2.1 Graphical Modeling 272
2.2 Generative versus Discriminative Models 278
2.3 Linear-chain CRFs 286
2.4 General CRFs 290
2.5 Feature Engineering 293
2.6 Examples 298
2.7 Applications of CRFs 306
2.8 Notes on Terminology 308

3 Overview of Algorithms 310

4 Inference 313

4.1 Linear-Chain CRFs 314
4.2 Inference in Graphical Models 318
4.3 Implementation Concerns 328

5 Parameter Estimation 331

5.1 Maximum Likelihood 332
5.2 Stochastic Gradient Methods 341
5.3 Parallelism 343
5.4 Approximate Training 343
5.5 Implementation Concerns 350

6 Related Work and Future Directions 352

6.1 Related Work 352
6.2 Frontier Areas 359

Acknowledgments 362

References 363

Foundations and TrendsR© in
Machine Learning
Vol. 4, No. 4 (2011) 267–373
c© 2012 C. Sutton and A. McCallum
DOI: 10.1561/2200000013

An Introduction to Conditional
Random Fields

Charles Sutton1 and Andrew McCallum2

1 School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB,
UK, csutton@inf.ed.ac.uk

2 Department of Computer Science, University of Massachusetts, Amherst,
MA, 01003, USA, mccallum@cs.umass.edu

Abstract

Many tasks involve predicting a large number of variables that depend
on each other as well as on other observed variables. Structured
prediction methods are essentially a combination of classification and
graphical modeling. They combine the ability of graphical models
to compactly model multivariate data with the ability of classifica-
tion methods to perform prediction using large sets of input features.
This survey describes conditional random fields, a popular probabilistic
method for structured prediction. CRFs have seen wide application in
many areas, including natural language processing, computer vision,
and bioinformatics. We describe methods for inference and parame-
ter estimation for CRFs, including practical issues for implementing
large-scale CRFs. We do not assume previous knowledge of graphical
modeling, so this survey is intended to be useful to practitioners in a
wide variety of fields.

1
Introduction

Fundamental to many applications is the ability to predict multiple
variables that depend on each other. Such applications are as diverse
as classifying regions of an image [49, 61, 69], estimating the score in a
game of Go [130], segmenting genes in a strand of DNA [7], and syn-
tactic parsing of natural-language text [144]. In such applications, we
wish to predict an output vector y = {y0,y1, . . . ,yT } of random vari-
ables given an observed feature vector x. A relatively simple example
from natural-language processing is part-of-speech tagging, in which
each variable ys is the part-of-speech tag of the word at position s, and
the input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs

contains various information about the word at position s, such as its
identity, orthographic features such as prefixes and suffixes, member-
ship in domain-specific lexicons, and information in semantic databases
such as WordNet.

One approach to this multivariate prediction problem, especially
if our goal is to maximize the number of labels ys that are correctly
classified, is to learn an independent per-position classifier that maps
x �→ ys for each s. The difficulty, however, is that the output variables
have complex dependencies. For example, in English adjectives do not

268

269

usually follow nouns, and in computer vision, neighboring regions in an
image tend to have similar labels. Another difficulty is that the output
variables may represent a complex structure such as a parse tree, in
which a choice of what grammar rule to use near the top of the tree
can have a large effect on the rest of the tree.

A natural way to represent the manner in which output variables
depend on each other is provided by graphical models. Graphical
models — which include such diverse model families as Bayesian net-
works, neural networks, factor graphs, Markov random fields, Ising
models, and others — represent a complex distribution over many vari-
ables as a product of local factors on smaller subsets of variables. It
is then possible to describe how a given factorization of the proba-
bility density corresponds to a particular set of conditional indepen-
dence relationships satisfied by the distribution. This correspondence
makes modeling much more convenient because often our knowledge of
the domain suggests reasonable conditional independence assumptions,
which then determine our choice of factors.

Much work in learning with graphical models, especially in statisti-
cal natural-language processing, has focused on generative models that
explicitly attempt to model a joint probability distribution p(y,x) over
inputs and outputs. Although this approach has advantages, it also
has important limitations. Not only can the dimensionality of x be
very large, but the features may have complex dependencies, so con-
structing a probability distribution over them is difficult. Modeling the
dependencies among inputs can lead to intractable models, but ignoring
them can lead to reduced performance.

A solution to this problem is a discriminative approach, similar to
that taken in classifiers such as logistic regression. Here we model the
conditional distribution p(y|x) directly, which is all that is needed for
classification. This is the approach taken by conditional random fields
(CRFs). CRFs are essentially a way of combining the advantages of dis-
criminative classification and graphical modeling, combining the ability
to compactly model multivariate outputs y with the ability to leverage
a large number of input features x for prediction. The advantage to a
conditional model is that dependencies that involve only variables in x
play no role in the conditional model, so that an accurate conditional

270 Introduction

model can have much simpler structure than a joint model. The differ-
ence between generative models and CRFs is thus exactly analogous
to the difference between the naive Bayes and logistic regression classi-
fiers. Indeed, the multinomial logistic regression model can be seen as
the simplest kind of CRF, in which there is only one output variable.

There has been a large amount of interest in applying CRFs to
many different problems. Successful applications have included text
processing [105, 124, 125], bioinformatics [76, 123], and computer vision
[49, 61]. Although early applications of CRFs used linear chains, recent
applications of CRFs have also used more general graphical structures.
General graphical structures are useful for predicting complex struc-
tures, such as graphs and trees, and for relaxing the independence
assumption among entities, as in relational learning [142].

This survey describes modeling, inference, and parameter estima-
tion using CRFs. We do not assume previous knowledge of graphical
modeling, so this survey is intended to be useful to practitioners in a
wide variety of fields. We begin by describing modeling issues in CRFs
(Section 2), including linear-chain CRFs, CRFs with general graphical
structure, and hidden CRFs that include latent variables. We describe
how CRFs can be viewed both as a generalization of the well-known
logistic regression procedure, and as a discriminative analogue of the
hidden Markov model.

In the next two sections, we describe inference (Section 4) and
learning (Section 5) in CRFs. In this context, inference refers both
to the task of computing the marginal distributions of p(y|x) and to
the related task of computing the maximum probability assignment
y∗ = argmaxy p(y|x). With respect to learning, we will focus on the
parameter estimation task, in which p(y|x) is determined by parame-
ters that we will choose in order to best fit a set of training examples
{x(i),y(i)}Ni=1. The inference and learning procedures are often closely
coupled, because learning usually calls inference as a subroutine.

Finally, we discuss relationships between CRFs and other families
of models, including other structured prediction methods, neural
networks, and maximum entropy Markov models (Section 6).

1.1 Implementation Details 271

1.1 Implementation Details

Throughout this survey, we strive to point out implementation details
that are sometimes elided in the research literature. For example, we
discuss issues relating to feature engineering (Section 2.5), avoiding
numerical underflow during inference (Section 4.3), and the scalability
of CRF training on some benchmark problems (Section 5.5).

Since this is the first of our sections on implementation details, it
seems appropriate to mention some of the available implementations of
CRFs. At the time of writing, a few popular implementations are:

CRF++ http://crfpp.sourceforge.net/
MALLET http://mallet.cs.umass.edu/
GRMM http://mallet.cs.umass.edu/grmm/
CRFSuite http://www.chokkan.org/software/crfsuite/
FACTORIE http://www.factorie.cc

Also, software for Markov Logic networks (such as Alchemy:
http://alchemy.cs.washington.edu/) can be used to build CRF models.
Alchemy, GRMM, and FACTORIE are the only toolkits of which we
are aware that handle arbitrary graphical structure.

2
Modeling

In this section, we describe CRFs from a modeling perspective, explain-
ing how a CRF represents distributions over structured outputs as a
function of a high-dimensional input vector. CRFs can be understood
both as an extension of the logistic regression classifier to arbitrary
graphical structures, or as a discriminative analog of generative models
of structured data, such as hidden Markov models.

We begin with a brief introduction to graphical modeling
(Section 2.1) and a description of generative and discriminative models
in NLP (Section 2.2). Then we will be able to present the for-
mal definition of a CRF, both for the commonly-used case of linear
chains (Section 2.3), and for general graphical structures (Section 2.4).
Because the accuracy of a CRF is strongly dependent on the features
that are used, we also describe some commonly used tricks for engineer-
ing features (Section 2.5). Finally, we present two examples of appli-
cations of CRFs (Section 2.6), a broader survey of typical application
areas for CRFs (Section 2.7).

2.1 Graphical Modeling

Graphical modeling is a powerful framework for representation and
inference in multivariate probability distributions. It has proven useful

272

2.1 Graphical Modeling 273

in diverse areas of stochastic modeling, including coding theory [89],
computer vision [41], knowledge representation [103], Bayesian statis-
tics [40], and natural-language processing [11, 63].

Distributions over many variables can be expensive to represent
näıvely. For example, a table of joint probabilities of n binary vari-
ables requires storing O(2n) floating-point numbers. The insight of the
graphical modeling perspective is that a distribution over very many
variables can often be represented as a product of local functions that
each depend on a much smaller subset of variables. This factorization
turns out to have a close connection to certain conditional indepen-
dence relationships among the variables — both types of information
being easily summarized by a graph. Indeed, this relationship between
factorization, conditional independence, and graph structure comprises
much of the power of the graphical modeling framework: the con-
ditional independence viewpoint is most useful for designing models,
and the factorization viewpoint is most useful for designing inference
algorithms.

In the rest of this section, we introduce graphical models from both
the factorization and conditional independence viewpoints, focusing on
those models which are based on undirected graphs. A more detailed
modern treatment of graphical modeling and approximate inference is
available in a textbook by Koller and Friedman [57].

2.1.1 Undirected Models

We consider probability distributions over sets of random variables Y .
We index the variables by integers s ∈ 1,2, . . . |Y |. Every variable Ys ∈ Y

takes outcomes from a set Y, which can be either continuous or discrete,
although we consider only the discrete case in this survey. An arbitrary
assignment to Y is denoted by a vector y. Given a variable Ys ∈ Y , the
notation ys denotes the value assigned to Ys by y. The notation 1{y=y′}
denotes an indicator function of y which takes the value 1 when y = y′

and 0 otherwise. We also require notation for marginalization. For a
fixed-variable assignment ys, we use the summation

∑
y\ys

to indicate
a summation over all possible assignments y whose value for variable
Ys is equal to ys.

274 Modeling

Suppose that we believe that a probability distribution p of interest
can be represented by a product of factors of the form Ψa(ya) where
a is an integer index that ranges from 1 to A, the number of factors.
Each factor Ψa depends only on a subset Ya ⊆ Y of the variables. The
value Ψa(ya) is a non-negative scalar that can be thought of as a mea-
sure of how compatible the values ya are with each other. Assignments
that have higher compatibility values will have higher probability. This
factorization can allow us to represent p much more efficiently, because
the sets Ya may be much smaller than the full variable set Y .

An undirected graphical model is a family of probability distribu-
tions that each factorize according to a given collection of factors.
Formally, given a collection of subsets {Ya}Aa=1 of Y , an undirected
graphical model is the set of all distributions that can be written as

p(y) =
1
Z

A∏
a=1

Ψa(ya), (2.1)

for any choice of factors F = {Ψa} that have Ψa(ya) ≥ 0 for all ya.
(The factors are also called local functions or compatibility functions.)
We will use the term random field to refer to a particular distribution
among those defined by an undirected model.

The constant Z is a normalization factor that ensures the distribu-
tion p sums to 1. It is defined as

Z =
∑
y

A∏
a=1

Ψa(ya). (2.2)

The quantity Z, considered as a function of the set F of factors, is
also called the partition function. Notice that the summation in (2.2) is
over the exponentially many possible assignments to y. For this reason,
computing Z is intractable in general, but much work exists on how to
approximate it (see Section 4).

The reason for the term “graphical model” is that the factoriza-
tion factorization (2.1) can be represented compactly by means of a
graph. A particularly natural formalism for this is provided by factor
graphs [58]. A factor graph is a bipartite graph G = (V,F,E) in which
one set of nodes V = {1,2, . . . , |Y |} indexes the random variables in the
model, and the other set of nodes F = {1,2, . . . ,A} indexes the factors.

2.1 Graphical Modeling 275

The semantics of the graph is that if a variable node Ys for s ∈ V is
connected to a factor node Ψa for a ∈ F , then Ys is one of the argu-
ments of Ψa. So a factor graph directly describes the way in which a
distribution p decomposes into a product of local functions.

We formally define the notion of whether a factor graph “describes”
a given distribution or not. Let N(a) be the neighbors of the factor with
index a, i.e., a set of variable indices. Then:

Definition 2.1. A distribution p(y) factorizes according to a factor
graph G if there exists a set of local functions Ψa such that p can be
written as

p(y) = Z−1
∏
a∈F

Ψa(yN(a)) (2.3)

A factor graph G describes an undirected model in the same way
that a collection of subsets does. In (2.1), take the collection of subsets
to be the set of neighborhoods {YN(a)|∀a ∈ F}. The resulting undi-
rected graphical model from the definition in (2.1) is exactly the set of
all distributions that factorize according to G.

For example, Figure 2.1 shows an example of a factor graph
over three random variables. In that figure, the circles are variable
nodes, and the shaded boxes are factor nodes. We have labelled the
nodes according to which variables or factors they index. This fac-
tor graph describes the set of all distributions p over three variables
that can be written as p(y1,y2,y3) = Ψ1(y1,y2)Ψ2(y2,y3)Ψ3(y1,y3) for
all y = (y1,y2,y3).

There is a close connection between the factorization of a graphical
model and the conditional independencies among the variables in its
domain. This connection can be understood by means of a different

Fig. 2.1 An example of a factor graph over three variables.

276 Modeling

undirected graph, called a Markov network, which directly represents
conditional independence relationships in a multivariate distribution.
Markov networks are graphs over random variables only, rather than
random variables and factors. Now let G be an undirected graph over
integers V = {1,2, . . . , |Y |} that index each random variable of interest.
For a variable index s ∈ V , let N(s) denote its neighbors in G. Then we
say that a distribution p is Markov with respect to G if it satisfies the
local Markov property: for any two variables Ys,Yt ∈ Y , the variable Ys

is independent of Yt conditioned on its neighbors YN(s). Intuitively,
this means that YN(s) on its own contains all of the information that is
useful for predicting Ys.

Given a factorization of a distribution p as in (2.1), a corresponding
Markov network can be constructed by connecting all pairs of variables
that share a local function. It is straightforward to show that p is
Markov with respect to this graph, because the conditional distribution
p(ys|yN(s)) that follows from (2.1) is a function only of variables that
appear in the Markov blanket.

A Markov network has an undesirable ambiguity from the factoriza-
tion perspective. Consider the three-node Markov network in Figure 2.2
(left). Any distribution that factorizes as p(y1,y2,y3) ∝ f(y1,y2,y3) for
some positive function f is Markov with respect to this graph. How-
ever, we may wish to use a more restricted parameterization, where
p(y1,y2,y3) ∝ f(y1,y2)g(y2,y3)h(y1,y3). This second model family is
a strict subset of the first, so in this smaller family we might not
require as much data to accurately estimate the distribution. But
the Markov network formalism cannot distinguish between these two

Fig. 2.2 A Markov network with an ambiguous factorization. Both of the factor graphs at
right factorize according to the Markov network at left.

2.1 Graphical Modeling 277

parameterizations. In contrast, the factor graph depicts the factoriza-
tion of the model unambiguously.

2.1.2 Directed Models

Whereas the local functions in an undirected model need not have a
direct probabilistic interpretation, a directed graphical model describes
how a distribution factorizes into local conditional probability distribu-
tions. Let G be a directed acyclic graph, in which π(s) are the indices
of the parents of Ys in G. A directed graphical model is a family of
distributions that factorize as:

p(y) =
S∏

s=1

p(ys|yπ(s)). (2.4)

We refer to the distributions p(ys|yπ(s)) as local conditional distribu-
tions. Note that π(s) can be empty for variables that have no parents.
In this case p(ys|yπ(s)) should be understood as p(ys).

It can be shown by induction that p is properly normalized. Directed
models can be thought of as a kind of factor graph in which the indi-
vidual factors are locally normalized in a special fashion so that (a) the
factors equal conditional distributions over subsets of variables, and
(b) the normalization constant Z = 1. Directed models are often used
as generative models, as we explain in Section 2.2.3. An example of a
directed model is the naive Bayes model (2.7), which is depicted graph-
ically in Figure 2.3 (left). In those figures, the shaded nodes indicate
variables that are observed in some data set. This is a convention that
we will use throughout this survey.

2.1.3 Inputs and Outputs

This survey considers the situation in which we know in advance which
variables we will want to predict. The variables in the model will be
partitioned into a set of input variables X that we assume are always
observed, and another set Y of output variables that we wish to predict.
For example, an assignment x might represent a vector of each word
that occurs in a sentence, and y a vector of part of speech labels for
each word.

278 Modeling

We will be interested in building distributions over the combined
set of variables X ∪ Y , and we will extend the previous notation in
order to accommodate this. For example, an undirected model over X

and Y would be given by

p(x,y) =
1
Z

A∏
a=1

Ψa(xa,ya), (2.5)

where now each local function Ψa depends on two subsets of variables
Xa ⊆ X and Ya ⊆ Y . The normalization constant becomes

Z =
∑
x,y

∏
a∈F

Ψa(xa,ya), (2.6)

which now involves summing over all assignments both to x and y.

2.2 Generative versus Discriminative Models

In this section we discuss several examples of simple graphical models
that have been used in natural language processing. Although these
examples are well-known, they serve both to clarify the definitions in
the previous section, and to illustrate some ideas that will arise again
in our discussion of CRFs. We devote special attention to the hidden
Markov model (HMM), because it is closely related to the linear-chain
CRF.

One of the main purposes of this section is to contrast generative
and discriminative models. Of the models that we will describe, two are
generative (the naive Bayes and HMM) and one is discriminative (the
logistic regression model). Generative models are models that describe
how a label vector y can probabilistically “generate” a feature vector x.
Discriminative models work in the reverse direction, describing directly
how to take a feature vector x and assign it a label y. In principle, either
type of model can be converted to the other type using Bayes’s rule, but
in practice the approaches are distinct, each with potential advantages
as we describe in Section 2.2.3.

2.2.1 Classification

First we discuss the problem of classification, that is, predicting a single
discrete class variable y given a vector of features x = (x1,x2, . . . ,xK).

2.2 Generative versus Discriminative Models 279

One simple way to accomplish this is to assume that once the class
label is known, all the features are independent. The resulting classifier
is called the naive Bayes classifier. It is based on a joint probability
model of the form:

p(y,x) = p(y)
K∏

k=1

p(xk|y). (2.7)

This model can be described by the directed model shown in Figure 2.3
(left). We can also write this model as a factor graph, by defining a
factor Ψ(y) = p(y), and a factor Ψk(y,xk) = p(xk|y) for each feature xk.
This factor graph is shown in Figure 2.3 (right).

Another well-known classifier that is naturally represented as a
graphical model is logistic regression (sometimes known as the max-
imum entropy classifier in the NLP community). This classifier can
be motivated by the assumption that the log probability, logp(y|x), of
each class is a linear function of x, plus a normalization constant.1 This
leads to the conditional distribution:

p(y|x) =
1

Z(x)
exp


θy +

K∑
j=1

θy,jxj


 , (2.8)

where Z(x) =
∑

y exp{θy +
∑K

j=1 θy,jxj} is a normalizing constant, and
θy is a bias weight that acts like logp(y) in naive Bayes. Rather than
using one weight vector per class, as in (2.8), we can use a different
notation in which a single set of weights is shared across all the classes.
The trick is to define a set of feature functions that are nonzero only

x

y

x

y

Fig. 2.3 The naive Bayes classifier, as a directed model (left), and as a factor graph (right).

1 By log in this survey we will always mean the natural logarithm.

280 Modeling

for a single class. To do this, the feature functions can be defined as
fy′,j(y,x) = 1{y′=y}xj for the feature weights and fy′(y,x) = 1{y′=y} for
the bias weights. Now we can use fk to index each feature function fy′,j ,
and θk to index its corresponding weight θy′,j . Using this notational
trick, the logistic regression model becomes:

p(y|x) =
1

Z(x)
exp

{
K∑

k=1

θkfk(y,x)

}
. (2.9)

We introduce this notation because it mirrors the notation for CRFs
that we will present later.

2.2.2 Sequence Models

Classifiers predict only a single class variable, but the true power of
graphical models lies in their ability to model many variables that are
interdependent. In this section, we discuss perhaps the simplest form
of dependency, in which the output variables in the graphical model
are arranged in a sequence. To motivate this model, we discuss an
application from natural language processing, the task of named-entity
recognition (NER). NER is the problem of identifying and classifying
proper names in text, including locations, such as China; people, such
as George Bush; and organizations, such as the United Nations. The
named-entity recognition task is, given a sentence, to segment which
words are part of an entity, and to classify each entity by type (person,
organization, location, and so on). The challenge of this problem is
that many named entity strings are too rare to appear even in a large
training set, and therefore the system must identify them based only
on context.

One approach to NER is to classify each word independently as one
of either Person, Location, Organization, or Other (meaning
not an entity). The problem with this approach is that it assumes
that given the input, all of the named-entity labels are independent.
In fact, the named-entity labels of neighboring words are dependent;
for example, while New York is a location, New York Times is an
organization. One way to relax this independence assumption is to
arrange the output variables in a linear chain. This is the approach

2.2 Generative versus Discriminative Models 281

taken by the hidden Markov model (HMM) [111]. An HMM models
a sequence of observations X = {xt}Tt=1 by assuming that there is
an underlying sequence of states Y = {yt}Tt=1. We let S be the finite
set of possible states and O the finite set of possible observations,
i.e., xt ∈ O and yt ∈ S for all t. In the named-entity example, each
observation xt is the identity of the word at position t, and each state
yt is the named-entity label, that is, one of the entity types Person,
Location, Organization, and Other.

To model the joint distribution p(y,x) tractably, an HMM makes
two independence assumptions. First, it assumes that each state
depends only on its immediate predecessor, that is, each state yt is
independent of all its ancestors y1,y2, . . . ,yt−2 given the preceding state
yt−1. Second, it also assumes that each observation variable xt depends
only on the current state yt. With these assumptions, we can specify an
HMM using three probability distributions: first, the distribution p(y1)
over initial states; second, the transition distribution p(yt|yt−1); and
finally, the observation distribution p(xt|yt). That is, the joint proba-
bility of a state sequence y and an observation sequence x factorizes as

p(y,x) =
T∏

t=1

p(yt|yt−1)p(xt|yt). (2.10)

To simplify notation in the above equation, we create a “dummy”
initial state y0 which is clamped to 0 and begins every state sequence.
This allows us to write the initial state distribution p(y1) as p(y1|y0).

HMMs have been used for many sequence labeling tasks in natural-
language processing such as part-of-speech tagging, named-entity
recognition, and information extraction.

2.2.3 Comparison

Both generative models and discriminative models describe distribu-
tions over (y,x), but they work in different directions. A generative
model, such as the naive Bayes classifier and the HMM, is a family
of joint distributions that factorizes as p(y,x) = p(y)p(x|y), that is, it
describes how to sample, or “generate,” values for features given the
label. A discriminative model, such as the logistic regression model, is

282 Modeling

a family of conditional distributions p(y|x), that is, the classification
rule is modeled directly. In principle, a discriminative model could also
be used to obtain a joint distribution p(y,x) by supplying a marginal
distribution p(x) over the inputs, but this is rarely needed.

The main conceptual difference between discriminative and gener-
ative models is that a conditional distribution p(y|x) does not include
a model of p(x), which is not needed for classification anyway. The
difficulty in modeling p(x) is that it often contains many highly depen-
dent features that are difficult to model. For example, in named-entity
recognition, a naive application of an HMM relies on only one feature,
the word’s identity. But many words, especially proper names, will
not have occurred in the training set, so the word-identity feature is
uninformative. To label unseen words, we would like to exploit other
features of a word, such as its capitalization, its neighboring words, its
prefixes and suffixes, its membership in predetermined lists of people
and locations, and so on.

The principal advantage of discriminative modeling is that it is
better suited to including rich, overlapping features. To understand
this, consider the family of naive Bayes distributions (2.7). This is a
family of joint distributions whose conditionals all take the “logistic
regression form” (2.9). But there are many other joint models, some
with complex dependencies among x, whose conditional distributions
also have the form (2.9). By modeling the conditional distribution
directly, we can remain agnostic about the form of p(x). Discrimina-
tive models, such as CRFs, make conditional independence assumptions
among y, and assumptions about how the y can depend on x, but do
not make conditonal independence assumptions among x. This point
also be understood graphically. Suppose that we have a factor graph
representation for the joint distribution p(y,x). If we then construct a
graph for the conditional distribution p(y|x), any factors that depend
only on x vanish from the graphical structure for the conditional distri-
bution. They are irrelevant to the conditional because they are constant
with respect to y.

To include interdependent features in a generative model, we have
two choices. The first choice is to enhance the model to represent depen-
dencies among the inputs, e.g., by adding directed edges among each xt.
But this is often difficult to do while retaining tractability. For example,

2.2 Generative versus Discriminative Models 283

it is hard to imagine how to model the dependence between the capi-
talization of a word and its suffixes, nor do we particularly wish to do
so, since we always observe the test sentences anyway.

The second choice is to make simplifying independence assump-
tions, such as the naive Bayes assumption. For example, an HMM
model with a naive Bayes assumption would have the form p(x,y) =∏T

t=1 p(yt|yt−1)
∏K

k=1 p(xtk|yt). This idea can sometimes work well. But
it can also be problematic because the independence assumptions can
hurt performance. For example, although the naive Bayes classifier per-
forms well in document classification, it performs worse on average
across a range of applications than logistic regression [19].

Furthermore, naive Bayes can produce poor probability estimates.
As an illustrative example, imagine training naive Bayes on a two
class problem in which all the features are repeated, that is, given
an original feature vector x = (x1,x2, . . . ,xK), we transform it to x′ =
(x1,x1,x2,x2, . . . ,xK ,xK) and then run naive Bayes. Even though no
new information has been added to the data, this transformation will
increase the confidence of the probability estimates, by which we mean
that the naive Bayes estimates of p(y|x′) will tend to be farther from
0.5 than those of p(y|x).

Assumptions like naive Bayes can be especially problematic when
we generalize to sequence models, because inference should combine
evidence from different parts of the model. If probability estimates of
the label at each sequence position are overconfident, it can be difficult
to combine them sensibly.

The difference between naive Bayes and logistic regression is due
only to the fact that the first is generative and the second discrimi-
native; the two classifiers are, for discrete input, identical in all other
respects. Naive Bayes and logistic regression consider the same hypoth-
esis space, in the sense that any logistic regression classifier can be
converted into a naive Bayes classifier with the same decision boundary,
and vice versa. Another way of saying this is that the naive Bayes model
(2.7) defines the same family of distributions as the logistic regression
model (2.9), if we interpret it generatively as

p(y,x) =
exp{∑k θkfk(y,x)}∑
ỹ,x̃ exp{∑k θkfk(ỹ, x̃)} . (2.11)

284 Modeling

This means that if the naive Bayes model (2.7) is trained to maximize
the conditional likelihood, we recover the same classifier as from logis-
tic regression. Conversely, if the logistic regression model is interpreted
generatively, as in (2.11), and is trained to maximize the joint likeli-
hood p(y,x), then we recover the same classifier as from naive Bayes.
In the terminology of Ng and Jordan [98], naive Bayes and logistic
regression form a generative-discriminative pair. For a recent theoreti-
cal perspective on generative and discriminative models, see Liang and
Jordan [72].

In principle, it may not be clear why these approaches should be
so different, because we can always convert between the two methods
using Bayes rule. For example, in the naive Bayes model, it is easy
to convert the joint p(y)p(x|y) into a conditional distribution p(y|x).
Indeed, this conditional has the same form as the logistic regression
model (2.9). And if we managed to obtain a “true” generative model
for the data, that is, a distribution p∗(y,x) = p∗(y)p∗(x|y) from which
the data were actually sampled, then we could simply compute the true
p∗(y|x), which is exactly the target of the discriminative approach. But
it is precisely because we never have the true distribution that the two
approaches are different in practice. Estimating p(y)p(x|y) first, and
then computing the resulting p(y|x) (the generative approach) yields
a different estimate than estimating p(y|x) directly. In other words,
generative and discriminative models both have the aim of estimating
p(y|x), but they get there in different ways.

One perspective for gaining insight into the difference between gen-
erative and discriminative modeling is due to Minka [93]. Suppose we
have a generative model pg with parameters θ. By definition, this takes
the form:

pg(y,x;θ) = pg(y;θ)pg(x|y;θ). (2.12)

But we could also rewrite pg using the chain rule of probability as

pg(y,x;θ) = pg(x;θ)pg(y|x;θ), (2.13)

where pg(x;θ) and pg(y|x;θ) are computed by inference, i.e., pg(x;θ) =∑
y pg(y,x;θ) and pg(y|x;θ) = pg(y,x;θ)/pg(x;θ).

2.2 Generative versus Discriminative Models 285

Now, compare this generative model to a discriminative model
over the same family of joint distributions. To do this, we define
a prior p(x) over inputs, such that p(x) could have arisen from pg

with some parameter setting. That is, p(x) = pc(x;θ′) =
∑

y pg(y,x|θ′),
where θ′ will typically be distinct from the θ in (2.13). We combine this
with a conditional distribution pc(y|x;θ) that could also have arisen
from pg, that is, pc(y|x;θ) = pg(y,x;θ)/pg(x;θ). Then the resulting
distribution is

pc(y,x) = pc(x;θ′)pc(y|x;θ). (2.14)

By comparing (2.13) with (2.14), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require
that θ = θ′. Intuitively, because the parameters θ in (2.13) are used in
both the input distribution and the conditional, a good set of param-
eters must represent both well, potentially at the cost of trading off
accuracy on p(y|x), the distribution we care about, for accuracy on
p(x), which we care less about. On the other hand, the added degree of
freedom brings about an increased risk of overfitting the training data,
and generalizing worse on unseen data.

Although so far we have been criticizing generative models, they do
have advantages as well. First, generative models can be more natu-
ral for handling latent variables, partially-labeled data, and unlabelled
data. In the most extreme case, when the data is entirely unlabeled,
generative models can be applied in an unsupervised fashion, whereas
unsupervised learning in discriminative models is less natural and is
still an active area of research.

Second, in some cases a generative model can perform better than
a discriminative model, intuitively because the input model p(x) may
have a smoothing effect on the conditional. Ng and Jordan [98] argue
that this effect is especially pronounced when the data set is small. For
any particular data set, it is impossible to predict in advance whether
a generative or a discriminative model will perform better. Finally,
sometimes either the problem suggests a natural generative model, or
the application requires the ability to predict both future inputs and
future outputs, making a generative model preferable.

286 Modeling

Because a generative model takes the form p(y,x) = p(y)p(x|y), it
is often natural to represent a generative model by a directed graph
in which in outputs y topologically precede the inputs. Similarly, we
will see that it is often natural to represent a discriminative model
by a undirected graph. However, this need not always be the case,
and both undirected generative models, such as the Markov random
field (2.32), and directed discriminative models, such as the MEMM
(6.2), are sometimes used. It can also be useful to depict discriminative
models by directed graphs in which the x precede the y.

The relationship between naive Bayes and logistic regression mirrors
the relationship between HMMs and linear-chain CRFs. Just as naive
Bayes and logistic regression are a generative-discriminative pair, there
is a discriminative analogue to the HMM, and this analogue is a partic-
ular special case of CRF, as we explain in the next section. This analogy
between naive Bayes, logistic regression, generative models, and CRFs
is depicted in Figure 2.4.

Fig. 2.4 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

2.3 Linear-chain CRFs

To motivate our introduction of linear-chain CRFs, we begin by
considering the conditional distribution p(y|x) that follows from the
joint distribution p(y,x) of an HMM. The key point is that this
conditional distribution is in fact a CRF with a particular choice of
feature functions.

2.3 Linear-chain CRFs 287

First, we rewrite the HMM joint (2.10) in a form that is more
amenable to generalization. This is

p(y,x) =
1
Z

T∏
t=1

exp




∑
i,j∈S

θij1{yt=i}1{yt−1=j}

+
∑
i∈S

∑
o∈O

µoi1{yt=i}1{xt=o}


 , (2.15)

where θ = {θij ,µoi} are the real-valued parameters of the distribution
and Z is a normalization constant chosen so the distribution sums to
one.2 If we had not added Z in the (2.15), then some choices of θ would
not yield proper distributions over (y,x), e.g., set all the parameters
to 1.

Now the interesting point is that (2.15) describes (almost) exactly
the class (2.10) of HMMs. Every homogeneous HMM can be written in
the form (2.15) by setting

θij = logp(y′ = i|y = j)

µoi = logp(x = o|y = i)

Z = 1

The other direction is true as well, namely, every distribution that
factorizes as in (2.15) is an HMM.3 (This can be shown by construct-
ing the corresponding HMM using the forward–backward algorithm of
Section 4.1.) So despite the added flexibility in the parameterization,
we have not added any distributions to the family.

We can write (2.15) more compactly by introducing the concept
of feature functions, just as we did for logistic regression in (2.9).
Each feature function has the form fk(yt,yt−1,xt). In order to dupli-
cate (2.15), there needs to be one feature fij(y,y′,x) = 1{y=i}1{y′=j}

2 Not all choices of θ are valid, because the summation defining Z, that is, Z =∑
y

∑
x

∏T
t=1 exp

{∑
i,j∈S θij1{yt=i}1{yt−1=j} +

∑
i∈S

∑
o∈O µoi1{yt=i}1{xt=o}

}
,

might not converge. An example of this is a model with one state where θ00 > 0. This
issue is typically not an issue for CRFs, because in a CRF the summation within Z is
usually over a finite set.

3 But not necessarily a homogeneous HMM, which is an annoying technicality.

288 Modeling

for each transition (i, j) and one feature fio(y,y′,x) = 1{y=i}1{x=o} for
each state-observation pair (i,o). We refer to a feature function gener-
ically as fk, where fk ranges over both all of the fij and all of the fio.
Then we can write an HMM as:

p(y,x) =
1
Z

T∏
t=1

exp

{
K∑

k=1

θkfk(yt,yt−1,xt)

}
. (2.16)

Again, equation (2.16) defines exactly the same family of distributions
as (2.15), and therefore as the original HMM equation (2.10).

The last step is to write the conditional distribution p(y|x) that
results from the HMM (2.16). This is

p(y|x) =
p(y,x)∑
y′ p(y′,x)

=

∏T
t=1 exp

{∑K
k=1 θkfk(yt,yt−1,xt)

}
∑

y′
∏T

t=1 exp
{∑K

k=1 θkfk(y′
t,y

′
t−1,xt)

} .

(2.17)
This conditional distribution (2.17) is a particular kind of linear-chain
CRF, namely, one that includes features only for the current word’s
identity. But many other linear-chain CRFs use richer features of the
input, such as prefixes and suffixes of the current word, the identity of
surrounding words, and so on. Fortunately, this extension requires little
change to our existing notation. We simply allow the feature functions
to be more general than indicator functions. This leads to the general
definition of linear-chain CRFs:

Definition 2.2. Let Y,X be random vectors, θ = {θk} ∈ 	K be a
parameter vector, and F = {fk(y,y′,xt)}Kk=1 be a set of real-valued
feature functions. Then a linear-chain conditional random field is a
distribution p(y|x) that takes the form:

p(y|x) =
1

Z(x)

T∏
t=1

exp

{
K∑

k=1

θkfk(yt,yt−1,xt)

}
, (2.18)

where Z(x) is an input-dependent normalization function

Z(x) =
∑
y

T∏
t=1

exp

{
K∑

k=1

θkfk(yt,yt−1,xt)

}
. (2.19)

2.3 Linear-chain CRFs 289

Notice that a linear chain CRF can be described as a factor graph
over x and y, i.e.,

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt,yt−1,xt) (2.20)

where each local function Ψt has the special log-linear form:

Ψt(yt,yt−1,xt) = exp

{
K∑

k=1

θkfk(yt,yt−1,xt)

}
. (2.21)

This will be useful when we move to general CRFs in the next section.
Typically we will learn the parameter vector θ from data, as

described in Section 5.
Previously we have seen that if the joint p(y,x) factorizes as an

HMM, then the associated conditional distribution p(y|x) is a linear-
chain CRF. This HMM-like CRF is pictured in Figure 2.5. Other types
of linear-chain CRFs are also useful, however. For example, in an HMM,
a transition from state i to state j receives the same score, logp(yt =
j|yt−1 = i), regardless of the input. In a CRF, we can allow the score
of the transition (i, j) to depend on the current observation vector,
simply by adding a feature 1{yt=j}1{yt−1=1}1{xt=o}. A CRF with this
kind of transition feature, which is commonly used in text applications,
is pictured in Figure 2.6.

In fact, since CRFs do not represent dependencies among the vari-
ables x1, . . .xT , we can allow the factors Ψt to depend on the entire
observation vector x without breaking the linear graphical structure —
allowing us to treat x as a single monolithic variable. As a result, the
feature functions can be written fk(yt,yt−1,x) and have the freedom
to examine all the input variables x together. This fact applies gener-
ally to CRFs and is not specific to linear chains. A linear-chain CRF

. . .

. . .

y

x

Fig. 2.5 Graphical model of the HMM-like linear-chain CRF from equation (2.17).

290 Modeling

. . .

. . .

y

x

Fig. 2.6 Graphical model of a linear-chain CRF in which the transition factors depend on
the current observation.

. . .

. . .

y

x

Fig. 2.7 Graphical model of a linear-chain CRF in which the transition factors depend on
all of the observations.

with this structure in shown graphically in Figure 2.7. In this figure we
show x = (x1, . . .xT) as a single large observed node on which all of the
factors depend, rather than showing each of the x1, . . .xT as individual
nodes.

To indicate in the definition of linear-chain CRF that each feature
function can depend on observations from any time step, we have writ-
ten the observation argument to fk as a vector xt, which should be
understood as containing all the components of the global observations
x that are needed for computing features at time t. For example, if the
CRF uses the next word xt+1 as a feature, then the feature vector xt

is assumed to include the identity of word xt+1.
Finally, note that the normalization constant Z(x) sums over all

possible state sequences, an exponentially large number of terms.
Nevertheless, it can be computed efficiently by the forward–backward
algorithm, as we explain in Section 4.1.

2.4 General CRFs

Now we generalize the previous discussion from a linear-chain to a
general graph, matching the definition of a CRF originally given in

2.4 General CRFs 291

Lafferty et al. [63]. Conceptually the generalization is straightforward.
We simply move from using a linear-chain factor graph to a more gen-
eral factor graph.

Definition 2.3. Let G be a factor graph over X and Y . Then (X,Y)
is a conditional random field if for any value x of X, the distribution
p(y|x) factorizes according to G.

Thus, every conditional distribution p(y|x) is a CRF for some, per-
haps trivial, factor graph. If F = {Ψa} is the set of factors in G, then
the conditional distribution for a CRF is

p(y|x) =
1

Z(x)

A∏
a=1

Ψa(ya,xa). (2.22)

The difference between this equation and the general definition (2.1) of
an undirected graphical model is that now the normalization constant
Z(x) is a function of the input x. Because conditioning tends to simplify
a graphical model, Z(x) may be computable whereas Z might not have
been.

As we have done for HMMs and linear chain CRFs, it is often use-
ful to require that logΨa be linear over a prespecified set of feature
functions, that is,

Ψa(ya,xa) = exp




K(A)∑
k=1

θakfak(ya,xa)


 , (2.23)

where both the feature functions fak and the weights θak are indexed
by the factor index a to emphasize that each factor has its own set
of weights. In general, each factor is permitted to have a different set
of feature functions as well. Notice that if x and y are discrete, then
the log-linear assumption (2.23) is no additional restriction, because we
could choose fak to be indicator functions for each possible assignment
(ya,xa), similarly to the way in which we converted an HMM into a
linear-chain CRF.

292 Modeling

Putting together (2.22) and (2.23), the conditional distribution for
a CRF with log-linear factors can be written as

p(y|x) =
1

Z(x)

∏
ΨA∈F

exp




K(A)∑
k=1

θakfak(ya,xa)


 . (2.24)

In addition, most applied models rely extensively on parameter tying.
For example, in the linear-chain case, typically the same weights are
used for the factors Ψt(yt,yt−1,xt) at each time step. To denote this,
we partition the factors of G into C = {C1,C2, . . .CP }, where each Cp

is a clique template, which is a set of factors sharing a set of feature
functions {fpk(xc,yc)}K(p)

k=1 and a corresponding set of parameters θp ∈
	K(p). A CRF that uses clique templates can be written as

p(y|x) =
1

Z(x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,yc;θp), (2.25)

where each templated factor is parameterized as

Ψc(xc,yc;θp) = exp




K(p)∑
k=1

θpkfpk(xc,yc)


 , (2.26)

and the normalization function is

Z(x) =
∑
y

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,yc;θp). (2.27)

This notion of clique template specifies both repeated structure and
parameter tying in the model. For example, in a linear-chain CRF,
typically one clique template C0 = {Ψt(yt,yt−1,xt)}Tt=1 is used for the
entire network, so C = {C0} is a singleton set. If instead we want each
factor Ψt to have a separate set of parameters for each t, similar to
a non-homogeneous HMM, this would be accomplished using T tem-
plates, by taking C = {Ct}Tt=1, where Ct = {Ψt(yt,yt−1,xt)}.

One of the most important considerations in defining a general CRF
lies in specifying the repeated structure and parameter tying. A num-
ber of formalisms have been proposed to specify the clique templates,
which we will mention only briefly. For example, dynamic conditional

2.5 Feature Engineering 293

random fields [140] are sequence models which allow multiple labels at
each time step, rather than a single label, in a manner analogous to
dynamic Bayesian networks. Second, relational Markov networks [142]
are a type of general CRF in which the graphical structure and param-
eter tying are determined by an SQL-like syntax. Markov logic net-
works [113, 128] use logical formulae to specify the scopes of local
functions in an undirected model. Essentially, there is a set of param-
eters for each first-order rule in a knowledge base. The logic portion
of an MLN can be viewed as essentially a programming convention for
specifying the repeated structure and parameter tying of an undirected
model. Imperatively defined factor graphs [87] use the full expressivity
of Turing-complete functions to define the clique templates, specifying
both the structure of the model and the sufficient statistics fpk. These
functions have the flexibility to employ advanced programming ideas
including recursion, arbitrary search, lazy evaluation, and memoiza-
tion. The notion of clique template that we present in this survey is
inspired by those in Taskar et al. [142], Sutton et al. [140], Richardson
and Domingos [113], and McCallum et al. [87].

2.5 Feature Engineering

In this section we describe some “tricks of the trade” that involve fea-
ture engineering. Although these apply especially to language appli-
cations, they are also useful more generally. The main tradeoff is the
classic one, that using larger features sets can lead to better prediction
accuracy, because the final decision boundary can be more flexible, but
on the other hand larger feature sets require more memory to store all
the corresponding parameters, and could have worse prediction accu-
racy due to overfitting.

Label-observation features. First, when the label variables are
discrete, the features fpk of a clique template Cp are ordinarily chosen
to have a particular form:

fpk(yc,xc) = 1{yc=ỹc}qpk(xc). (2.28)

In other words, each feature is nonzero only for a single output con-
figuration ỹc, but as long as that constraint is met, then the feature

294 Modeling

value depends only on the input observation. We call features that
have this form label-observation features. Essentially, this means that
we can think of our features as depending only on the input xc, but
that we have a separate set of weights for each output configuration.
This feature representation is also computationally efficient, because
computing each qpk may involve nontrivial text or image processing,
and it need be evaluated only once for every feature that uses it. To
avoid confusion, we refer to the functions qpk(xc) as observation func-
tions rather than as features. Examples of observation functions are
“word xt is capitalized” and “word xt ends in ing.”

Unsupported Features. The use of label-observation features can
result in a large number of parameters. For example, in the first large-
scale application of CRFs, Sha and Pereira [125] use 3.8 million binary
features in their best model. Many of these features never occur in the
training data; they are always zero. The reason this happens is that
some observation functions occur only with a small set of labels. For
example, in a task of identifying named entities, the feature “word xt is
with and label yt is City-Name” is unlikely to ever have a value of 1 in
the training data. We call these unsupported features. Perhaps surpris-
ingly, these features can be useful. This is because they can be given
a negative weight that prevents the spurious label (e.g. City-Name)
from being assigned high probability. (Decreasing the score of label
sequences that do not occur in the training data will tend to make the
label sequence that does occur more likely, so the parameter estimation
procedures that we describe later do in fact assign negative weights to
such features.) Including unsupported features typically results in slight
improvements in accuracy, at the cost of greatly increasing the number
of parameters in the model.

As a simple heuristic for getting some of the benefits of unsupported
features with less memory, we have had success with an ad hoc tech-
nique for selecting a small set of unsupported features, which could be
called the “unsupported features trick.” The idea is that many unsup-
ported features are not useful because the model is unlikely to make
mistakes that cause them to be active. For example, the “with” feature
above is unlikely to be useful, because “with” is a common word that
will be strongly associated with the Other (not a named entity) label.

2.5 Feature Engineering 295

To reduce the number of parameters, we would like to include only
those unsupported features that will correct likely mistakes. A simple
way to do this is: First train a CRF without any unsupported features,
stopping after a few iterations so that the model is not fully trained.
Then add unsupported features for all cliques in which the model does
not already have the correct answer with high confidence. In the exam-
ple above, we would add the “with” feature if we found a training
instance i and sequence position t in which x

(i)
t is with and y

(i)
t is not

City-Name and p(yt = City-Name|x(i)
t) is larger than some ε > 0.

Edge-Observation and Node-Observation Features. In order
to reduce the number of features in the model, we can choose to
use label-observation features for certain clique templates but not
for others. The two most common types of label-observation features
are edge-observation features and node-observation features. Consider
a linear chain CRF that has M observation functions {qm(x)}, for
m ∈ {1,2, . . .M}. If edge-observation features are used, then the fac-
tor for every transition can depend on all of the observation functions,
so that we can use features like “word xt is New, label yt is Loca-
tion and label yt−1 is Location.” This can lead to a large number
of parameters in the model, which can have disadvantages of memory
usage and propensity to overfitting. One way to reduce the number
of parameters is to use node-observation features instead. With this
style of features, the transition factors can no longer depend on the
observation functions. So we would be allowed features like “label yt

is Location and label yt−1 is Location” and “word xt is New and
label yt is Location,” but we would not be able to use a feature that
depends on xt, yt, and yt−1 all at once. Both edge-observation features
and node-observation features are described formally in Table 2.1. As
usual, which of these two choices is preferable depends on the individ-
ual problem, such as the number of observation functions and the size
of the data set.

Boundary Labels. A final choice is how to handle labels on the
boundaries, e.g., at the start or end of a sequence or at the edge of
an image. Sometimes boundary labels will have different characteris-
tics than other labels. For example, in the middle of a sentence cap-
italization usually indicates a proper noun, but not at the beginning

296 Modeling

Table 2.1. Edge-observation features versus node-observation features.

Edge-observation features:

f(yt,yt−1,xt) = qm(xt)1{yt=y}1{yt−1=y′} ∀y,y′ ∈ Y,∀m

f(yt,xt) = qm(xt)1{yt=y} ∀y ∈ Y,∀m

Node-observation features:

f(yt,yt−1,xt) = 1{yt=y}1{yt−1=y′} ∀y,y′ ∈ Y
f(yt,xt) = qm(xt)1{yt=y} ∀y ∈ Y,∀m

of the sentence. A simple way to represent this is to begin the label
sequence of each sentence with a special Start label, which allows
learning any special characteristics of boundary labels. For example,
if edge-observation features are also used, then a feature like “yt−1 =
Start and yt = Person and word xt is capitalized,” can represent the
fact that capitalization is not a reliable indicator at the beginning of a
sentence.

Feature Induction. The “unsupported features trick” described
above is a poor man’s version of feature induction. McCallum [83]
presents a more principled method of feature induction for CRFs, in
which the model begins with a number of base features, and the train-
ing procedure adds conjunctions of those features. Alternatively, one
can use feature selection. A modern method for feature selection is L1

regularization, which we discuss in Section 5.1.1. Lavergne et al. [65]
find that in the most favorable cases L1 finds models in which only 1%
of the full feature set is nonzero, but with comparable performance to a
dense feature setting. They also find it useful, after optimizing the L1-
regularized likelihood to find a set of nonzero features, to fine-tune the
weights of the nonzero features only using an L2-regularized objective.

Categorical Features. If the observations are categorical rather
than ordinal, that is, if they are discrete but have no intrinsic order, it
is important to convert them to binary features. For example, it makes
sense to learn a linear weight on fk(y,xt) when fk is 1 if xt is the word
dog and 0 otherwise, but not when fk is the integer index of word xt

in the text’s vocabulary. Thus, in text applications, CRF features are

2.5 Feature Engineering 297

typically binary; in other application areas, such as vision and speech,
they are more commonly real-valued. For real-valued features, it can
help to apply standard tricks such as normalizing the features to have
mean 0 and standard deviation 1 or to bin the features to convert them
to categorical values and then binary features as above.

Features from Different Time Steps. Although our notation
f(yt,yt−1,xt) for features obscures this, it is usually important for the
features to depend on information not only from the nearest label but
also from neighboring labels as well. An example of such a feature is
“word xt+2 is Times and label yt is Organization,” which could be
useful for identifying the name of the New York Times newspaper. It
can be useful to include conjunctions of features from neighboring time
steps as well, e.g., “words xt+1 and xt+2 are York Times.”

Features as Backoff. In language applications, it is sometimes
helpful to include redundant factors in the model. For example, in
a linear-chain CRF, one may choose to include both edge factors
Ψt(yt,yt−1,xt) and variable factors Ψt(yt,xt). Although one could
define the same family of distributions using only edge factors, the
redundant node factors provide a benefit similar to that of backoff in
language modelling, which is useful when the amount of data is small
compared to the number of features. (When there are hundreds of thou-
sands of features, many data sets are small!) It is important to use reg-
ularization (Section 5.1.1) when using redundant features because it is
the penalty on large weights that encourages the weight to be spread
across the overlapping features.

Features as Model Combination. Another interesting type of
feature can be the results of simpler methods for the same task. For
example, if one already has a simple rule-based system for a task (e.g.,
with rules like “any string of digits between 1900 and 2100 is a year”),
the predictions of that system can be used as an observation function
for a CRF. Another example is gazetteer features, which are observa-
tion functions based on predefined lists of terms, e.g., “q(xt) = 1 if xt

appears in a list of city names obtained from Wikipedia.”
A more complex example is to use the output of a generative model

as input to the discriminative model. For example, one could use a
feature like ft(y,x) = pHMM(yt = y|x), where pHMM denotes the marginal

298 Modeling

probability of label yt = y from an HMM trained on a similar data set.
It is probably not a good idea to train the HMM and the CRF-with-
HMM-feature on the same data set, because the HMM is expected to
perform very well on its own training set, which could perhaps cause
the CRF to rely on it too much. This technique can be useful if the goal
is to improve on a previous system for the same task. Bernal et al.[7]
is a good example of doing this in the concept of identifying genes in
DNA sequences.

A related idea is to cluster the inputs xt, e.g., cluster all of the
words in the corpus by whatever method you like, and then use the
cluster label for word xt as an additional feature. This sort of feature
was used to good effect by Miller et al. [90].

Input-Dependent Structure. In a general CRF, it is sometimes
useful to allow the structure of the graph for p(y|x) depend on the
input x. A simple example of this is the “skip-chain CRF” [37, 117, 133]
which has been used in text applications. The idea behind the skip-
chain CRF is that whenever the same word appears twice in the same
sentence, we would like to encourage both occurrences of the word
to have the same label. So we add an edge between the labels of the
corresponding words. This results in a graphical structure over y that
depends on the inputs x.

2.6 Examples

In this section, we present more details about two example applications
of CRFs. The first is a linear-chain CRF for a natural language text,
and the second is a grid-structured CRF for computer vision.

2.6.1 Named-Entity Recognition

Named-entity recognition is the problem of segmenting and classifying
proper names, such as names of people and organization, in text. Since
we have been using this task as a running example throughout the
section, now we will describe a CRF for this problem in more detail.

An entity is an individual person, place, or thing in the world,
while a mention is a phrase of text that refers to an entity using a
proper name. The problem of named-entity recognition is in part one

2.6 Examples 299

of segmentation because mentions in English are often multi-word, e.g.,
The New York Times, the White House. The exact entity types that are
of interest vary across different settings of the problem. For example, in
the CoNLL 2003 shared task [121], entities are people, locations, orga-
nizations, and miscellaneous entities. In biomedical domains [55, 51],
on the other hand, the interest is in representing information from the
molecular biology literature, so entities can include genes, proteins, and
cell lines. For this example, we will consider the CoNLL 2003 shared
task, because it is a good representative example of early applications
of CRFs.

The data of the CoNLL 2003 shared task consists of news articles
from English and German. The English articles are newswire articles
from Reuters taken from between 1996 and 1997. The English data
consists of a training set of 946 news articles comprising 203,621 tokens,
a development set of 216 articles and 51,362 tokens, and a test set of
231 articles comprising 46,435 tokens. Each of the articles have been
manually annotated to indicate the locations and types of all of the
named entities. An example sentence is U.N. official Ekeus heads for
Baghdad ; in this sentence, the token U.N. is labeled as a organization,
Ekeus a person, and Baghdad a location.

In order to represent this as a sequence labeling problem, we need to
convert the entity annotations into a sequence of labels. This labelling
needs to handle the fact that multi-word phrases (like the New York
Times) can refer to a single entity. There is a standard trick for this: we
use one type of label (B-???) for the first word of a mention, another
type of label (I-???) for any subsequent words in the mention, and
finally a label O for words that do not reference any named entity.
This label scheme, which is called BIO notation, has the advantages
that it can segment two different entities of the same type that occur
side-by-side, e.g., Alice gave Bob Charlie’s ball, and that the B-???
labels can have different weights than the corresponding I-??? labels.
There are other schemes apart from BIO notation for converting the
segmentation problem to an entity labelling problem, but we will not
discuss them here.

In the CoNLL 2003 data set, there are four types of entities: people
(PER), organizations (ORG), locations (LOC), and other types of

300 Modeling

entities (MISC). So we need 9 labels

Y={B-Per,I-PER,B-Loc,I-Loc,B-Org,I-Org,B-Misc,I-Misc,O}
With this labeling, our example sentence looks like:

t yt xt

0 B-ORG U.N.
1 O official
2 B-PER Ekeus
3 O heads
4 O for
5 B-LOC Baghdad

To define a linear chain CRF for this problem, we need to choose the
set F of feature functions fk(yt,yt−1,xt). The simplest choice is the
HMM-like feature set that we have already described. In this feature
set there are two kinds of features. The first kind we will call label–label
features, which are:

fll
ij (yt,yt−1,xt) = 1{yt=i}1{yt−1=j}∀i, j ∈ Y. (2.29)

For this problem, there are 9 different labels, so there are 81 label–label
features. The second kind are label-word features, which are

flw
iv (yt,yt−1,xt) = 1{yt=i}1{xt=v}∀i ∈ Y,v ∈ V, (2.30)

where V is the set of all unique words that appear in the corpus. For
the CoNLL 2003 English data set, there are 21,249 such words, so there
are 191,241 label-word features. Most of these features will not be very
useful, e.g., they will correspond to words that occur only once in the
training set. To see the relationship to (2.18), our full set of features is
F = {fll

ij |∀i, j ∈ Y} ∪ {flw
iv |∀i ∈ Y,v ∈ V}.

A practical NER system will use much more complex features than
this. For example, when predicting the label of the word Baghdad, it
can be helpful to know that the previous word was for. To represent
this in our notation, we augment each of the vectors xt to include the
neighboring words, i.e., each vector xt = (xt0,xt1,xt2), where xt1 is the
identity of the word at position t, and xt0 and xt2 are the preceding and
succeeding words, respectively. The beginning and end of the sequence

2.6 Examples 301

are padded with special 〈START〉 and 〈END〉 tokens. Now our example
sentence becomes

t yt xt

0 B-ORG (〈START〉, U.N., official)
1 O (U.N., official, Ekeus)
2 B-PER (official, Ekeus, heads)
3 O (Ekeus, heads, for)
4 O (heads, for, Baghdad)
5 B-LOC (for, Baghdad, 〈END〉)

To construct a CRF, we retain the label–label features as before, but
now we have three different kinds of label-word features:

flw0
iv (yt,yt−1,xt) = 1{yt=i}1{xt0=v} ∀i ∈ Y,v ∈ V

flw1
iv (yt,yt−1,xt) = 1{yt=i}1{xt1=v} ∀i ∈ Y,v ∈ V

flw2
iv (yt,yt−1,xt) = 1{yt=i}1{xt2=v} ∀i ∈ Y,v ∈ V.

However, we wish to use still more features than this, which will depend
mostly on the word xt. So we will add label-observation features, as
decribed in Section 2.5. To define these, we will define a series of obser-
vation functions qb(x) that take a single word x as input. For each
observation function qb, the corresponding label-observation features
flo

ib have the form:

flo
ib (yt,yt−1,xt) = 1{yt=i}qb(xt) ∀i ∈ Y. (2.31)

When McCallum and Li [86] applied a CRF to this data set, they used a
large set of observation functions, some of which are listed in Table 2.2.
All of these are binary functions. The example sentence with this third
feature set is given in Table 2.3. To display the feature set, we list the
observation functions which are nonzero for each word.

These features are typical of those that are used in CRFs for text
applications, but they should not be taken as the best possible fea-
ture set for this problem. For this particular task, Chieu and Ng [20]
had an especially good set of features, during the competition was the
best result obtained by a single model (i.e., without using ensemble
methods).

302 Modeling

Table 2.2. A subset of observation functions qs(x, t) for the CoNLL 2003 Engilsh
named-entity data, used by Mccallum and Li [86].

W=v wt = v ∀v ∈ V
T=j part-of-speech tag for wt is j (as determined by an

automatic tagger)
∀POS tags j

P=I−j wt is part of a phrase with syntactic type j (as
determined by an automatic chunker)

Capitalized wt matches [A-Z][a-z]+
Allcaps wt matches [A-Z][A-Z]+
EndsInDot wt matches [̂

/

.]+.*

/

.
wt contains a dash
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

Acro wt matches [A-Z][A-Z

//

.]*

//

.[A-Z

//

.]*
Stopword wt appears in a hand-built list of stop words
CountryCapital wt appears in list of capitals of countries
... many other lexicons and regular expressions
qk(x, t + δ) for all k and δ ∈ [−1,1]

Table 2.3. The example sentence U.N. official Ekeus heads for Baghdad converted into
a sequence x1,x2, . . .x5 of feature vectors, using the set of observation functions defined
in Table 2.2. Each row lists the names of the observation functions that are nonzero.

t yt Active observation functions

1 B-ORG P=I-NP@1 W=〈START〉@-1 INITCAP P=I-NP T=NNP
T=NN@1 ACRO ENDSINDOT W=official@1 W=U.N.

2 O P=I-NP@1 INITCAP@1 P=I-NP T=JJ@1
CAPITALIZED@1 T=NNP@-1 P=I-NP@-1
INITCAP@-1 T=NN ENDSINDOT@-1 ACRO@-1
W=official W=U.N.@-1W=Ekeus@1

3 B-PER P=I-NP@1 INITCAP P=I-NP P=I-NP@-1
CAPITALIZED T=JJ T=NN@-1 T=NNS@1
W=official@-1 W=heads@1 W=Ekeus

4 O P=I-NP P=I-NP@-1 INITCAP@-1 STOPWORD@1
T=JJ@-1 CAPITALIZED@-1 T=IN@1 P=I-PP@1
T=NNS W=for@1 W=heads W=Ekeus@-1

5 O T=NNP@1 P=I-NP@1 INITCAP@1 LOC@1
CAPITALIZED@1 P=I-NP@-1 STOPWORD
COUNTRYCAPITAL@1 P=I-PP T=IN T=NNS@-1
W=for W=Baghdad@1 W=heads@-1

6 B-LOC INITCAP P=I-NP T=NNP CAPITALIZED
STOPWORD@-1 T=.@1 P=O@1 PUNC@1
W=〈END〉@1 COUNTRYCAPITAL T=IN@-1
P=I-PP@-1 W=for@-1 W=Baghdad

2.6 Examples 303

2.6.2 Image Labelling

Many different CRF topologies have been used for computer vision.
As an example application, we may wish to classify areas of a given
input image according to whether they are foreground or background,
they are a manmade structure or not [61, 62], or whether they are sky,
water, vegetation, etc. [49].

More formally, let the vector x = (x1,x2, . . .xT) represent an image
of size

√
T × √T , represented as a single vector. That is, x1:

√
T gives

the pixels in row 1, x√
T+1:2

√
T those in row 2, etc. Each individual xi

represents the value of an individual pixel in the image. To keep the
example simple, think of the image as being in black and white, so that
xi will be a real number between 0 and 256 that gives the intensity of
the pixel at location i. (The ideas here extend in a simple way to color
images.) The goal is to predict a vector y = (y1,y2, . . . ,yT), where each
yi gives the label of site i, e.g., +1 if the pixel is a manmade structure,
−1 otherwise.

There is an enormous variety of image features that have been pro-
posed in the computer vision literature. As a simple example, given
a pixel at location i, we can compute a histogram of pixel intensities
in a 5 × 5 box of pixels centered at i, and then include the count of
each bin in the histogram as features. Typically more complex features
are used, for example, features that use gradients of the image, texton
features [127], and SIFT features [77]. Importantly, these features do
not depend on the pixel xi alone; most interesting features depend on
a region of pixels, or even the entire image.

A basic characteristic of images is that neighboring pixels tend to
have the same label. One way to incorporate this idea into our model is
to place a prior distribution on y that encourages “smooth” predictions.
The most common such prior in computer vision is a grid-structured
undirected graphical model that is typically called a Markov random
field [10]. An MRF is a generative undirected model with two types of
factors: one type that associates each label yi with its corresponding
pixel xi, and another type that encourages neighboring labels yi and yj

to agree.

304 Modeling

More formally, let N define the neighborhood relationship among
pixels, that is, (i, j) ∈ N if any only if xi and xj are neighboring pixels
in the image. Often N will be chosen to form a

√
T × √T grid. An

MRF is a generative model

p(y) =
1
Z

∏
(i,j)∈N

Ψ(yi,yj)

p(y,x) = p(y)
T∏

i=1

p(xi|yi). (2.32)

Here Ψ is the factor that encourages smoothness. One common choice is
Ψ(yi,yj) = 1 if yi = yj and α otherwise, where α is a parameter that can
be learned from data and typically α < 1. The motivation behind this
choice of Ψ(yi,yj) is that if α < 1, then efficient inference algorithms are
available to maximize logp(y,x). The distribution p(xi|yi) is a class-
conditional distribution over pixel values, for example, a mixture of
Gaussians over xi.

A disadvantage of this MRF is that it is difficult to incorporate fea-
tures over regions of pixels, of the kind discussed earlier, because then
p(x|y) would have complex structure. A conditional model provides a
way to address this difficulty.

The CRF that we will describe for this task will be very similar to
the MRF, except that it will allow the factors on both the individual
sites and the edges to depend on arbitrary features of the image. Let
q(xi) be a vector of features based on a region of the image around xi,
for example, using color histograms or image gradients as mentioned
above. In addition we will want a feature vector ν(xi,xj) that depends
on pairs of sites xi and xj , so that the model can take into account the
similarities and differences between xi and xj . One way to do this is to
define ν(xi,xj) to be the set of all cross-products between features in
q(xi) and q(xj), i.e., to compute ν(xi,xj), first compute a matrix via
the outer product q(xi)q(xj)	 and flattened into into a vector.

We have called the functions q and ν features because this is the
terminology most commonly used in computer vision. But in this survey
we have been using features that depend both on the inputs x and the
labels y. So we will use q and ν as observation functions to define

2.6 Examples 305

label-observation features in a CRF. The resulting label-observation
features are

fm(yi,xi) = 1{yi=m}q(xi) ∀m ∈ {0,1}
gm,m′(yi,yj ,xi,xj) = 1{yi=m}1{yj=m′}ν(xi,xj) ∀m,m′ ∈ {0,1}

f(yi,xi) =
(

f0(yi,xi)
f1(yi,xi)

)

g(yi,yj ,xi,xj) =




g00(yi,yj ,xi,xj)
g01(yi,yj ,xi,xj)
g10(yi,yj ,xi,xj)
g11(yi,yj ,xi,xj)




Using label-observation features has the effect of allowing the model to
have a separate set of weights for each label.

To make the example concrete, here is a specific choice for g and ν

that has been used in some prominent applications [14, 119]. Consider
the pairwise factor Ψ(yi,yj) in the MRF (2.32). Although it is good
that Ψ encourages agreement, the way in which it does so is inflexible.
If the pixels xi and xj have different labels, we expect them to have
different intensities in black and white, because different objects tend
to have different hues. So if we see a label boundary drawn between
two pixels with sharply different intensities, we should be less suprised
than if we see if the boundary drawn between identical-looking pixels.
Unfortunately, Ψ imposes the same dissimilarity penalty in both cases,
because the potential does not depend on the pixel values. To fix this
problem, the following choice of features has been proposed [14, 119]

ν(xi,xj) = exp
{−β(xi − xj)2

}
g(yi,yj ,xi,xj) = 1{yi
=yj}ν(xi,xj). (2.33)

Putting this all together, the CRF model is

p(y|x) =
1

Z(x)
exp




T∑
i=1

θ	f(yi,xi) +
∑

(i,j)∈N
λ	g(yi,yj ,xi,xj)


 ,

(2.34)
where α ∈ 	, θ ∈ 	K , and λ ∈ 	K2

are the parameters of the model.
The first two terms are analogous to the two types of factors in the

306 Modeling

MRF. The first term represents the impact of the local evidence around
xi to label yi. Using the choice of g described in (2.33), the second term
encourages neighboring labels to be similar, in a manner that depends
on the difference in pixel intensity.

Notice that this is an instance of the general CRF definition given
in (2.25), where we have three clique templates, one for each of the
three terms in (2.34).

The difference between (2.34) and (2.32) is analogous to the dif-
ference between the linear-chain CRF models in Figures 2.6 and 2.5:
The pairwise factors now depend on features of the images, rather than
simply on the label identity. As an aside, notice that, just as in the case
of sequences, the conditional distribution p(y|x) that results from the
MRF model (2.32) is a particular kind of CRF, in that it will have the
form (2.34) with λ = 0.

This simple CRF model can be improved in various ways. First, the
feature functions q and ν can be more complex, for example, taking
image shape and texture into account [127], or depending on global
characteristics of the image rather than on a local region. Additionally,
one could use a more complex graphical structure among the labels than
a grid. For example, one can define factors that depend on regions of
the labels [49, 56]. For a more in-depth survey about how CRFs and
other structured prediction models can be used in computer vision, see
Nowozin and Lampert [101].

2.7 Applications of CRFs

In addition to the example domains in the previous section, CRFs have
been applied to a large variety of other domains, including text pro-
cessing, computer vision, and bioinformatics. One of the first large-
scale applications of CRFs was by Sha and Pereira [125], who matched
state-of-the-art performance on segmenting noun phrases in text. Since
then, linear-chain CRFs have been applied to many problems in natural
language processing, including named-entity recognition [86], feature
induction for NER [83], shallow parsing [125, 138], identifying protein
names in biology abstracts [124], segmenting addresses in Web pages
[29], information integration [156], finding semantic roles in text [118],

2.7 Applications of CRFs 307

prediction of pitch accents [47], phone classification in speech processing
[48], identifying the sources of opinions [21], word alignment in machine
translation [12], citation extraction from research papers [105], extrac-
tion of information from tables in text documents [106], Chinese word
segmentation [104], Japanese morphological analysis [59], and many
others.

In bioinformatics, CRFs have been applied to RNA structural align-
ment [123] and protein structure prediction [76]. Semi-Markov CRFs
[122] are a way to allow more flexible feature functions. In a linear-chain
CRF, feature functions f() are restricted to depend only on successive
pairs of labels. In a semi-Markov CRF, on the other hand, a feature
function can depend on a entire segment of the labelling, that is, a
sequence of successive labels that have the same value. This can be
useful for certain tasks in information extraction and especially bioin-
formatics, where for example, one might want features that depend on
the length of the segment.

General CRFs have also been applied to several tasks in NLP. One
promising application is to performing multiple labeling tasks simulta-
neously. For example, Sutton et al. [140] show that a two-level dynamic
CRF for part-of-speech tagging and noun-phrase chunking performs
better than solving the tasks one at a time. Another application is
to multi-label classification, in which each instance can have multiple
class labels. Rather than learning an independent classifier for each
category, Ghamrawi and McCallum [42] present a CRF that learns
dependencies between the categories, resulting in improved classifica-
tion performance. Finally, the skip-chain CRF [133] is a general CRF
that represents long-distance dependencies in information extraction.

Another application of general CRFs that has used a different struc-
ture been in the problem of proper-noun coreference, that is, of deter-
mining which mentions in a document, such as Mr. President and he,
refer to the same underlying entity. McCallum and Wellner [88] learn
a distance metric between mentions using a fully-connected CRF in
which inference corresponds to graph partitioning. A similar model has
been used to segment handwritten characters and diagrams [26, 108].

As mentioned in Section 2.6.2, CRFs have been widely used in
computer vision, for example, grid-shaped CRFs for labeling and

308 Modeling

segmenting images [49, 61, 127]. Although image labelling is a common
application of CRFs in vision, there are other types of probabilistic
structure in the vision problem that are interesting to model. One type
of structure is the relationships between parts of an object. For exam-
ple, Quattoni et al. [109] use a tree-structured CRF in which the hope
is that the latent variables will recognize characteristic parts of an
object; this was an early example of hidden-variable CRFs. An espe-
cially successful example of a discriminative models with variables that
correspond to different parts of an object is Felzenszwalb et al. [36].

Another type of probabilistic structure in computer vision occurs
because similar objects appear in different images. For example,
Deselaers et al. [33] present a model that simultaneously performs local-
ization of objects in multiple images. They define a CRF in which each
random variable specifies the boundaries of a bounding box that con-
tains the object, i.e., each random variable corresponds to an entire
image.

An excellent survey on structured prediction for computer vision,
including CRFs, is Nowozin and Lampert [101].

Vision is one of more common application areas for CRFs with more
loopy graphical structure. That said, general CRFs have also been used
for global models of natural language [16, 37, 133].

In some applications of CRFs, efficient dynamic programs exist
even though the graphical model is difficult to specify. For example,
McCallum et al. [84] learn the parameters of a string-edit model in order
to discriminate between matching and nonmatching pairs of strings.
Also, there is work on using CRFs to learn distributions over the deriva-
tions of a grammar [23, 38, 114, 148].

2.8 Notes on Terminology

Different aspects of the theory of graphical models have been developed
independently in different research areas, so many of the concepts in
this section have different names in different areas. For example, undi-
rected models are commonly also referred to Markov random fields,
Markov networks, and Gibbs distributions. As mentioned, we reserve
the term “graphical model” for a family of distributions defined by a

2.8 Notes on Terminology 309

graph structure; “random field” or “distribution” for a single probabil-
ity distribution; and “network” as a term for the graph structure itself.
This choice of terminology is not always consistent in the literature,
partly because it is not ordinarily necessary to be precise in separating
these concepts.

Similarly, directed graphical models are commonly known as
Bayesian networks, but we have avoided this term because of its con-
fusion with the area of Bayesian statistics. The term generative model
is an important one that is commonly used in the literature, but is
not usually given a precise definition. (We gave our definition of it in
Section 2.2.).

3
Overview of Algorithms

The next two sections will discuss inference and parameter estima-
tion for CRFs. Parameter estimation is the problem of finding a set
of parameters θ so that the resulting distribution p(y|x,θ) best fits a
set of training examples D = {x(i),y(i)}Ni=1 for which both the inputs
and outputs are known. Intuitively, what we want to accomplish during
parameter estimation is that if we look at any of the training inputs x(i),
the model’s distribution over outputs p(y|x(i),θ) should “look like” the
true output y(i) from the training data.

One way to quantify this intuition is to consider the feature func-
tions that are used to define the model. Consider a linear-chain CRF.
For each feature fk(yt,yt−1,xt), we would like the total value of fk that
occurs in the data to equal the total value of fk that we would get by
randomly selecting an input sequence x from the training data follow-
ing by sampling y from the conditional model p(y|x,θ). Formally this
requirement yields for all fk that

N∑
i=1

T∑
t=1

fk

(
y

(i)
t ,y

(i)
t−1,x

(i)
t

)

=
N∑

i=1

T∑
t=1

∑
y,y′

fk(y,y′,x(i)
t)p(yt = y,yt−1 = y′|x(i)).

310

311

Remarkably, this system of equations can be obtained as the gradient of
an objective function over parameters. This connection is useful because
once we have an objective function we can optimize it using standard
numerical techniques. The objective function that has this property is
the likelihood

�(θ) = p(y(i)|x(i),θ)

=
N∑

i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t ,y

(i)
t−1,x

(i)
t) −

N∑
i=1

logZ(x(i)),

which is the probability of training data under the model, viewed as a
function of the parameter vector.

A standard way of training CRFs is maximum likelihood, in which
we seek the parameters θ̂ml = supθ �(θ). The intuition behind maximum
likelihood is that θ̂ml is the parameter setting under which the observed
data is most likely. To connect this with the discussion about matching
expectations, take the partial derivative of the likelihood with respect to
some parameter θk and set it to zero. This exactly yields the matching
conditions on the feature expectations that we began with.

Although we have illustrated the idea behind maximum likelihood
using linear chain CRFs the same ideas carry over to general CRFs.
For general CRFs, instead of marginals p(yt,yt−1|x,θ) over neighbor-
ing variables in a chain, computing the likelihood gradient requires
marginals p(ya|x,θ) over sets of variables Ya in a general graphical
model.

Computing the marginal distributions that are required for param-
eter estimation can be computationally challenging. This is the task of
probabilistic inference. In general, the goal of inference is to compute
predictions over the output y from a given x for a single fixed value
of θ. There are two specific inference problems that we will focus on:

• Computing marginal distributions p(ya|x,θ) over a subset Ya

of output variabels. Usually the domain Ya of the marginals
consists either of a single variable or of a set of neighboring
variables that share a factor. The algorithms for this problem
will usually also compute as a byproduct the normalization
function Z(x) which appears in the likelihood.

312 Overview of Algorithms

• Computing the labeling y∗ = argmaxy p(y|x,θ), which is the
single most likely labeling of a new input x.

The marginals p(ya|x,θ) and the normalization function Z(x) are used
for parameter estimation. Some parameter estimation methods, like
maximum likelihood when optimized by limited memory BFGS, require
both the marginals and the normalization function. Other parameter
estimation methods, like stochastic gradient descent, require only the
marginals. The Viterbi assignment y∗ is used for assigning a sequence
of labels to a new input that was not seen during training.

These inferential tasks can be solved using standard techniques from
graphical models. In tree-structured models, these quantities can be
computed exactly, while in more general models we typically resort to
approximations.

The next two sections discuss inference and parameter estimation
both for linear-chain and general CRFs. First, in Section 4, we
discuss inference methods for CRFs, including exact methods for
tree-structured CRFs and approximate methods for more general
CRFs. In some sense, because a CRF is a type of undirected graphical
model, this largely recaps inference methods for standard graphical
models, but we focus on methods that are most appropriate for CRFs.
Then, in Section 5, we discuss parameter estimation. Although the
maximum likelihood procedure is conceptually simple, it can require
expensive computations. We describe both the standard maximum
likelihood procedure, ways to combine maximum likelihood with
approximate inference, and other approximate training methods that
can improve scalability in both the number of training instances and
in the complexity of the graphical model structure of the CRF.

4
Inference

Efficient inference is critical for CRFs, both during training and for
predicting the labels on new inputs. The are two inference prob-
lems that arise. First, after we have trained the model, we often
predict the labels of a new input x using the most likely labeling
y∗ = argmaxy p(y|x). Second, as will be seen in Section 5, estimation
of the parameters typically requires that we compute the marginal dis-
tribution over subsets of labels, such as over node marginals p(yt|x) and
edge marginals p(yt,yt−1|x). These two inference problems can be seen
as fundamentally the same operation on two different semirings [1],
that is, to change the marginalization problem to the maximization
problem, we simply substitute maximization for addition.

For discrete variables the marginals could be computed by brute-
force summation, but the time required to do so is exponential in the
size of Y . Indeed, both inference problems are intractable for general
graphs, because any propositional satisfiability problem can be easily
represented as a factor graph.

In the case of linear-chain CRFs, both inference tasks can be per-
formed efficiently and exactly by variants of the standard dynamic-
programming algorithms for HMMs. We begin by presenting these
algorithms — the forward–backward algorithm for computing marginal

313

314 Inference

distributions and Viterbi algorithm for computing the most probable
assignment — in Section 4.1. These algorithms are a special case of the
more general belief propagation algorithm for tree-structured graphical
models (Section 4.2.2). For more complex models, approximate infer-
ence is necessary.

In one sense, the inference problem for a CRF is no different than
that for any graphical model, so any inference algorithm for graphical
models can be used, as described in several textbooks [57, 79]. How-
ever, there are two additional issues that need to be kept in mind in
the context of CRFs. The first issue is that the inference subroutine is
called repeatedly during parameter estimation (Section 5.1.1 explains
why), which can be computationally expensive, so we may wish to trade
off inference accuracy for computational efficiency. The second issue is
that when approximate inference is used, there can be complex inter-
actions between the inference procedure and the parameter estimation
procedure. We postpone discussion of these issues to Section 5, when
we discuss parameter estimation, but it is worth mentioning them here
because they strongly influence the choice of inference algorithm.

4.1 Linear-Chain CRFs

In this section, we briefly review the standard inference algorithms for
HMMs, the forward–backward and Viterbi algorithms, and describe
how they can be applied to linear-chain CRFs. A survey on these
algorithms in the HMM setting is provided by Rabiner [111]. Both of
these algorithms are special cases of the belief propagation algorithm
described in Section 4.2.2, but we discuss the special case of linear
chains in detail both because it may help to make the later discussion
more concrete, and because it is useful in practice.

First, we introduce notation which will simplify the forward–
backward recursions. An HMM can be viewed as a factor graph
p(y,x) =

∏
t Ψt(yt,yt−1,xt) where Z = 1, and the factors are defined as:

Ψt(j, i,x) def= p(yt = j|yt−1 = i)p(xt = x|yt = j). (4.1)

If the HMM is viewed as a weighted finite state machine, then Ψt(j, i,x)
is the weight on the transition from state i to state j when the current
observation is x.

4.1 Linear-Chain CRFs 315

Now, we review the HMM forward algorithm, which is used to
compute the probability p(x) of the observations. The idea behind
forward–backward is to first rewrite the naive summation p(x) =∑

y p(x,y) using the distributive law:

p(x) =
∑
y

T∏
t=1

Ψt(yt,yt−1,xt) (4.2)

=
∑
yT

∑
yT−1

ΨT(yT,yT−1,xT)
∑
yT−2

ΨT−1(yT−1,yT−2,xT−1)
∑
yT−3

· · ·

(4.3)

Now we observe that each of the intermediate sums is reused many
times during the computation of the outer sum, and so we can save an
exponential amount of work by caching the inner sums.

This leads to defining a set of forward variables αt, each of which is
a vector of size M (where M is the number of states) which represents
the intermediate sums. These are defined as:

αt(j)
def= p(x〈1...t〉,yt = j) (4.4)

=
∑

y〈1...t−1〉

Ψt(j,yt−1,xt)
t−1∏
t′=1

Ψt′(yt′ ,yt′−1,xt′), (4.5)

where the summation over y〈1...t−1〉 ranges over all assignments to the
sequence of random variables y1,y2, . . . ,yt−1. The alpha values can be
computed by the recursion

αt(j) =
∑
i∈S

Ψt(j, i,xt)αt−1(i), (4.6)

with initialization α1(j) = Ψ1(j,y0,x1). (Recall from (2.10) that y0 is
the fixed initial state of the HMM.) It is easy to see that p(x) =∑

yT
αT(yT) by repeatedly substituting the recursion (4.6) to obtain

(4.3). A formal proof would use induction.
The backward recursion is exactly the same, except that in (4.3), we

push in the summations in reverse order. This results in the definition

βt(i)
def= p(x〈t+1...T〉|yt = i) (4.7)

=
∑

y〈t+1...T〉

T∏
t′=t+1

Ψt′(yt′ ,yt′−1,xt′), (4.8)

316 Inference

and the recursion

βt(i) =
∑
j∈S

Ψt+1(j, i,xt+1)βt+1(j), (4.9)

which is initialized βT(i) = 1. Analogously to the forward case, we
can compute p(x) using the backward variables as p(x) = β0(y0)

def=∑
y1

Ψ1(y1,y0,x1)β1(y1).
To compute the marginal distributions p(yt−1,yt|x), which will

prove necessary for parameter estimation, we combine the results of
the forward and backward recursions. This can be seen from either the
probabilistic or the factorization perspectives. First, taking a proba-
bilistic viewpoint we can write

p(yt−1,yt|x) =
p(x|yt−1,yt)p(yt−1,yt)

p(x)
(4.10)

=
p(x〈1...t−1〉,yt−1)p(yt|yt−1)p(xt|yt)p(x〈t+1...T〉|yt)

p(x)
(4.11)

=
1

p(x)
αt−1(yt−1)Ψt(yt,yt−1,xt)βt(yt), (4.12)

where in the second line we have used the fact that x〈1...t−1〉 is indepen-
dent from x〈t+1...T〉 and from xt given yt−1,yt. Equivalently, from the
factorization perspective, we can apply the distributive law to obtain

p(yt−1,yt|x) =
1

p(x)
Ψt(yt,yt−1,xt)

×

 ∑

y〈1...t−2〉

t−1∏
t′=1

Ψt′(yt′ ,yt′−1,xt′)




×

 ∑

y〈t+1...T〉

T∏
t′=t+1

Ψt′(yt′ ,yt′−1,xt′)


 . (4.13)

Then, by substituting the definitions of α and β, we obtain the same
result as before, namely

p(yt−1,yt|x) =
1

p(x)
αt−1(yt−1)Ψt(yt,yt−1,xt)βt(yt). (4.14)

4.1 Linear-Chain CRFs 317

The factor of 1/p(x) acts as a normalizing constant for this distribution.
We can compute it by using p(x) = β0(y0) or p(x) =

∑
i∈S αT(i).

Putting this together, the forward–backward algorithm is: First com-
pute αt for all t using (4.6), then compute βt for all t using (4.9), and
then return the marginal distributions computed from (4.14).

Finally, to compute the globally most probable assignment y∗ =
argmaxy p(y|x), we observe that the trick in (4.3) still works if all
the summations are replaced by maximization. This yields the Viterbi
recursion. The analogs of the α variables in forward backward are

δt(j)
def= max

y〈1...t−1〉
Ψt(j,yt−1,xt)

t−1∏
t′=1

Ψt′(yt′ ,yt′−1,xt′). (4.15)

And these can be computed by the analogous recursion

δt(j) = max
i∈S

Ψt(j, i,xt)δt−1(i). (4.16)

Once the δ variables have been computed, the maximizing assignment
can be computed by a backwards recursion

y∗
T = argmax

i∈S
δT(i)

y∗
t = argmax

i∈S
Ψt(y∗

t+1, i,xt+1)δt(i) for t < T

The recursions for δt and y∗
t together comprise the Viterbi algorithm.

Now that we have described the forward–backward and Viterbi
algorithms for HMMs, the generalization to linear-chain CRFs is
straightforward. The forward–backward algorithm for linear-chain
CRFs is identical to the HMM version, except that the transition
weights Ψt(j, i,xt) are defined differently. We observe that the CRF
model (2.18) can be rewritten as:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt,yt−1,xt), (4.17)

where we define

Ψt(yt,yt−1,xt) = exp

{∑
k

θkfk(yt,yt−1,xt)

}
. (4.18)

318 Inference

With that definition, the algorithms for the forward recursion (4.6), the
backward recursion (4.9), and the Viterbi recursion (4.16) can be used
unchanged for linear-chain CRFs. Only the interpretation is slightly
different. In a CRF we no longer have the probabilistic interpretation
that αt(j) = p(x〈1...t〉,yt = j) that we have for HMMs. Instead we define
the α, β, and δ variables using the factorization viewpoints, i.e., we
define α as in (4.5), β as in (4.8), and δ as in (4.15). Also the results
of the forward and backward recursions are Z(x) instead of p(x), that
is, Z(x) = β0(y0) and Z(x) =

∑
i∈S αT(i).

For the marginal distributions, equation (4.14) remains true with
the change that Z(x) replaces p(x), that is,

p(yt−1,yt|x) =
1

Z(x)
αt−1(yt−1)Ψt(yt,yt−1,xt)βt(yt). (4.19)

p(yt|x) =
1

Z(x)
αt(yt)βt(yt). (4.20)

We mention three more specialized inference tasks that can also be
solved using direct analogues of the HMM algorithms. First, if we
wish to sample independent draws of y from the posterior p(y|x),
we can use the forward algorithm combined with a backward sam-
pling pass, exactly as in an HMM. Second, if instead of finding the
single best assignment argmaxy p(y|x), we wish to find the k assign-
ments with highest probability, we can apply standard algorithms from
HMMs [129]. Finally, sometimes it is useful to compute a marginal
probability p(yS |x) over a (possibly non-contiguous) set of nodes with
indices S ⊂ [1,2, . . .T]. For example, this is useful for measuring the
model’s confidence in its predicted labeling over a segment of input.
This marginal probability can be computed efficiently using constrained
forward–backward, as described by Culotta and McCallum [30].

4.2 Inference in Graphical Models

There are a number of exact inference algorithms for general graph-
ical models. Although these algorithms require exponential time in
the worst case, they can still be efficient for graphs that occur in
practice. The most popular exact algorithm, the junction tree algo-
rithm, successively groups variables until the graph becomes a tree.

4.2 Inference in Graphical Models 319

Once an equivalent tree has been constructed, its marginals can be
computed using exact inference algorithms that are specific to trees.
However, for certain complex graphs, the junction tree algorithm is
forced to make clusters which are very large, which is why the proce-
dure still requires exponential time in the worst case. For more details
on exact inference, see Koller and Friedman [57].

Because of the complexity of exact inference, an enormous amount
of effort has been devoted to approximate inference algorithms. Two
classes of approximate inference algorithms have received the most
attention: Monte Carlo algorithms and variational algorithms. Monte
Carlo algorithms are stochastic algorithms that attempt to approx-
imately produce a sample from the distribution of interest. Varia-
tional algorithms are algorithms that convert the inference problem
into an optimization problem, by attempting to find a simple approx-
imation that most closely matches the intractable marginals of inter-
est. Generally, Monte Carlo algorithms are unbiased in the sense that
they are guaranteed to sample from the distribution of interest given
enough computation time, although it is usually impossible in practice
to know when that point has been reached. Variational algorithms, on
the other hand, can be much faster, but they tend to be biased, by which
we mean that they tend to have a source of error that is inherent to
the approximation, and cannot be easily lessened by giving them more
computation time. Despite this, variational algorithms can be useful
for CRFs, because parameter estimation requires performing inference
many times, and so a fast inference procedure is vital to efficient train-
ing. For a good reference on MCMC, see Robert and Casella [116], and
for variational approaches, see Wainwright and Jordan [150].

The material in this section is in no way specific to CRFs, but holds
for any distribution that factorizes according to some factor graph,
whether it be a joint distribution p(y) or a conditional distribution
p(y|x) like a CRF. To emphasize this, and to lighten the notation, in
this section we will drop the dependence on x and talk about inference
for joint distributions p(y) that factorize according to some factor graph
G = (V,F), i.e.,

p(y) = Z−1
∏
a∈F

Ψa(ya).

320 Inference

To carry this discussion to CRFs, simply replace Ψa(ya) in the above
equation with Ψa(ya,xa), and likewise modify Z and p(y) to depend
on x. This point is not just notational but also affects the design of
implementations: inference algorithms can be implemented for generic
factor graphs in such a way that the inference procedure does not know
if it is dealing with an undirected joint distribution p(y), a CRF p(y|x),
or even a directed graphical model.

In the remainder of this section, we outline two examples of approx-
imate inference algorithms, one from each of these two categories. Too
much work has been done on approximate inference for us to attempt
to summarize it here. Rather, our aim is to highlight the general issues
that arise when using approximate inference algorithms within CRF
training. In this section, we focus on describing the inference algo-
rithms themselves, whereas in Section 5 we discuss their application to
CRFs.

4.2.1 Markov Chain Monte Carlo

Currently the most popular type of Monte Carlo method for com-
plex models is Markov Chain Monte Carlo (MCMC) [116]. Rather
than attempting to approximate a marginal distribution p(ys) directly,
MCMC methods generate approximate samples from the joint distribu-
tion p(y). MCMC methods work by constructing a Markov chain, whose
state space is the same as that of Y , in a careful way so that when the
chain is simulated for a long time, the distribution over states of the
chain is approximately p(ys). Suppose that we want to approximate
the expectation of some function f(y) over the distribution p(y). Given
a sample y1,y2, . . . ,yM from a Markov chain in an MCMC method, we
can approximate this expectation as:

∑
y

p(y)f(y) ≈ 1
M

M∑
j=1

f(yj). (4.21)

For example, we will see in the next section that expectations of this
form are used during CRF training.

A simple example of an MCMC method is Gibbs sampling. In each
iteration of the Gibbs sampling algorithm, each variable is resampled

4.2 Inference in Graphical Models 321

individually, keeping all of the other variables fixed. Suppose that we
already have a sample yj from iteration j. Then to generate the next
sample yj+1,

(1) Set yj+1← yj .
(2) For each s ∈ V , resample component Ys. Sample yj+1

s from
the distribution p(ys|y\s,x).

(3) Return the resulting value of yj+1.

Recall from Section 2.1.1 that the summation
∑

y\ys
to indicate a sum-

mation over all possible assignments y whose value for variable Ys is
equal to ys.

The above procedure defines a Markov chain that can be used to
approximate expectations as in (4.21). In the case of a general factor
graph, the conditional probability can be computed as

p(ys|y\s) = κ
∏
a∈F

Ψa(ya), (4.22)

where κ is a normalizing constant. (In the following, κ will denote a
generic normalizing constant which need not be the same across equa-
tions.) The normalizer κ from (4.22) is much easier to compute than
the joint probability p(y|x), because computing κ requires a summa-
tion only over all possible values of ys rather than assignments to the
full vector y.

A major advantage of Gibbs sampling is that it is simple to imple-
ment. Indeed, software packages such as BUGS can take a graphical
model as input and automatically compile an appropriate Gibbs
sampler [78]. The main disadvantage of Gibbs sampling is that it can
work poorly if p(y) has strong dependencies, which is often the case in
sequential data. By “works poorly” we mean that it may take many
iterations before the distribution over samples from the Markov chain
is close to the desired distribution p(y).

There is an enormous literature on MCMC algorithms. The text-
book by Robert and Casella [116] provides an overview. However,
MCMC algorithms are not commonly applied in the context of CRFs.
Perhaps the main reason for this is that as we have mentioned earlier,
parameter estimation by maximum likelihood requires calculating

322 Inference

marginals many times. In the most straightforward approach, one
MCMC chain would be run for each training example for each parame-
ter setting that is visited in the course of a gradient descent algorithm.
Since MCMC chains can take thousands of iterations to converge, this
can be computationally prohibitive. One can imagine ways of address-
ing this, such as not running the chain all the way to convergence (see
Section 5.4.3).

4.2.2 Belief Propagation

An important variational inference algorithm is belief propagation (BP),
which we explain in this section. BP is also of interest because it is a
direct generalization of the exact inference algorithms for linear-chain
CRFs.

Suppose that the factor graph G = (V,F) is a tree, and we wish
to compute the marginal distribution of a variable Ys. The intuition
behind BP is that each of the neighboring factors of Ys makes a mul-
tiplicative contribution to its marginal, called a message, and each of
these messages can be computed separately because the graph is a tree.
More formally, for every factor index a ∈ N(s), denote by Ga = (Va,Fa)
the subgraph of G that contains Ys, Ψa, and the entire subgraph of G

that is “upstream” of Ψa. By upstream we mean that Va contains all
of the variables that Ψa separates from Ys, and Fa all of the factors.
This is depicted in Figure 4.1. All of the sets Va\Ys for all a ∈ N(s) are
mutually disjoint because G is a tree, and similarly for the Fa. This
means that we can split up the summation required for the marginal
into a product of independent subproblems as:

p(ys) ∝
∑
y\ys

∏
a∈F

Ψa(ya) (4.23)

=
∑
y\ys

∏
a∈N(s)

∏
Ψb∈Fa

Ψb(yb) (4.24)

=
∏

a∈N(s)

∑
yVa\ys

∏
Ψb∈Fa

Ψb(yb). (4.25)

Although the notation somewhat obscures this, notice that the variable
ys is contained in all of the ya, so that it appears on both sides of (4.25).

4.2 Inference in Graphical Models 323

Fig. 4.1 Illustration of how marginal distributions factorize for tree-structured graphs. This
factorization is exploited by the belief propagation algorithm (Section 4.2.2).

Denote each factor in the above equation by mas, that is,

mas(ys) =
∑

yVa\ys

∏
Ψb∈Fa

Ψb(yb). (4.26)

Each mas is just the marginal distribution over the variable ys for
the subgraph Ga. The marginal distribution of ys in the full graph G

is the product of the marginals in all the subgraphs. Metaphorically,
each mas(ys) can be thought of as a message from the factor a to the
variable Ys that summarizes the impact of the network upstream of a

on the marginal probability over Ys. In a similar fashion, we can define
messages from variables to factors as

msa(ys) =
∑
yVs

∏
Ψb∈Fs

Ψb(yb). (4.27)

Then, from (4.25), we have that the marginal p(ys) is proportional
to the product of all the incoming messages to variable Ys. Similarly,
factor marginals can be computed as

p(ya) ∝ Ψa(ya)
∏

s∈N(a)

msa(ya). (4.28)

324 Inference

Naively computing the messages according to (4.26) is impractical,
because the messages as we have defined them require summation over
all possible assignments to yVa , and some of the sets Va will be large.
Fortunately, the messages can also be written using a recursion that
requires only local summation. The recursion is

mas(ys) =
∑
ya\ys

Ψa(ya)
∏

t∈a\s

mta(yt)

msa(ys) =
∏

b∈N(s)\a

mbs(ys).
(4.29)

That this recursion matches the explicit definition of m can be seen by
repeated substitution, and proven by induction. In a tree, it is possi-
ble to schedule these recursions such that the antecedent messages are
always sent before their dependents, by first sending messages from the
root, and so on. This is the belief propagation algorithm [103].

In addition to computing single-variable marginals, we will also
wish to compute factor marginals p(ya) and joint probabilities p(y)
for a given assignment y. (Recall that the latter problem is difficult
because it requires computing the partition function logZ.) First, to
compute marginals over factors we can use the same decomposition of
the marginal as for the single-variable case, and get

p(ya) = κΨa(ya)
∏

s∈N(a)

msa(ys), (4.30)

where κ is a normalization constant. In fact, a similar idea works for
any connected set of variables — not just a set that happens to be
the domain of some factor — although if the set is too large, then
computing κ is impractical.

BP can also be used to compute the normalizing constant Z.
This can be done directly from the propagation algorithm, in an
analogous way to the forward–backward algorithm in Section 4.1. Alter-
natively, there is another way to compute Z from only the approx-
imate marginals at the end of the algorithm. In a tree structured
distribution p(y), it can be shown that the joint distribution always

4.2 Inference in Graphical Models 325

factorizes as

p(y) =
∏
s∈V

p(ys)
∏
a

p(ya)∏
t∈a p(yt)

. (4.31)

For example, in a linear chain this amounts to

p(y) =
T∏

t=1

p(yt)
T∏

t=1

p(yt,yt−1)
p(yt)p(yt−1)

, (4.32)

which, after cancelling and rearranging terms, is just another way to
write the familiar equation p(y) =

∏
t p(yt|yt−1). Using this identity, we

can compute p(y) for any assignment p(y) from the per-variable and
per-factor marginals. This also gives us Z = p(y)−1 ∏

a∈F Ψa(ya).
If G is a tree, belief propagation computes the marginal distributions

exactly. Indeed, if G is a linear chain, then BP reduces to the forward–
backward algorithm (Section 4.1). To see this, refer to Figure 4.2. The
figure shows a three node linear chain along with the BP messages as we
have described them in this section. To see the correspondence to for-
ward backward, the forward message that we denoted α2 in Section 4.1
corresponds to the product of the two messages mA2 and mC2 (the
dark grey arrows in the figure). The backward message β2 corresponds
to the message mB2 (the light grey arrow in the figure). Indeed, the
decomposition of the marginal distribution p(ya) in (4.30) generalizes
that for the linear chain case in (4.14).

If G is not a tree, the message updates (4.29) are no longer guar-
anteed to return the exact marginals, nor are they guaranteed even to
converge, but we can still iterate them in an attempt to find a fixed
point. This procedure is called loopy belief propagation. To emphasize
the approximate nature of this procedure, we refer to the approximate

Fig. 4.2 Illustration of the correspondence between forward backward and belief propaga-
tion in linear chain graphs. See text for details.

326 Inference

marginals that result from loopy BP as beliefs rather than as marginals,
and denote them by q(ys).

There is still the question of what schedule we use to iterate the
message updates. In the tree structured case, any propagation schedule
will converge to the correct marginal distributions, but this is not true
in the loopy case: rather, the schedule that is used to update messages
can affect not only the final answer from loopy BP but also whether the
algorithm converges at all. A simple choice that works well in practice
is to order the message updates randomly, for example, to shuffle the
factors via a random permutation, and then for each factor in turn,
send all of its outgoing and incoming messages via (4.29). However,
more sophisticated schedules can also be effective [35, 135, 152].

Surprisingly, loopy BP can be seen as a variational method for infer-
ence, meaning that there exists an objective function over beliefs that
is approximately minimized by the iterative BP procedure. We give an
overview of this argument below; for more details, see several introduc-
tory papers [150, 158].

The general idea behind a variational algorithm is:

(1) Define a family of tractable approximations Q and an objec-
tive function O(q) for q ∈ Q. Each q could be either a
distribution whose marginals are easy to compute, like a
tree-structured distribution, or it could simply be a set of
approximate marginal distributions. If the latter strategy
is used, then the approximate marginals are often called
pseudomarginals, because they need not correspond to the
marginals of any joint distribution over y. The function O
should be designed to measure how well a tractable q ∈ Q
approximates p.

(2) Find the “closest” approximation q∗ = minq∈QO(q).
(3) Use q∗ to approximate the marginals of p.

For example, suppose that we take Q be the set of all possible distri-
butions over y, and we choose the objective function

O(q) = KL(q‖p) − logZ (4.33)

= −H(q) −
∑

a

∑
ya

q(ya) logΨa(ya), (4.34)

4.2 Inference in Graphical Models 327

Once we minimize this with respect to q to obtain q∗, we can use the
marginals of q∗ to approximate those of p. Indeed, the solution to this
variational problem is q∗ = p with optimal value O(q∗) = − logZ. So
solving this particular variational formulation is equivalent to perform-
ing exact inference. Approximate inference techniques can be devised
by changing the set Q— for example, by requiring q to be fully factor-
ized — or by using a different objective O. For example, the mean field
method arises by requiring q to be fully factorized, i.e., q(y) =

∏
s qs(ys)

for some choice for qs, and finding the factorized q that maximizes O(q)
as given by (4.34).

With that background on variational methods, let us see how
belief propagation can be understood in this framework. We make two
approximations. First, we approximate the entropy term H(q) of (4.34),
which as it stands is difficult to compute. If q were a tree-structured
distribution, then its entropy could be written exactly as

HBethe(q) = −
∑

a

∑
ya

q(ya) logq(ya) +
∑

i

∑
yi

(di − 1)q(yi) logq(yi),

(4.35)
where di is the degree of i, that is, the number of factors that depend
on yi. This follows from substituting the tree-structured factorization
(4.31) of the joint into the definition of entropy. If q is not a tree, then
we can still take HBethe as an approximation to H to compute the exact
variational objective O. This yields the Bethe free energy :

OBethe(q) = −HBethe(q) −
∑

a

∑
ya

q(ya) logΨa(ya) (4.36)

The objective OBethe depends on q only through its marginals, so rather
than optimizing it over all probability distributions q, we can optimize
over the space of all marginal vectors. Specifically, every distribution q

has an associated belief vector q, with elements qa;ya for each factor a

and assignment ya, and elements qi;yi for each variable i and assign-
ment yi. The space of all possible belief vectors has been called the
marginal polytope [150]. However, for intractable models, the marginal
polytope can have extremely complex structure.

This leads us to the second variational approximation made by
loopy BP, namely that the objective OBethe is minimized instead over a

328 Inference

relaxation of the marginal polytope. The relaxation is to require that
the beliefs be only locally consistent, that is, that∑

ya\yi

qa(ya) = qi(yi) ∀a,i ∈ a. (4.37)

As a technical point, if a set of putative marginal distributions satisfies
(4.37), this does not imply that they are globally consistent, i.e., that
there exists a single joint q(y) that has those marginals. For this reason,
the distributions qa(ya) are also called pseudomarginals.

Yedidia et al. [157] show that constrained stationary points of OBethe

under the constraints (4.37) are fixed points of loopy BP. So we can
view the Bethe energy OBethe as an objective function that the loopy
BP fixed-point operations attempt to optimize.

This variational perspective provides new insight into the method
that would not be available if we thought of it solely from the
message passing perspective. One of the most important insights is
that it shows how to use loopy BP to approximate logZ. Because
we introduced minqOBethe(q) as an approximation to minqO(q), and
we know that minqO(q) = logZ, then it seems reasonable to define
logZBethe = minqOBethe(q) as an approximation to logZ. This will be
important when we discuss CRF parameter estimation using BP in
Section 5.4.2.

4.3 Implementation Concerns

In this section, we mention a few implementation techniques that
are important to practical inference in CRFs: sparsity and preventing
numerical underflow.

First, it is often possible to exploit sparsity in the model to make
inference more efficient. Two different types of sparsity are relevant:
sparsity in the factor values, and sparsity in the features. First, about
the factor values, recall that in the linear-chain case, each of the forward
updates (4.6) and backward updates (4.9) requires O(M2) time, that
is, quadratic time in the number of labels M . Analogously, in general
CRFs, an update of loopy BP in a model with pairwise factors requires
O(M2) time. In some models, however, it is possible to implement

4.3 Implementation Concerns 329

inference more efficiently, because it is known a priori not all factor val-
ues (yt,yt−1) are feasible, that is, the factor Ψt(yt,yt+1,xt) is always 0
for many values yt,yt+1. In such cases, the computational cost of send-
ing a message can be reduced by implementing the message-passing
iterations using sparse matrix operations.

The second kind of sparsity that is useful is sparsity in the fea-
ture vectors. Recall from (2.26) that computing the factors Ψc(xc,yc)
requires computing a dot product between the parameter vector θp

and and the vector of features fc = {fpk(yc,xc) |∀p,∀k}. Often, many
elements of the vectors fc are zero. For example, natural language appli-
cations often involve binary indicator variables on word identity. In
this case, the time required to compute the factors Ψc can be greatly
improved using a sparse vector representation. In a similar fashion, we
can use sparsity to improve the time required to compute the likelihood
gradient, as we discuss in Section 5.

A related trick, that will also speed up forward backward, is to tie
the parameters for certain subsets of transitions [24]. This has the effect
of reducing the effective size of the model’s transition matrix, lessening
the effect of the quadratic dependence of the size of the label set.

A second implementation concern that arises in inference is avoiding
numerical underflow. The probabilities involved in forward–backward
and belief propagation, i.e., αt and msa are often too small to be repre-
sented within numerical precision (for example, in an HMM αt decays
toward 0 exponentially fast in t). There are two standard approaches
to this common problem. One approach is to scale each of the vectors
αt and βt to sum to 1, thereby magnifying small values. This scaling
does not affect our ability to compute Z(x) because it can be com-
puted as Z(x) = p(y′|x)−1 ∏

t(Ψt(y′
t,y

′
t+1,xt)) for an arbitrary assign-

ment y′, where p(y′|x)−1 is computed from the marginals using (4.31).
But in fact, there is actually a more efficient method described by
Rabiner [111] that involves saving each of the local scaling factors. In
any case, the scaling trick can be used in forward–backward or loopy
BP; in either case, it does not affect the final values of the beliefs.

A second approach to preventing underflow is to perform compu-
tations in the logarithmic domain, e.g., the forward recursion (4.6)

330 Inference

becomes

logαt(j) =
⊕
i∈S

(
logΨt(j, i,xt) + logαt−1(i)

)
, (4.38)

where ⊕ is the operator a ⊕ b = log(ea + eb). At first, this does not
seem much of an improvement, since numerical precision is lost when
computing ea and eb. But ⊕ can be computed as

a ⊕ b = a + log(1 + eb−a) = b + log(1 + ea−b), (4.39)

which can be much more numerically stable if we pick the version of
the identity with the smaller exponent.

At first, it would seem that the normalization approach is prefer-
able to the logarithmic approach, because the logarithmic approach
requires O(TM2) calls to the special functions log and exp, which can
be computationally expensive. This observation is correct for HMMs,
but not for CRFs. In a CRF, even when the normalization approach is
used, it is still necessary to call the exp function in order to compute
Ψt(yt,yt+1,xt), defined in (4.18). So in CRFs, special functions can-
not be avoided. In the worst case, there are TM2 of these Ψt values, so
the normalization approach needs TM2 calls to special functions just as
the logarithmic domain approach does. However, there are some special
cases in which the normalization approach can yield a speedup, such
as when the transition features do not depend on the observations, so
that there are only M2 distinct Ψt values.

5
Parameter Estimation

In this section we discuss how to estimate the parameters θ = {θk}
of a CRF. In the simplest and typical case, we are provided with
fully labeled independent data, but there has also been work in semi-
supervised learning with CRFs, CRFs with latent variables and CRFs
for relational learning.

One way to train CRFs is by maximum likelihood, that is, the
parameters are chosen such that the training data has highest prob-
ability under the model. In principle, this can be done in a manner
exactly analogous to logistic regression, which should not be surprising
given the close relationship between these models that was described
in Section 2. The main difference is computational: CRFs tend to have
more parameters and more complex structure than a simple classifier,
so training is correspondingly more expensive.

In tree structured CRFs, the maximum likelihood parameters can be
found by a numerical optimization procedure that calls the inference
algorithms of Section 4.1 as a subroutine. The inference algorithms
are used to compute both the value of the likelihood and its gradient.
Crucially, the likelihood is a convex function of the parameters, which
means that powerful optimization procedures are available that prov-
ably converge to the optimal solution.

331

332 Parameter Estimation

We begin by describing maximum likelihood training, both in the
linear chain case (Section 5.1.1) and in the case of general graphical
structures (Section 5.1.2), including the case of latent variables. We
also describe two general methods for speeding up parameter estima-
tion that exploit iid structure in the data: stochastic gradient descent
(Section 5.2) and multithreaded training (Section 5.3).

For CRFs with general structures, exact maximum likelihood train-
ing is intractable, so typically approximate procedures must be used.
At a high level, there are two strategies to dealing with this problem.
The first strategy is to approximate the likelihood with another
function that is easy to compute, which we call a surrogate likeli-
hood, and to optimize the surrogate function numerically. The second
strategy is an approximate marginal strategy that “plugs in” an
approximate inference algorithm to compute approximate marginal
distributions wherever the maximum likelihood training algorithm
demands exact marginal distributions. Some care must be used here,
because there can be interesting complications in the interaction
between approximate inference and learning. We discuss these issues in
Section 5.4.

5.1 Maximum Likelihood

5.1.1 Linear-chain CRFs

In a linear-chain CRF, the maximum likelihood parameters can be
determined using numerical optimization methods. We are given iid
training data D = {x(i),y(i)}Ni=1, where each x(i) = {x(i)

1 ,x(i)
2 , . . .x(i)

T } is
a sequence of inputs, and each y(i) = {y(i)

1 ,y
(i)
2 , . . .y

(i)
T } is a sequence

of the desired predictions. To simplify the notation, we have assumed
that every training sequence x(i) has the same length T . Usually, every
sequence will have a different length — in other words, T will depend
on i. The discussion below can be extended to cover this situation in a
straightforward fashion.

Parameter estimation is typically performed by penalized maximum
likelihood. Because we are modeling the conditional distribution, the
following log likelihood, sometimes called the conditional log likelihood,

5.1 Maximum Likelihood 333

is appropriate:

�(θ) =
N∑

i=1

logp(y(i)|x(i);θ). (5.1)

To compute the maximum likelihood estimate, we maximize �(θ), that
is, the estimate is θ̂ml = supθ �(θ).

One way to understand the conditional likelihood p(y|x;θ) is to
imagine combining it with some arbitrary prior p(x;θ′) to form a joint
p(y,x). Then considering the joint log likelihood

logp(y,x;θ) = logp(y|x;θ) + logp(x;θ′), (5.2)

notice that the term p(x;θ′) does not depend on the parameters θ of
the conditional distribution. If we do not need to estimate p(x), then
when computing the maximum likelihood estimate of θ, we can simply
drop the second term from the maximization, which leaves (5.1).

After substituting in the CRF model (2.18) into the likelihood (5.1),
we get the following expression:

�(θ) =
N∑

i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t ,y

(i)
t−1,x

(i)
t) −

N∑
i=1

logZ(x(i)), (5.3)

It is often the case that we have a large number of parameters, e.g.,
several hundred thousand. To reduce overfitting, we use regularization,
which is a penalty on weight vectors whose norm is too large. A com-
mon choice of penalty is based on the Euclidean norm of θ and on
a regularization parameter 1/2σ2 that determines the strength of the
penalty. Then the regularized log likelihood is

�(θ) =
N∑

i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t ,y

(i)
t−1,x

(i)
t) −

N∑
i=1

logZ(x(i)) −
K∑

k=1

θ2
k

2σ2 .

(5.4)
The parameter σ2 is a free parameter which determines how much to
penalize large weights. Intuitively, the idea is to reduce the potential
for a small number of features to dominate the prediction. The nota-
tion for the regularizer is intended to suggest that regularization can

334 Parameter Estimation

also be viewed as performing maximum a posteriori (MAP) estima-
tion of θ, if θ is assigned a Gaussian prior with mean 0 and covari-
ance σ2I. Determining the best regularization parameter can require
a computationally-intensive parameter sweep. Fortunately, often the
accuracy of the final model is not sensitive to small changes in σ2 (e.g.,
up to a factor of 10). The best value of σ2 depends on the size of the
training set; for training sets such as those described in Section 5.5, we
have often used a value like σ2 = 10.

An alternative choice of regularization is to use the L1 norm instead
of the Euclidean norm, which corresponds to an double exponential
prior on parameters [44]. This results in the following penalized likeli-
hood:

�′(θ) =
N∑

i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t ,y

(i)
t−1,x

(i)
t)

−
N∑

i=1

logZ(x(i)) − α

K∑
k=1

|θk|, (5.5)

where α is a regularization parameter that needs to be tuned, analogous
to σ2 for the L2 regularizer. This regularizer tends to encourage sparsity
in the learned parameters, meaning that most of the θk are 0. This
can be useful for performing feature selection, and also has theoretical
advantages [97]. In practice, models trained with the L1 regularizer tend
to be sparser but have roughly the same accuracy as models training
using the L2 regularizer [65]. A disadvantage of the L1 regularizer is
that it is not differentiable at 0, which somewhat complicates numerical
optimization [3, 44, 160].

In general, the function �(θ) cannot be maximized in closed form,
so numerical optimization is used. The partial derivatives of (5.4) are

∂�

∂θk
=

N∑
i=1

T∑
t=1

fk(y
(i)
t ,y

(i)
t−1,x

(i)
t)

−
N∑

i=1

T∑
t=1

∑
y,y′

fk(y,y′,x(i)
t)p(y,y′|x(i)) − θk

σ2 . (5.6)

5.1 Maximum Likelihood 335

The first term can be interpreted as the expected value of fk under the
empirical distribution p̃, which is defined as

p̃(y,x) =
1
N

N∑
i=1

1{y=y(i)}1{x=x(i)}. (5.7)

The second term, which arises from the derivative of logZ(x), is the
expectation of fk under the model distribution p(y|x;θ)p̃(x). Therefore,
at the unregularized maximum likelihood solution, when the gradient
is zero, these two expectations are equal. This pleasing interpretation is
a standard result about maximum likelihood estimation in exponential
families.

To compute the likelihood �(θ) and its derivative is where we require
the inference techniques that we introduced in Section 4. First, in
the likelihood, inference is needed to compute the partition function
Z(x(i)), which is a sum over all possible labellings. Second, in the
derivatives, inference is required to compute the marginal distributions
p(y,y′|x(i)). Because both of these quantities depend on x(i), we will
need to run inference once for each training instance every time the like-
lihood is computed. This is a difference from generative models, such
as the undirected generative models of Section 2.1.1. Undirected gener-
ative models can also be trained by maximum likelihood, but for those
models Z depends only on the parameters, not on both the parameters
and the input. The requirement to run inference N times for each like-
lihood computation is the motivation behind stochastic gradient ascent
methods (Section 5.2).

Now we discuss how to optimize �(θ). The function �(θ) is con-
cave, which follows from the convexity of functions of the form g(x) =
log

∑
i expxi. Convexity is extremely helpful for parameter estimation,

because it means that every local optimum is also a global optimum.
In addition, if a strictly concave regularizer is used, such as the L2 reg-
ularizer, then the objective function becomes strictly concave, which
implies that it has exactly one global optimum.

Perhaps the simplest approach to optimize � is steepest ascent along
the gradient (5.6), but this requires too many iterations to be practical.
Newton’s method converges much faster because it takes into account
the curvature of the likelihood, but it requires computing the Hessian,

336 Parameter Estimation

the matrix of all second derivatives. The size of the Hessian is quadratic
in the number of parameters. Since practical applications often use tens
of thousands or even millions of parameters, simply storing the full
Hessian is not practical.

Instead, techniques for optimizing (5.4) make approximate use
of second-order information. Particularly successful have been quasi-
Newton methods such as BFGS [8], which compute an approximation
to the Hessian from only the first derivative of the objective function.
A full K × K approximation to the Hessian still requires quadratic
size, however, so a limited-memory version of BFGS is used, due to
Byrd et al. [17]. Conjugate gradient is another optimization technique
that also makes approximate use of second-order information and
has been used successfully with CRFs. For a good introduction to
both limited-memory BFGS and conjugate gradient, see Nocedal and
Wright [100]. Either can be thought of as a black-box optimization
routine that is a drop-in replacement for vanilla gradient ascent. When
such second-order methods are used, gradient-based optimization is
much faster than the original approaches based on iterative scaling
in Lafferty et al. [63], as shown experimentally by several authors
[80, 92, 125, 153]. Finally, trust region methods have recently been
shown to perform well on multinomial logistic regression [74], and may
work well for CRFs as well.

All of these optimization algorithms — steepest descent, Newton’s
method, quasi-Newton methods, conjugate gradient, and trust region
methods — are standard techniques for numerically optimizing nonlin-
ear functions. We apply them “off the shelf” to optimize the regularized
likelihood of a CRF. Typically these algorithms require the ability to
calculate both the value and the gradient of the function that they opti-
mize. In our case the value is the likelihood (5.4) and the first-order
derivatives are given by (5.6). This is why in Section 4 we discussed how
to compute the partition function Z(x) in addition to the marginals.

Finally, we discuss the computational cost of training linear chain
models. As we will see in Section 4.1, the likelihood and gradient for
a single training instance can be computed by forward–backward in
time O(TM2), where M is the number of labels and T the length of
the training instance. Because we need to run forward–backward for

5.1 Maximum Likelihood 337

each training instance, each computation of the likelihood and gra-
dient requires O(TM2N) time, so that the total cost of training is
O(TM2NG), where G the number of gradient computations required
by the optimization procedure. Unfortunately, G depends on the data
set and is difficult to predict in advance. For batch L-BFGS on linear-
chain CRFs, it is often but not always under 100. For many data
sets, this cost is reasonable, but if the number of states M is large,
or the number of training sequences N is very large, then this can
become expensive. Depending on the number of labels, training CRFs
can take anywhere from a few minutes to a few days; see Section 5.5
for examples.

5.1.2 General CRFs

Parameter estimation for general CRFs is essentially the same as for
linear chains, except that computing the model expectations requires
more general inference algorithms. First, we discuss the fully-observed
case, in which the training and testing data are independent, and the
training data is fully observed. In this case the conditional log likeli-
hood, using the notation of Section 2.4, is

�(θ) =
∑
Cp∈C

∑
Ψc∈Cp

K(p)∑
k=1

θpkfpk(xc,yc) − logZ(x). (5.8)

The equations in this section do not explicitly sum over training
instances, because if a particular application happens to have iid train-
ing instances, they can be represented by disconnected components in
the graph G.

The partial derivative of the log likelihood with respect to a param-
eter θpk associated with a clique template Cp is

∂�

∂θpk
=

∑
Ψc∈Cp

fpk(xc,yc) −
∑

Ψc∈Cp

∑
y′

c

fpk(xc,y′
c)p(y′

c|x). (5.9)

The function �(θ) has many of the same properties as in the linear-chain
case. First, the zero-gradient conditions can be interpreted as requiring
that the sufficient statistics Fpk(x,y) =

∑
Ψc

fpk(xc,yc) have the same

338 Parameter Estimation

expectations under the empirical distribution and under the model dis-
tribution. Second, the function �(θ) is concave, and can be efficiently
maximized by second-order techniques such as conjugate gradient and
L-BFGS. Finally, regularization is used just as in the linear-chain
case.

All of the discussion so far has assumed that the training data
contains the true values of all the label variables in the model. Latent
variables are variables that are observed at neither training nor test
time. CRFs with latent variables have been called hidden-state CRFs
(HCRFs) in Quattoni et al. [109, 110], which was one of the first
examples of latent variable CRFs. For other early applications of
HCRFs, see [84, 138]. It is more difficult to train CRFs with latent
variables because the latent variables need to be marginalized out to
compute the likelihood.

Suppose we have a CRF with inputs x in which the output vari-
ables y are observed in the training data, but we have additional
variables w that are latent, so that the CRF has the form:

p(y,w|x) =
1

Z(x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc;θp). (5.10)

A natural objective function to maximize during training is the
marginal likelihood

�(θ) = logp(y|x) = log
∑
w

p(y,w|x). (5.11)

The first question is how even to compute the marginal likelihood �(θ),
because if there are many variables w, the sum cannot be computed
directly. The key is to realize that we need to compute log

∑
w p(y,w|x)

not for any possible assignment y, but only for the particular assign-
ment that occurs in the training data. This motivates taking the origi-
nal CRF (5.10), and clamping the variables Y to their observed values
in the training data, yielding a distribution over w:

p(w|y,x) =
1

Z(y,x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc;θp), (5.12)

5.1 Maximum Likelihood 339

where the normalization factor is

Z(y,x) =
∑
w

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc;θp). (5.13)

This new normalization constant Z(y,x) can be computed by the same
inference algorithm that we use to compute Z(x). In fact, Z(y,x) is
easier to compute, because it sums only over w, while Z(x) sums over
both w and y. Graphically, this amounts to saying that clamping the
variables y in the graph G can simplify the structure among w.

Once we have Z(y,x), the marginal likelihood can be computed as

p(y|x) =
1

Z(x)

∑
w

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc;θp) =
Z(y,x)
Z(x)

. (5.14)

Now that we have a way to compute �, we discuss how to maximize it
with respect to θ. Maximizing �(θ) can be difficult because � is no longer
convex in general (log-sum-exp is convex, but the difference of two
log-sum-exp functions might not be), so optimization procedures are
typically guaranteed to find only local maxima. Whatever optimization
technique is used, the model parameters must be carefully initialized
in order to reach a good local maximum.

We discuss two different ways to maximize �: directly using the
gradient, as in Quattoni et al. [109]; and using EM, as in McCallum
et al. [84]. (In addition, it is also natural to use stochastic gradient
descent here; see Section 5.2.) To maximize � directly, we need to cal-
culate its gradient. The simplest way to do this is to use the following
fact. For any function f(θ), we have

df

dθ
= f(θ)

d logf

dθ
, (5.15)

which can be seen by applying the chain rule to logf and rearranging.
Applying this to the marginal likelihood �(θ) = log

∑
w p(y,w|x) yields

∂�

∂θpk
=

1∑
w p(y,w|x)

∑
w

∂

∂θpk
[p(y,w|x)] (5.16)

=
∑
w

p(w|y,x)
∂

∂θpk
[logp(y,w|x)]. (5.17)

340 Parameter Estimation

This is the expectation of the fully-observed gradient, where the expec-
tation is taken over w. This expression simplifies to

∂�

∂θpk
=

∑
Ψc∈Cp

∑
w′

c

p(w′
c|y,x)fk(yc,xc,w′

c)

−
∑

Ψc∈Cp

∑
w′

c,y′
c

p(w′
c,y

′
c|xc)fk(y′

c,xc,w′
c). (5.18)

This gradient requires computing two different kinds of marginal proba-
bilities. The first term contains a marginal probability p(w′

c|y,x), which
is exactly a marginal distribution of the clamped CRF (5.12). The sec-
ond term contains a different marginal p(w′

c,y
′
c|xc), which is the same

marginal probability required in a fully-observed CRF. Once we have
computed the gradient, � can be maximized by standard techniques
such as conjugate gradient. For BFGS, it has been our experience that
the memory-based approximation to the Hessian can become confused
by violations of convexity, such as occur in latent-variable CRFs. One
practical trick in this situation is to reset the Hessian approximation
when that happens.

Alternatively, � can be optimized using expectation maximization
(EM). At each iteration j in the EM algorithm, the current parameter
vector θ(j) is updated as follows. First, in the E-step, an auxiliary func-
tion q(w) is computed as q(w) = p(w|y,x;θ(j)). Second, in the M-step,
a new parameter vector θ(j+1) is chosen as

θ(j+1) = argmax
θ′

∑
w′

q(w′) logp(y,w′|x;θ′). (5.19)

The direct maximization algorithm and the EM algorithm are strikingly
similar. This can be seen by substituting the definition of q into (5.19)
and taking derivatives. The gradient is almost identical to the direct
gradient (5.18). The only difference is that in EM, the distribution
p(w|y,x) is obtained from a previous, fixed parameter setting rather
than from the argument of the maximization. We are unaware of any
empirical comparison of EM to direct optimization for latent-variable
CRFs.

5.2 Stochastic Gradient Methods 341

5.2 Stochastic Gradient Methods

So far, all of the methods that we have discussed for optimizing the
likelihood work in a batch setting, meaning that they do not make
any change to the model parameters until they have scanned the entire
training set. If the training data consist of a large number of iid samples,
then this may seem wasteful. We may suspect that many different
items in the training data provide similar information about the model
parameters, so that it should be possible to update the parameters after
seeing only a few examples, rather than sweeping through all of them.

Stochastic gradient descent (SGD) is a simple optimization method
that is designed to exploit this insight. The basic idea is at every itera-
tion, to pick a training instance at random, and take a small step in the
direction given by the gradient for that instance only. In the batch set-
ting, gradient descent is generally a poor optimization method, because
the direction of steepest descent locally (that is, the negative gradient)
can point in a very different direction than the optimum. So stochastic
gradient methods involve an interesting tradeoff: the directions of the
individual steps may be much better in L-BFGS than in SGD, but the
SGD directions can be computed much faster.

In order to keep the notation simple, we present SGD only for the
case of linear-chain CRFs, but it can be easily used with any graphical
structure, as long as the training data are iid. The gradient of the
likelihood for a single training instance (x(i),y(i)) is

∂�i

∂θk
=

T∑
t=1

fk(y
(i)
t ,y

(i)
t−1,x

(i)
t)

−
T∑

t=1

∑
y,y′

fk(y,y′,x(i)
t)p(y,y′|x(i)) − θk

Nσ2 . (5.20)

This is exactly the same as the full gradient (5.6), with two changes: the
sum over training instances has been removed, and the regularization
contains an additional factor of 1/N . These ensure that the batch gra-
dient equals the sum of the per-instance gradients, i.e., ∇� =

∑N
i=1∇�i,

where we use ∇�i to denote the gradient for instance i.

342 Parameter Estimation

At each iteration m of SGD, we randomly select a training instance
(x(i),y(i)). Then compute the new parameter vector θ(m) from the old
vector θ(m) by

θ(m) = θ(m−1) + αm∇�i(θ(m−1)), (5.21)

where αm > 0 is a step size parameter that controls how far the param-
eters move in the direction of the gradient. If the step size is too large,
then the parameters will swing too far in the direction of whatever
training instance is sampled at each iteration. If αm is too small, then
training will proceed very slowly, to the extent that in extreme cases,
the parameters may appear to have converged numerically when in fact
they are far from the minimum.

We want αm to decrease as m increases, so that the optimization
algorithm converges to a single answer. Classic convergence results
for stochastic approximation procedures [54, 115] provide the minimal
requirements of

∑
m αm =∞ and

∑
m α2

m <∞, that is, the α should
go to 0 for large m but not too quickly. The most common way to
meet these requirements is to select a step size schedule of a form like
αm ∼ 1/m or αm ∼ 1/

√
m. However, simply taking αm = 1/m is usu-

ally bad, because then the first few step sizes are too large. Instead, a
common trick is to use a schedule like

αm =
1

σ2(m0 + m)
, (5.22)

where m0 is a free parameter that needs to be set. A suggestion for
setting this parameter, which is used in the crfsgd package of Leon
Bottou [13], is to sample a small subset of the training data and run
one pass of SGD over the subset with various fixed step sizes α. Pick
the α∗ such that the resulting likelihood on the subset after one pass
is highest, and choose m0 such that α0 = α∗.

Stochastic gradient descent has also gone by the name of backprop-
agation in the neural network literature, and many tricks for tuning the
method have been developed over the years [66]. Recently, there has
been renewed interest in advanced online optimization methods [27, 43,
126, 149], which also update parameters in an online fashion, but in
a more sophisticated way than simple SGD. Vishwanathan et al. [149]
was the first application of stochastic gradient methods to CRFs.

5.3 Parallelism 343

The main disadvantage of stochastic gradient methods is that they
require tuning, unlike off-the-shelf solvers such as conjugate gradient
and L-BFGS. Stochastic gradient methods are also not useful in rela-
tional settings in which the training data are not iid, or on small data
sets. On appropriate data sets, however, stochastic gradient methods
can offer considerable speedups.

5.3 Parallelism

Stochastic gradient descent speeds up the gradient computation by
computing it over fewer instances. An alternative way to speed up
the gradient computation is to compute the gradient over multiple
instances in parallel. Because the gradient (5.6) is a sum over training
instances, it is easy to divide the computation into multiple threads,
where each thread computes the gradient on a subset of training
instances. If the CRF implementation is run on a multicore machine,
then the threads will run in parallel, greatly speeding up the gradient
computation. This is a characteristic shared by many common machine
learning algorithms, as pointed out by Chu et al. [22].

In principle, one could also distribute the gradient computation
across multiple machines, rather than multiple cores of the same
machine, but the overhead involved in transferring large parameter
vectors across the network can be an issue. A potentially promising
way to avoid this is to update the parameter vectors asynchronously.
An example of this idea is recent work on incorporating parallel com-
putation into stochastic gradient methods [64].

5.4 Approximate Training

All of the training methods that we have described so far, including
the stochastic and parallel gradient methods, assume that the graphical
structure of the CRF is tractable, that is, that we can efficiently com-
pute the partition function Z(x) and the marginal distributions p(yc|x).
This is the case, for example, in linear chain and tree-structured CRFs.
Early work on CRFs focused on these cases, both because of the
tractability of inference, and because this choice is very natural for
certain tasks such as sequence labeling tasks in NLP.

344 Parameter Estimation

When the graphical structure is more complex, then the marginal
distributions and the partition function cannot be computed tractably,
and we must resort to approximations. As described in Section 4, there
is a large literature on approximate inference algorithms. In the context
of CRFs, however, there is a crucial additional consideration, which is
that the approximate inference procedure is embedded within a larger
optimization procedure for selecting the parameters.

There are two general strategies for approximate training in CRFs
[139]: a surrogate likelihood strategy in which we modify the objective
function that is used for training, and an approximate marginals strat-
egy in which we approximate the gradient. The first strategy involves
finding a substitute for �(θ) (such as the BP approximation (5.27)),
which we will call a surrogate likelihood that is easier to compute but
is still expected to favor good parameter settings. Then the surrogate
likelihood can be optimized using a gradient-based method, in a similar
way to the exact likelihood. Second, an approximate marginals strategy
means using a generic inference algorithm to compute an approxima-
tion to the marginals p(yc|x), substituting the approximate marginals
for the exact marginals in the gradient (5.9), and performing a gradient
descent procedure using the resulting approximate gradients.

Although surrogate likelihood and approximate marginal methods
are obviously closely related, they are distinct. Usually a surrogate
likelihood method directly yields an approximate marginals method,
because just as the derivatives of logZ(x) give the true marginal distri-
butions, the derivatives of an approximation to logZ(x) can be viewed
as an approximation to the marginal distributions. These approximate
marginals are sometimes termed pseudomarginals [151]. However, the
reverse direction does not always hold: for example, there are certain
approximate marginal procedures that provably do not correspond to
the derivative of any likelihood function [131, 139].

The main advantage of a surrogate likelihood method is that having
an objective function can make it easier to understand the properties of
the method, both to human analysts and to the optimization procedure.
Advanced optimization engines such as conjugate gradient and BFGS
require an objective function in order to operate. The advantage to the
approximate marginals viewpoint, on the other hand, is that it is more

5.4 Approximate Training 345

flexible. It is easy to incorporate arbitrary inference algorithms, includ-
ing tricks such as early stopping of BP and MCMC. Also, approximate
marginal methods fit well within a stochastic gradient framework.

There are aspects of the interaction between approximate infer-
ence and parameter estimation that are not completely understood. For
example, Kulesza and Pereira [60] present an example of a situation in
which the perceptron algorithm interacts in a pathological fashion with
max-product belief propagation. Surrogate likelihood methods, by con-
trast, do not seem to display this sort of pathology, as Wainwright [151]
points out for the case of convex surrogate likelihoods.

To make this discussion more concrete, in the rest of this section, we
will discuss several examples of surrogate likelihood and approximate
marginal methods. We discuss surrogate likelihood methods based on
pseudolikelihood (Section 5.4.1) and belief propagation (Section 5.4.2)
and approximate gradient methods based on belief propagation (Sec-
tion 5.4.2) and MCMC (Section 5.4.3).

5.4.1 Pseudolikelihood

One of the earliest surrogate likelihoods is the pseudolikelihood [9]. The
idea in pseudolikelihood is for the training objective to depend only on
conditional distributions over single variables. Because the normalizing
constants for these distributions depend only on single variables, they
can be computed efficiently. In the context of CRFs, the pseudolikeli-
hood is

�pl(θ) =
∑
s∈V

logp(ys|yN(s),x;θ). (5.23)

Here the summation over s ranges over all output nodes in the graph,
and yN(s) are the values of the variables N(s) that are neighbors
of Ys. (As in (5.8), we do not include the sum over training instances
explicitly.)

Intuitively, one way to understand pseudolikelihood is that it
attempts to match the local conditional distributions p(ys|yN(s),x;θ)
of the model distribution to the training data, and because of the con-
ditional independence assumptions of the model, the local conditional

346 Parameter Estimation

distributions are sufficient to specify a joint distribution. (This is sim-
ilar to the motivation behind a Gibbs sampler.)

The parameters are estimated by maximizing the pseudolikelihood,
i.e., the estimates are θ̂pl = maxθ �pl(θ). Typically, the maximization is
carried out by a second-order method such as limited-memory BFGS,
but in principle parallel computation or stochastic gradient can be
applied to the pseudolikelihood exactly in the same way as the full
likelihood. Also, regularization can be used just as with maximum
likelihood.

There is no intention that the value of pseudolikelihood function �pl

be a close approximation to the value of the true likelihood. Rather,
the idea is for the maximum pseudolikelihood estimate θ̂pl to match
the maximum likelihood estimate θ̂ml. That is, the two functions are not
intended to coincide but the two maxima are. Under certain conditions,
most notably that the model family is correct, it can be shown that
pseudolikelihood is asymptotically correct, i.e., that it will recover the
true parameters in the limit of an infinite amount of data.

The motivation behind pseudolikelihood is computational efficiency.
The pseudolikelihood can be computed and optimized without needing
to compute Z(x) or the marginal distributions. Although pseudolikeli-
hood has sometimes proved effective in NLP [146], more commonly the
performance of pseudolikelihood is poor [134], in an intuitively analo-
gous way that a Gibbs sampler can mix slowly in sequential models.
In vision problems, a common criticism of pseudolikelihood is that it
“places too much emphasis on the edge potentials” [149]. An intuitive
explanation for this is that a model trained by pseudolikelihood can
learn to rely on the true values of the neighboring variables, but these
are not available at test time.

One can obtain better performance by performing a “blockwise”
version of pseudolikelihood in which the local terms involve conditional
probabilities of larger regions in the model. For example, in a linear-
chain CRF, one could consider a per-edge pseudolikelihood:

�epl(θ) =
T−1∑
t=1

logp(yt,yt+1|yt−1,yt+2,θ). (5.24)

5.4 Approximate Training 347

(Here we assume that the sequence is padded with dummy labels y0

and yT+1 so that the edge cases are correct.)
This blockwise version of pseudolikelihood is a special case of com-

posite likelihood [34, 75]. In composite likelihood, each of the indi-
vidual terms in the likelihood predicts not just a single variable or
a pair of variable, but a block of variables of arbitrary size that the
user can select. Composite likelihood generalizes both standard pseu-
dolikelihood and the “blockwise” pseudolikelihood. There are general
theoretical results concerning asymptotic consistency and normality of
composite likelihood estimators. Typically larger blocks lead to bet-
ter parameter estimates, both in theory and in practice. This allows
a tradeoff between training time and the quality of the resulting
parameters.

Finally, the piecewise training method of Sutton and McCallum
[134, 137] is related to composite likelihood, but is perhaps better
understood as a belief propagation method, so we defer it to the next
section.

5.4.2 Belief Propagation

The loopy belief propagation algorithm (Section 4.2.2) can be used
within approximate CRF training. This can be done within either the
surrogate likelihood or the approximate gradient perspectives.

In the approximate gradient algorithm, at every iteration of
training, we run loopy BP on the training input x, yielding a set
of approximate marginals q(yc) for each clique in the model. Then
we approximate the true gradient (5.9) by substituting in the BP
marginals. This results in approximate partial derivatives

∂�̃

∂θpk
=

∑
Ψc∈Cp

fpk(xc,yc) −
∑

Ψc∈Cp

∑
y′

c

fpk(xc,y′
c)q(y

′
c). (5.25)

These can be used to update the current parameter setting as

θ
(t+1)
pk = θ

(t)
pk + α

∂�̃

∂θpk
, (5.26)

348 Parameter Estimation

where α > 0 is a step size parameter. The advantages of this setup are
that it is extremely simple, and is especially useful within an outer
stochastic gradient approximation.

More interestingly, however, it is also possible to use loopy BP
within a surrogate likelihood setup. To do this, we need to develop
some surrogate function for the true likelihood (5.8) which has the
property that the gradient of the surrogate likelihood are exactly the
approximate BP gradients (5.26). This may seem like a tall order,
but fortunately it is possible using the Bethe free energy described
in Section 4.2.2.

Remember from that section that loopy belief propagation can be
viewed as an optimization algorithm, namely, one that minimizes the
objective function OBethe(q) (4.36) over the set of all locally consistent
belief vectors, and that the minimizing value minqOBethe(q) can be used
as an approximation to the partition function. Substituting in that
approximation to the true likelihood (5.8) gives us, for a fixed belief
vector q, the approximate likelihood

�Bethe(θ,q) =
∑
Cp∈C

∑
Ψc∈Cp

logΨc(xc,yc)

−
∑
Cp∈C

∑
Ψc∈Cp

q(yc) log
q(yc)

Ψc(xc,yc)

+
∑
s∈Y

(1 − di)q(ys) logq(ys). (5.27)

Then approximate training can be viewed as the optimization problem
maxθ minq �Bethe(θ,q). This is a saddlepoint problem, in which we are
maximizing with respect to one variable (to find the best parameters)
and minimizing with respect to another (to solve the approximate infer-
ence problem). One approach to solve saddlepoint problems is coordi-
nate ascent, that is, to alternately minimize �Bethe with respect to q for
fixed θ and take a gradient step to partially maximize �Bethe with respect
to θ for fixed b. The first step (minimizing with respect to q) is just
running the loopy BP algorithm. The key point is that for the second
step (maximizing with respect to θ), the partial derivatives of (5.27)
with respect to a weight θk is exactly (5.26), as desired.

5.4 Approximate Training 349

Alternatively, there is a different surrogate likelihood that can also
be used. This is

�̂(θ;q) = log

[∏
Cp∈C

∏
Ψc∈Cp

q(yc)∏
s∈Y q(ys)ds−1

]
, (5.28)

In other words, instead of the true joint likelihood, we use the product
over each clique’s approximate belief, dividing by the node beliefs to
avoid overcounting. The nice thing about this is that it is a direct
generalization of the true likelihood for tree-structured models, as can
be seen by comparing (5.28) with (4.31). This surrogate likelihood can
be justified using a dual version of Bethe energy that we have presented
here [91, 94]. When BP has converged, for the resulting belief vector
q, it can be shown that �Bethe(θ,q) = �̂(θ,q). This equivalence does not
hold in general for arbitrary values of q, e.g., if BP has not converged.

Another surrogate likelihood method that is related to BP is the
piecewise estimator [137], in which the factors of the model are par-
titioned into tractable subgraphs that are trained independently. This
idea can work surprisingly well (better than pseudolikelihood) if the
local features are sufficiently informative. Sutton and Minka [139] dis-
cuss the close relationship between piecewise training and early stop-
ping of belief propagation.

5.4.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) inference methods (Section 4.2.1)
can be used within CRF training in an approximate marginals frame-
work. Once we have chosen a Markov chain whose stationary distribu-
tion is p(y|x;θ), the algorithm is to the chain for a number of iterations
and use the resulting approximate marginals p̂(y|x;θ) to approximate
the true marginals in the gradient (5.9).

In practice, however, MCMC methods have been less commonly
used in the context of CRFs, because MCMC methods typically require
many iterations to reach convergence, and as we have emphasized, infer-
ence needs to be run for many different parameter settings over the
course of training.

One possibility to overcome this difficulty is contrastive divergence
(CD) [50], in which the true marginals p(yc|x) in (5.9) are approximated

350 Parameter Estimation

by running an MCMC method for only a few iterations, where the initial
state of the Markov chain (which is just an assignment to y) is set to
be the value of y in the training data. CD has been mostly applied to
latent variable models such as restricted Boltzmann machines. While
in principle CD can be applied to CRFs, we are unaware of much work
that does this.

Another possibility is a more recent method called SampleRank
[155], whose objective is that the learned parameters score pairs of
ys such that their sorted ranking obeys a given supervised ranking
(which is often specified in terms of a fixed scoring function on y that
compares to true target values of y). Approximate gradients may be
calculated from pairs of successive states of the MCMC sampler. Like
CD, SampleRank performs parameter updates on individual MCMC
steps rather than waiting for the chain to converge. Experiments have
shown that models trained using SampleRank can have substantially
better accuracy than CD [155].

In contrast to the approximate marginals framework that we have
been discussing, it is very difficult to use an MCMC inference method
within a surrogate likelihood framework, because it is notoriously dif-
ficult to obtain a good approximation to logZ(x) given samples from
an MCMC method.

5.5 Implementation Concerns

To make the discussion of efficient training methods more concrete, here
we give some examples of data sets from NLP in which CRFs have been
successful. The idea is to give a sense of the scales of problem to which
CRFs have been applied, including typical values for the number of
features and typical training times.

We describe three example tasks to which CRFs have been applied.
The first example task is noun-phrase (NP) chunking [120], in which the
problem is to find base noun phrases in text, such as the phrases “He”
and “the current account deficit” in the sentence He reckons the current
account deficit will narrow. The second task is named identity recog-
nition (NER) [121], the task of identifying proper names in text, such
as person names and company names. The final task is part-of-speech

5.5 Implementation Concerns 351

Table 5.1. Scale of typical CRF applications in natural language processing.

Task Parameters
Observation
Functions # Sequences # Positions Labels Time (s)

NP chunking 248471 116731 8936 211727 3 958s
NER 187540 119265 946 204567 9 4866s
POS tagging 509951 127764 38219 912344 45 325500s

tagging (POS), that is, labelling each word in a sentence with its part
of speech. The NP chunking and POS data sets are derived from the
WSJ Penn Treebank [82], while the NER data set consists of newswire
articles from Reuters.

We will not go into detail about the features that we use, but they
include the identity of the current and previous word, prefixes and
suffixes, and (for the named-entity and chunking tasks) automatically
generated part of speech tags and lists of common places and person
names. The feature set has a similar flavor to that described in the
named entity example in Section 2.6. We do not claim that the feature
sets that we have used are optimal for these tasks, but still they should
be useful for understanding typical scale.

For each of these data sets, Table 5.1 shows the number of param-
eters in the trained CRF model, the size of the training set, in terms
of the total number of sequences and number of words, the number of
possible labels for each sequence position, and the training time. The
training times range from minutes in the best case to days in the worst
case. As can be expected from our previous discussion, the factor that
seems to most influence training time is the number of labels.

Obviously the exact training time will depend heavily on details
of the implementation and hardware. For the examples in Table 5.1,
we use the MALLET toolkit on machines with a 2.4 GHz Intel Xeon
CPU, optimizing the likelihood using batch L-BFGS without using mul-
tithreaded or stochastic gradient training.

6
Related Work and Future Directions

In this section, we briefly place CRFs in the context of related lines of
research, especially that of structured prediction, a general research area
which is concerned with extending classification methods to complex
objects. We also describe relationships both to neural networks and
to a simpler sequence model called maximum entropy Markov models
(MEMMs). Finally, we outline a few open areas for future work.

6.1 Related Work

6.1.1 Structured Prediction

Classification methods provide established, powerful methods for pre-
dicting discrete outcomes. But in the applications that we have been
considering in this survey, we wish to predict more complex objects,
such as parse trees of natural language sentences [38, 144], align-
ments between sentences in different languages [145], and route plans
in mobile robotics [112]. Each of these complex objects have internal
structure, such as the tree structure of a parse, and we should be able
to use this structure in order to represent our predictor more efficiently.

352

6.1 Related Work 353

This general problem is called structured prediction. Just as the CRF
likelihood generalizes logistic regression to predict arbitrary structures,
the field of structured prediction generalizes the classification problem
to the problem of predicting structured objects.

Structured prediction methods are essentially a combination of clas-
sification and graphical modeling, combining the ability to compactly
model multivariate data with the ability to perform prediction using
large sets of input features. CRFs provide one way to do this, general-
izing logistic regression, but other standard classification methods can
be generalized to the structured prediction case as well. Detailed infor-
mation about structured prediction methods is available in a recent
collection of research papers [5]. In this section, we give an outline and
pointers to some of these methods.

In order to explain more formally what a “structure” is, we review
the general setup of classification. Many classification techniques can
be interpreted as learning a discriminant function F (y,x) over outputs
in a finite set y ∈ Y, for example, Y = {1,2, . . .C}. Given a test input x,
we predict the output and predict y∗ = argmaxy F (y,x). For example,
often the discriminant function is linear in some basis expansion φ(x),
e.g., F (y,x) = θT

y φ(x) for a set of weight vectors θy.
Structured prediction follows this framework with one essential

difference. In structured prediction, the set of possible outputs Y is
extremely large, for example, the set of all ways to label the words
in a sentence with named-entity labels, as in Section 2.6.1. Clearly in
this situation it is not feasible to have a separate weight vector θy

for each y ∈ Y, i.e., for each of the possible ways to label a sequence.
So in structured prediction methods we add the restriction that the
discriminant function decomposes according to the output structure.
Formally, in the structured case we write the output as a random vec-
tor y = (y1,y2, . . .yT), and we require the discriminant to decompose
according to a set of parts Ya, each of which is simply a subset of the
variables in y. We index the parts by a ∈ {1,2, . . .A}. Then the main
assumption is that the discriminant decomposes as

F (y,x) =
A∑

a=1

Fa(ya,x). (6.1)

354 Related Work and Future Directions

This discussion should be familiar from our discussion of undirected
models general CRFs. For example, the log probability of a general
CRF can written in this form, because for the purposes of prediction at
test time we can ignore Z(x). Structured prediction methods all share
the property that the discriminant function decomposes according to
a set of parts. They differ in how the parameters of the discriminant
function are estimated from data.

Many types of structured prediction algorithms have been proposed.
The CRF likelihood depend on summation over possible outputs, to
obtain partition function Z(x) and to obtain marginal distributions
p(yi|x). Most other structured prediction methods that do not use the
likelihood focus on maximization rather than summation. For example,
maximum-margin methods that are so successful for univariate clas-
sification have been generalized to the structured case, yielding the
structured SVM [2, 147] and the maximum margin Markov network
[143]. The perceptron update can also be generalized to structured
models [25]. The resulting algorithm is particularly appealing because
it is little more difficult to implement than the algorithm for select-
ing y∗. The online perceptron update can also be made margin-aware,
yielding the MIRA algorithm [28].

Another class of structured methods are search-based methods
[31, 32] in which a heuristic search procedure over outputs is assumed,
and learns a classifier that predicts the next step in the search. This has
the advantage of fitting in nicely to many problems that are complex
enough to require performing search. It is also able to incorporate arbi-
trary loss functions over predictions (i.e., ones that do not decompose
in the same way that the discriminant function does). Finally, LeCun
et al. [68] generalizes many prediction methods, including the ones
listed above, under the rubric of energy-based methods.

A general advantage of maximization- and search-based methods
is that they do not require summation over all configurations for the
partition function or for marginal distributions. There are certain com-
binatorial problems, such as matching and network flow problems, in
which finding an optimal configuration is tractable, but summing over
configurations is not, for example, see Taskar et al. [145]. For more
complex problems, neither summation nor maximization is tractable,

6.1 Related Work 355

so this advantage is perhaps not as significant, although even in this
case maximization makes it easier to apply approximate search meth-
ods such as beam search and pruning. For example, see Pal et al. [102]
for an example of the difficulties that can arise when trying to naively
incorporate beam search within CRF training.

It is worth noting that although maximization-based training meth-
ods do not use the likelihood during parameter estimation, the resulting
parameters could still be interpreted as defining a factorized conditional
probability distribution p(y|x), and hence a CRF by Definition 2.3.

Perhaps the main advantage of probabilistic methods is that they
can incorporate latent variables in a natural way, by marginaliza-
tion. This can be useful, for example, in collective classification meth-
ods [142]. For examples of structured models with latent variables, see
Quattoni et al. [109] and McCallum et al. [84]. A particularly powerful
example of this is provided by Bayesian methods, in which the model
parameters themselves are integrated out (Section 6.2.1). That having
been said, recent work has proposed methods of incorporating latent
variables into SVMs and structured SVMs [36, 159].

The differences in prediction accuracy between the various
structured prediction methods are not well understood. To date,
there has been little careful experimental comparison of structured
prediction methods across different domains, although see Keerthi
and Sundararajan [53] for some experiments in this regard.1 We take
the view that the similarities between various structured prediction
methods are more important than the differences. Careful selection of
features has more effect on performance than the choice of structured
prediction algorithm.

6.1.2 Neural Networks

There are close relationships between neural networks and CRFs,
in that both can be viewed as discriminatively trained probabilistic
models. Neural networks are perhaps best known for their use in clas-
sification, but they can also be used to predict multiple outputs, for

1 An earlier study [99] appears to have been flawed. See Keerthi and Sundararajan [53] for
discussion.

356 Related Work and Future Directions

example, by using a shared latent representation [18], or by modeling
dependencies between outputs directly [67]. Although neural networks
are typically trained using stochastic gradient descent (Section 5.2), in
principle they can be trained using any of the other methods used for
CRFs. The main difference between them is that neural networks rep-
resent the dependence between output variables using a shared latent
representation, while structured methods learn these dependences as
direct functions of the output variables.

Because of this, it is easy to make the mistake of thinking that CRFs
are convex and neural networks are not. This is inaccurate. A neural
network without a hidden layer is a linear classifier that can be trained
efficiently in a number of ways, while a CRF with latent variables has
a non-convex likelihood (Section 2.4). The correct way of thinking is:
In fully observed models, the likelihood is convex; in latent variable
models it is not.

So the main new insight of structured prediction models compared
to neural networks is: If you add connections among the nodes in the
output layer, and if you have a good set of features, then sometimes
you don’t need a hidden layer to get good performance. If you can
afford to leave out the hidden layer, then in practice you always want
to do so, because this avoids all of the problems with local minima. For
harder problems, however, one might expect that even after modeling
output structure, incorporating hidden states will still yield additional
benefit. Once hidden states are introduced into the model, whether it
be a neural network or a structured model, it seems to be inevitable
(at least given our current understanding of machine learning) that
convexity will be lost.

There is another sense in which even without hidden states, a CRF
is like a neural network. For concreteness consider a linear-chain CRF
p(y1,y2|x) over a sequence of length 2. The CRF is a linear model,
by which we mean that for any two label assignments y = (y1,y2) and
y′ = (y′

1,y
′
2), the log odds log(p(y|x)/p(y′|x)) are a linear function of

the parameters. However, the marginal distributions behave nonlin-
early. In other words, log(p(y1|x)/p(y′

1|x)) is not a linear function of
the parameters. This is because the variable y2 acts like a hidden vari-
able when computing the marginal distribution over y1. This viewpoint

6.1 Related Work 357

has been exploited to approximate CRFs using per-position classifiers
with an expanded feature set [71].

6.1.3 MEMMs, Directed Models, and Label Bias

Linear-chain CRFs were originally introduced as an improvement to the
maximum-entropy Markov model (MEMM) [85], which is essentially a
Markov model in which the transition probabilities are given by logistic
regression. Formally, an MEMM is

pMEMM(y|x) =
T∏

t=1

p(yt|yt−1,x) (6.2)

p(yt|yt−1,x) =
1

Zt(yt−1,x)
exp

{
K∑

k=1

θkfk(yt,yt−1,xt)

}
(6.3)

Zt(yt−1,x) =
∑
y′

exp

{
K∑

k=1

θkfk(y′,yt−1,xt)

}
. (6.4)

A similar idea can be extended to general directed graphs, in which the
distribution p(y|x) is expressed by a Bayesian network in which each
local conditional distribution is a logistic regression model with input x
[117].

In the linear-chain case, notice that the MEMM works out to have
the same form as the linear-chain CRF (5.3) with the exception that in a
CRF Z(x) is a sum over sequences, whereas in a MEMM the analogous
term is

∏T
t=1 Zt(yt−1,x). This difference has important consequences.

Unlike CRFs, maximum likelihood training of MEMMs does not require
performing inference, because Zt is just a simple sum over the labels at
a single position, rather than a sum over labels of an entire sequence.
This is an example of the general phenomenon that training of directed
models is less computationally demanding than undirected models.

There are theoretical difficulties with the MEMM model, however.
MEMMs can exhibit the problem of label bias [63]. The label bias prob-
lem is essentially that future observations cannot affect the posterior
distribution over earlier states. To understand the label bias problem,
consider the backward recursion (4.9). In the case of an MEMM, this

358 Related Work and Future Directions

amounts to

βt(i) =
∑
j∈S

p(yt+1 = j|yt = i,xt+1)βt+1(j). (6.5)

Unfortunately, this sum is always 1, regardless of the value of the cur-
rent label i. What this means is that the future observations provide
no information about the current state, which seems to lose a major
advantage of sequence modeling. To see this, assume for the sake of
induction that βt+1(j) = 1 for all j. Then it is clear that the sum over
j in (6.5) collapses, and βt(i) = 1.

Perhaps a more intuitive way to understand label bias is from the
perspective of graphical models. Consider the graphical model of an
MEMM, shown in Figure 6.1. By looking at the v-structures in the
graph, we can read off the following independence assumptions: at
all time steps t, the label yt is marginally independent of the future
observations xt+1,xt+2, etc. This independence assumption is usually
strongly violated in sequence modeling, which explains why CRFs can
have better performance than MEMMs. Also, this independence rela-
tion explains why βt(i) should always be 1. (In general, this corre-
spondence between graph structure and inference algorithms is one of
main conceptual advantages of graphical modeling.) To summarize this
discussion, label bias is simply a consequence of explaining away.

There is a caveat here: We can always copy information from previ-
ous and future time steps into the feature vector xt, and this is common
in practice. This has the effect of adding arcs between (for example) xt

and xt+1. This explains why the performance gap in practice between
MEMMs and CRFs is not always as large as might be expected.

This graphical modeling view on label bias highlights an impor-
tant point. Label bias is not caused by a model being directed or

y

x

Fig. 6.1 Graphical model of a maximum entropy Markov model [85].

6.2 Frontier Areas 359

undirected. It is caused by the structure of the particular directed
model that is used in the MEMM. This point is forcefully corroborated
by Berg-Kirkpatrick et al. [6], which presents impressive experimental
results on various unsupervised learning tasks by using directed models
whose local conditional distributions have a log linear structure like the
MEMM does, but which avoid label bias because they have a generative
graphical structure, rather than the v-structures of Figure 6.1.

Finally, one might try a different way to combine the advantages of
conditional training and directed models. One can imagine defining a
directed model p(y,x), perhaps a generative model, and then training
it by optimizing the resulting conditional likelihood p(y|x). In fact, this
procedure has a long history in the speech community, where it is called
maximum mutual information training [4]. Naively, this might seem
to offer a simpler training algorithm than CRFs do, because directed
models are usually easier to train than undirected models. But in fact,
this approach does not obviate the need to perform inference during
training. The reason is that computing the conditional likelihood p(y|x)
requires computing the marginal probability p(x), which plays the same
role as Z(x) in the CRF likelihood. In fact, training can be more com-
plex in a directed model, because the model parameters are constrained
to be probabilities — constraints which can actually make the optimiza-
tion problem more difficult.

6.2 Frontier Areas

Finally, we describe a few open research areas that are related to CRFs.
In all of the cases below, the research question is a special case of
a larger question for general graphical models, but there are special
additional considerations in conditional models that make the problem
more difficult.

6.2.1 Bayesian CRFs

Because of the large number of parameters in typical applications of
CRFs, the models can be prone to overfitting. The standard way to
control this is using regularization, as described in Section 5.1.1. One
way that we motivated this procedure is as an approximation to a fully

360 Related Work and Future Directions

Bayesian procedure. That is, instead of predicting the labels of a test-
ing instance x as y∗ = maxy p(y|x; θ̂), where θ̂ is a single parameter
estimate, in a Bayesian method we would use the predictive distribu-
tion y∗ = maxy

∫
p(y|x;θ)p(θ|x(1),y(1), . . . ,x(N),y(N))dθ. This integral

over θ needs to be approximated, for example, by MCMC.
In general, it is difficult to formulate efficient Bayesian methods

for undirected models; see [95, 96] for some of the few examples in
this regard. A few papers have specially considered approximate infer-
ence algorithms for Bayesian CRFs [107, 154, 161], but while these
methods are interesting, they do not seem to be useful at the scale
of current CRF applications (e.g., those in Table 5.1). Even for linear
chain models, Bayesian methods are not commonly in use for CRFs,
primarily due to the computational demands. If all we want is the ben-
efits of model averaging, one may question whether simpler ensemble
learning techniques, such as bagging, would give the same benefit [141].
However, the Bayesian perspective does have other potential benefits,
particularly when more complex, hierarchical priors are considered.

6.2.2 Semi-supervised CRFs

One practical difficulty in applying CRFs is that training requires
obtaining true labels for potentially many sequences. This can be
expensive because it is more time consuming for a human labeller to
provide labels for sequence labelling than for simple classification. For
this reason, it would be very useful to have techniques that can obtain
good accuracy given only a small amount of labeled data.

One strategy for achieving this goal is semi-supervised learning,
in which in addition to some fully-labelled data {(x(i),y(i))}Ni=1, the
data set is assumed to contain a large number of unlabelled instances
{x(j)}Mj=1, for which we observe only the inputs. However, unlike in
generative models, it is less obvious how to incorporate unlabelled data
into a conditional criterion, because the unlabelled data is a sample
from the distribution p(x), which in principle need have no relationship
to the CRF p(y|x). In order to deal with this, several different types
of regularization terms have been proposed that take the unlabelled
data into account, including entropy regularization [46, 52], generalized

6.2 Frontier Areas 361

expectation criteria [81], discriminative methods [70], posterior regular-
ization [39, 45], and measurement-based learning [73].

6.2.3 Structure Learning in CRFs

All of the methods described in this survey assume that the structure
of the model has been decided in advance. It is natural to ask if we can
learn the structure of the model as well. As in graphical models more
generally, this is a difficult problem. In fact, Bradley and Guestrin [15]
point out an interesting complication that is specific to conditional
models. For a generative model p(x), maximum likelihood structure
learning can be performed efficiently if the model is restricted to be
tree-structured, using the well-known Chow-Liu algorithm. In the con-
ditional case, when we wish to estimate the structure of p(y|x), the
analogous algorithm is more difficult, because it requires estimating
marginal distributions of the form p(yu,yv|x), that is, we need to esti-
mate the effects of the entire input vector on every pair of output
variables. It is difficult to estimate these distributions without knowing
the structure of the model to begin with.

Acknowledgments

We thank Kedar Bellare, Francine Chen, Gregory Druck, Benson
Limketkai, David Mimno, Ray Mooney, Prakash Nadkarni, Oscar
Täckström, Wenhao Wang, Vittorio Ferrari, and three anonymous
reviewers for useful comments on earlier versions of this tutorial. A
previous version of this survey has appeared in Sutton and McCal-
lum [136], and as part of Charles Sutton’s doctoral dissertation [132].

362

References

[1] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans-
actions on Information Theory, vol. 46, no. 2, pp. 325–343, 2000.

[2] Y. Altun, I. Tsochantaridis, and T. Hofmann, “Hidden Markov support vector
machines,” in International Conference on Machine Learning (ICML), 2003.

[3] G. Andrew and J. Gao, “Scalable training of l1-regularized log-linear models,”
in International Conference on Machine Learning (ICML), 2007.

[4] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “Maximum mutual
information estimation of hidden Markov model parameters for speech recogni-
tion,” in International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 11, pp. 49–52, 1986.

[5] G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N.
Vishwanathan, eds., Predicting Structured Data. MIT Press, 2007.

[6] T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and D. Klein, “Painless
unsupervised learning with features,” in Conference of the North American
Chapter of the Association for Computational Linguistics (HLT/NAACL),
pp. 582–590.

[7] A. Bernal, K. Crammer, A. Hatzigeorgiou, and F. Pereira, “Global discrim-
inative learning for higher-accuracy computational gene prediction,” PLoS
Computational Biology, vol. 3, no. 3, 2007.

[8] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 2nd ed., 1999.
[9] J. Besag, “Statistical analysis of non-lattice data,” The Statistician, vol. 24,

no. 3, pp. 179–195, 1975.
[10] A. Blake, P. Kohli, and C. Rother, eds., Markov Random Fields for Vision

and Image Processing. MIT Press, 2011.

363

364 References

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal
of Machine Learning Research, vol. 3, p. 993, 2003.

[12] P. Blunsom and T. Cohn, “Discriminative word alignment with conditional
random fields,” in International Conference on Computational Linguistics and
Annual Meeting of the Association for Computational Linguistics (COLING-
ACL), pp. 65–72, 2006.

[13] L. Bottou, “Stochastic gradient descent examples on toy problems,” 2010.
[14] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary &

region segmentation of objects in nd images,” in International Conference on
Computer Vision (ICCV), vol. 1, pp. 105–112, 2001.

[15] J. K. Bradley and C. Guestrin, “Learning tree conditional random fields,” in
International Conference on Machine Learning (ICML), 2010.

[16] R. Bunescu and R. J. Mooney, “Collective information extraction with rela-
tional Markov networks,” in Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2004.

[17] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representations of quasi-Newton
matrices and their use in limited memory methods,” Mathematical Program-
ming, vol. 63, no. 2, pp. 129–156, 1994.

[18] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp. 41–75,
1997.

[19] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised
learning algorithms using different performance metrics,” Technical Report
TR2005-1973, Cornell University, 2005.

[20] H. L. Chieu and H. T. Ng, “Named entity recognition with a maximum
entropy approach,” in Conference on Natural Language Learning (CoNLL),
pp. 160–163, 2003.

[21] Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan, “Identifying sources of
opinions with conditional random fields and extraction patterns,” in Proceed-
ings of the Human Language Technology Conference/Conference on Empirical
Methods in Natural Language Processing (HLT-EMNLP), 2005.

[22] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Oluko-
tun, “Map-reduce for machine learning on multicore,” in Advances in Neural
Information Processing Systems 19, pp. 281–288, MIT Press, 2007.

[23] S. Clark and J. R. Curran, “Parsing the WSJ using CCG and log-linear
models,” in Proceedings of the Meeting of the Association for Computational
Linguistics (ACL), pp. 103–110, 2004.

[24] T. Cohn, “Efficient inference in large conditional random fields,” in European
Conference on Machine Learning (ECML), pp. 606–613, Berlin, Germany,
September 2006.

[25] M. Collins, “Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms,” in Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2002.

[26] P. J. Cowans and M. Szummer, “A graphical model for simultaneous parti-
tioning and labeling,” in Conference on Artificial Intelligence and Statistics
(AISTATS), 2005.

[27] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “Online
passive-aggressive algorithms,” Journal of Machine Learning Research, 2006.

References 365

[28] K. Crammer and Y. Singer, “Ultraconservative online algorithms for multi-
class problems,” Journal of Machine Learning Research, vol. 3, pp. 951–991,
January 2003.

[29] A. Culotta, R. Bekkerman, and A. McCallum, “Extracting social networks
and contact information from email and the web,” in First Conference on
Email and Anti-Spam (CEAS), Mountain View, CA, 2004.

[30] A. Culotta and A. McCallum, “Confidence estimation for information extrac-
tion,” in Human Language Technology Conference (HLT), 2004.

[31] H. Daumé III, J. Langford, and D. Marcu, “Search-based structured predic-
tion,” Machine Learning Journal, 2009.

[32] H. Daumé III and D. Marcu, “Learning as search optimization: Approximate
large margin methods for structured prediction,” in International Conference
on Machine Learning (ICML), Bonn, Germany, 2005.

[33] T. Deselaers, B. Alexe, and V. Ferrari, “Localizing objects while learning their
appearance,” in European Conference on Computer Vision (ECCV), 2010.

[34] J. V. Dillon and G. Lebanon, “Stochastic composite likelihood,” Journal of
Machine Learning Research, vol. 11, pp. 2597–2633, October 2010.

[35] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: Informed
scheduling for asynchronous message passing,” in Conference on Uncertainty
in Artificial Intelligence (UAI), 2006.

[36] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part based models,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2010.

[37] J. Finkel, T. Grenager, and C. D. Manning, “Incorporating non-local infor-
mation into information extraction systems by Gibbs sampling,” in Annual
Meeting of the Association for Computational Linguistics (ACL), 2005.

[38] J. R. Finkel, A. Kleeman, and C. D. Manning, “Efficient, feature-based, con-
ditional random field parsing,” in Annual Meeting of the Association for
Computational Linguistics (ACL/HLT), pp. 959–967, 2008.

[39] K. Ganchev, J. Graca, J. Gillenwater, and B. Taskar, “Posterior regulariza-
tion for structured latent variable models,” Technical Report MS-CIS-09-16,
University of Pennsylvania Department of Computer and Information Science,
2009.

[40] A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches to calculating
marginal densities,” Journal of the American Statistical Association, vol. 85,
pp. 398–409, 1990.

[41] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, pp. 721–741, 1984.

[42] N. Ghamrawi and A. McCallum, “Collective multi-label classification,” in
Conference on Information and Knowledge Management (CIKM), 2005.

[43] A. Globerson, T. Koo, X. Carreras, and M. Collins, “Exponentiated gradient
algorithms for log-linear structured prediction,” in International Conference
on Machine Learning (ICML), 2007.

[44] J. Goodman, “Exponential priors for maximum entropy models,” in Proceed-
ings of the Human Language Technology Conference/North American Chapter
of the Association for Computational Linguistics (HLT/NAACL), 2004.

366 References

[45] J. Graca, K. Ganchev, B. Taskar, and F. Pereira, “Posterior vs parameter
sparsity in latent variable models,” in Advances in Neural Information Pro-
cessing Systems 22, (Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams,
and A. Culotta, eds.), pp. 664–672, 2009.

[46] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy mini-
mization,” in Advances in Neural Information Processing Systems (NIPS),
2004.

[47] M. L. Gregory and Y. Altun, “Using conditional random fields to predict pitch
accents in conversational speech,” in Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 677–683, 2004.

[48] A. Gunawardana, M. Mahajan, A. Acero, and J. C. Platt, “Hidden conditional
random fields for phone classification,” in International Conference on Speech
Communication and Technology, 2005.

[49] X. He, R. S. Zemel, and M. A. Carreira-Perpiñián, “Multiscale conditional
random fields for image labelling,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

[50] G. E. Hinton, “Training products of experts by minimizing contrastive diver-
gence,” Neural Computation, vol. 14, pp. 1771–1800, 2002.

[51] L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia, “Overview of BioCre-
AtIvE: critical assessment of information extraction for biology,” BMC Bioin-
formatics, vol. 6, no. Suppl 1, no. Suppl 1, 2005.

[52] F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuurmans, “Semi-supervised
conditional random fields for improved sequence segmentation and labeling,”
in Joint Conference of the International Committee on Computational Lin-
guistics and the Association for Computational Linguistics (COLING/ACL),
2006.

[53] S. S. Keerthi and S. Sundararajan, “CRF versus SVM-struct for sequence
labeling,” Technical report, Yahoo! Research, 2007.

[54] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regres-
sion function,” Annals of Mathematical Statistics, vol. 23, pp. 462–466, 1952.

[55] J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Collier, “Introduction to
the bio-entity recognition task at JNLPBA,” in International joint workshop
on natural language processing in biomedicine and its applications, pp. 70–75,
Association for Computational Linguistics, 2004.

[56] P. Kohli, L. Ladickỳ, and P. H. S. Torr, “Robust higher order potentials
for enforcing label consistency,” International Journal of Computer Vision,
vol. 82, no. 3, no. 3, pp. 302–324, 2009.

[57] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

[58] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, no. 2, pp. 498–519, 2001.

[59] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying conditional random
fields to Japanese morphological analysis,” in Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2004.

[60] A. Kulesza and F. Pereira, “Structured learning with approximate inference,”
in Advances in Neural Information Processing Systems, 2008.

References 367

[61] S. Kumar and M. Hebert, “Discriminative fields for modeling spatial depen-
dencies in natural images,” in Advances in Neural Information Processing
Systems (NIPS), 2003.

[62] S. Kumar and M. Hebert, “Discriminative random fields,” International Jour-
nal of Computer Vision, vol. 68, no. 2, no. 2, pp. 179–201, 2006.

[63] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data,” International
Conference on Machine Learning (ICML), 2001.

[64] J. Langford, A. Smola, and M. Zinkevich, “Slow learners are fast,” in Advances
in Neural Information Processing Systems 22, (Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and A. Culotta, eds.), pp. 2331–2339, 2009.

[65] T. Lavergne, O. Cappé, and F. Yvon, “Practical very large scale CRFs,”
in Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 504–513, 2010.

[66] Y. Le Cun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science
LNCS 1524, Springer Verlag, 1998.

[67] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, November 1998.

[68] Y. LeCun, S. Chopra, R. Hadsell, R. Marc’Aurelio, and F.-J. Huang, “A
tutorial on energy-based learning,” in Predicting Structured Data, (G. Bakir,
T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, eds.), MIT Press, 2007.

[69] S. Z. Li, Markov Random Field Modeling in Image Analysis. Springer-Verlag,
2001.

[70] W. Li and A. McCallum, “A note on semi-supervised learning using Markov
random fields,” 2004.

[71] P. Liang, H. Daumé III, and D. Klein, “Structure compilation: Trading struc-
ture for features,” in International Conference on Machine Learning (ICML),
pp. 592–599, 2008.

[72] P. Liang and M. I. Jordan, “An asymptotic analysis of generative, discrim-
inative, and pseudolikelihood estimators,” in International Conference on
Machine Learning (ICML), pp. 584–591, 2008.

[73] P. Liang, M. I. Jordan, and D. Klein, “Learning from measurements in expo-
nential families,” in International Conference on Machine Learning (ICML),
2009.

[74] C.-J. Lin, R. C.-H. Weng, and S. Keerthi, “Trust region newton methods for
large-scale logistic regression,” in Interational Conference on Machine Learn-
ing (ICML), 2007.

[75] B. G. Lindsay, “Composite likelihood methods,” Contemporary Mathematics,
pp. 221–239, 1988.

[76] Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan, “Protein fold recog-
nition using segmentation conditional random fields (SCRFs),” Journal of
Computational Biology, vol. 13, no. 2, no. 2, pp. 394–406, 2006.

[77] D. G. Lowe, “Object recognition from local scale-invariant features,” in Inter-
national Conference on Computer Vision (ICCV), vol. 2, pp. 1150–1157, 1999.

368 References

[78] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, “WinBUGS — a
Bayesian modelling framework: Concepts, structure, and extensibility,” Statis-
tics and Computing, vol. 10, no. 4, no. 4, pp. 325–337, 2000.

[79] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[80] R. Malouf, “A comparison of algorithms for maximum entropy parameter
estimation,” in Conference on Natural Language Learning (CoNLL), (D. Roth
and A. van den Bosch, eds.), pp. 49–55, 2002.

[81] G. Mann and A. McCallum, “Generalized expectation criteria for semi-
supervised learning of conditional random fields,” in Proceedings of Associ-
ation of Computational Linguistics, 2008.

[82] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large anno-
tated corpus of English: The Penn Treebank,” Computational Linguistics,
vol. 19, no. 2, no. 2, pp. 313–330, 1993.

[83] A. McCallum, “Efficiently inducing features of conditional random fields,” in
Conference on Uncertainty in AI (UAI), 2003.

[84] A. McCallum, K. Bellare, and F. Pereira, “A conditional random field for
discriminatively-trained finite-state string edit distance,” in Conference on
Uncertainty in AI (UAI), 2005.

[85] A. McCallum, D. Freitag, and F. Pereira, “Maximum entropy Markov models
for information extraction and segmentation,” in International Conference on
Machine Learning (ICML), pp. 591–598, San Francisco, CA, 2000.

[86] A. McCallum and W. Li, “Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons,” in
Seventh Conference on Natural Language Learning (CoNLL), 2003.

[87] A. McCallum, K. Schultz, and S. Singh, “FACTORIE: Probabilistic program-
ming via imperatively defined factor graphs,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2009.

[88] A. McCallum and B. Wellner, “Conditional models of identity uncertainty
with application to noun coreference,” in Advances in Neural Information
Processing Systems 17, (L. K. Saul, Y. Weiss, and L. Bottou, eds.), pp. 905–
912, Cambridge, MA: MIT Press, 2005.

[89] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an
instance of Pearl’s “belief propagation” algorithm,” IEEE Journal on Selected
Areas in Communications, vol. 16, no. 2, no. 2, pp. 140–152, 1998.

[90] S. Miller, J. Guinness, and A. Zamanian, “Name tagging with word clus-
ters and discriminative training,” in HLT-NAACL 2004: Main Proceedings,
(D. Marcu, S. Dumais, and S. Roukos, eds.), pp. 337–342, Boston, Mas-
sachusetts, USA: Association for Computational Linguistics, May 2–May 7
2004.

[91] T. P. Minka, “The EP energy function and minimization schemes,” Technical
report, 2001.

[92] T. P. Minka, “A comparsion of numerical optimizers for logistic regression,”
Technical report, 2003.

[93] T. P. Minka, “Discriminative models, not discriminative training,” Technical
Report MSR-TR-2005-144, Microsoft Research, October 2005.

References 369

[94] T. P. Minka, “Divergence measures and message passing,” Technical Report
MSR-TR-2005-173, Microsoft Research, 2005.

[95] I. Murray, “Advances in Markov chain Monte Carlo methods,” PhD thesis,
Gatsby computational neuroscience unit, University College London, 2007.

[96] I. Murray, Z. Ghahramani, and D. J. C. MacKay, “MCMC for doubly-
intractable distributions,” in Uncertainty in Artificial Intelligence (UAI),
pp. 359–366, AUAI Press, 2006.

[97] A. Y. Ng, “Feature selection, l1 vs. l2 regularization, and rotational invari-
ance,” in International Conference on Machine Learning (ICML), 2004.

[98] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes,” in Advances in Neu-
ral Information Processing Systems 14, (T. G. Dietterich, S. Becker, and
Z. Ghahramani, eds.), pp. 841–848, Cambridge, MA: MIT Press, 2002.

[99] N. Nguyen and Y. Guo, “Comparisons of sequence labeling algorithms and
extensions,” in International Conference on Machine Learning (ICML), 2007.

[100] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer-
Verlag, 1999.

[101] S. Nowozin and C. H. Lampert, “Structured prediction and learning in com-
puter vision,” Foundations and Trends in Computer Graphics and Vision,
vol. 6, no. 3-4, no. 3-4, 2011.

[102] C. Pal, C. Sutton, and A. McCallum, “Sparse forward-backward using mini-
mum divergence beams for fast training of conditional random fields,” in Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2006.

[103] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[104] F. Peng, F. Feng, and A. McCallum, “Chinese segmentation and new word
detection using conditional random fields,” in International Conference on
Computational Linguistics (COLING), pp. 562–568, 2004.

[105] F. Peng and A. McCallum, “Accurate information extraction from research
papers using conditional random fields,” in Human Language Technology Con-
ference and North American Chapter of the Association for Computational
Linguistics (HLT-NAACL), 2004.

[106] D. Pinto, A. McCallum, X. Wei, and W. B. Croft, “Table extraction using con-
ditional random fields,” in ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 2003.

[107] Y. Qi, M. Szummer, and T. P. Minka, “Bayesian conditional random fields,”
in Conference on Artificial Intelligence and Statistics (AISTATS), 2005.

[108] Y. Qi, M. Szummer, and T. P. Minka, “Diagram structure recognition by
Bayesian conditional random fields,” in International Conference on Computer
Vision and Pattern Recognition, 2005.

[109] A. Quattoni, M. Collins, and T. Darrell, “Conditional random fields for object
recognition,” in Advances in Neural Information Processing Systems (NIPS),
pp. 1097–1104, 2005.

[110] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell, “Hidden-
state conditional random fields,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2007.

370 References

[111] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, no. 2, pp. 257–
286, 1989.

[112] N. Ratliff, J. A. Bagnell, and M. Zinkevich, “Maximum margin planning,” in
International Conference on Machine Learning, July 2006.

[113] M. Richardson and P. Domingos, “Markov logic networks,” Machine Learning,
vol. 62, no. 1–2, no. 1–2, pp. 107–136, 2006.

[114] S. Riezler, T. King, R. Kaplan, R. Crouch, J. T. Maxwell III, and M. John-
son, “Parsing the Wall Street Journal using a lexical-functional grammar and
discriminative estimation techniques,” in Proceedings of the Annual Meeting
of the Association for Computational Linguistics, 2002.

[115] H. Robbins and S. Monro, “A stochastic approximation method,” Annals of
Mathematical Statistics, vol. 22, pp. 400–407, 1951.

[116] C. Robert and G. Casella, Monte Carlo Statistical Methods. Springer,
2004.

[117] D. Rosenberg, D. Klein, and B. Taskar, “Mixture-of-parents maximum entropy
Markov models,” in Conference on Uncertainty in Artificial Intelligence
(UAI), 2007.

[118] D. Roth and W. Yih, “Integer linear programming inference for conditional
random fields,” in International Conference on Machine Learning (ICML),
pp. 737–744, 2005.

[119] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive foreground
extraction using iterated graph cuts,” ACM Transactions on Graphics (SIG-
GRAPH), vol. 23, no. 3, no. 3, pp. 309–314, 2004.

[120] E. F. T. K. Sang and S. Buchholz, “Introduction to the CoNLL-2000 shared
task: Chunking,” in Proceedings of CoNLL-2000 and LLL-2000, 2000. See
http://lcg-www.uia.ac.be/∼erikt/research/np-chunking.html.

[121] E. F. T. K. Sang and F. D. Meulder, “Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition,” in Proceed-
ings of CoNLL-2003, (W. Daelemans and M. Osborne, eds.), pp. 142–147,
Edmonton, Canada, 2003.

[122] S. Sarawagi and W. W. Cohen, “Semi-Markov conditional random fields for
information extraction,” in Advances in Neural Information Processing Sys-
tems 17, (L. K. Saul, Y. Weiss, and L. Bottou, eds.), pp. 1185–1192, Cam-
bridge, MA: MIT Press, 2005.

[123] K. Sato and Y. Sakakibara, “RNA secondary structural alignment with
conditional random fields,” Bioinformatics, vol. 21, pp. ii237–242, 2005.

[124] B. Settles, “Abner: An open source tool for automatically tagging genes, pro-
teins, and other entity names in text,” Bioinformatics, vol. 21, no. 14, no. 14,
pp. 3191–3192, 2005.

[125] F. Sha and F. Pereira, “Shallow parsing with conditional random fields,” in
Conference on Human Language Technology and North American Association
for Computational Linguistics (HLT-NAACL), pp. 213–220, 2003.

[126] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal estimated sub-
gradient solver for SVM,” in International Conference on Machine Learning
(ICML), 2007.

References 371

[127] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint appear-
ance, shape and context modeling for mulit-class object recognition and seg-
mentation,” in European Conference on Computer Vision (ECCV), 2006.

[128] P. Singla and P. Domingos, “Discriminative training of Markov logic net-
works,” in Proceedings of the National Conference on Artificial Intelligence,
pp. 868–873, Pittsburgh, PA, 2005.

[129] F. K. Soong and E.-F. Huang, “A tree-trellis based fast search for finding the
n-best sentence hypotheses in continuous speech recognition,” in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1991.

[130] D. H. Stern, T. Graepel, and D. J. C. MacKay, “Modelling uncertainty in the
game of go,” in Advances in Neural Information Processing Systems 17, (L. K.
Saul, Y. Weiss, and L. Bottou, eds.), pp. 1353–1360, Cambridge, MA: MIT
Press, 2005.

[131] I. Sutskever and T. Tieleman, “On the convergence properties of contrastive
divergence,” in Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2010.

[132] C. Sutton, “Efficient Training Methods for Conditional Random Fields,” PhD
thesis, University of Massachusetts, 2008.

[133] C. Sutton and A. McCallum, “Collective segmentation and labeling of distant
entities in information extraction,” in ICML Workshop on Statistical Rela-
tional Learning and Its Connections to Other Fields, 2004.

[134] C. Sutton and A. McCallum, “Piecewise training of undirected models,” in
Conference on Uncertainty in Artificial Intelligence (UAI), 2005.

[135] C. Sutton and A. McCallum, “Improved dynamic schedules for belief propa-
gation,” in Conference on Uncertainty in Artificial Intelligence (UAI), 2007.

[136] C. Sutton and A. McCallum, “An introduction to conditional random fields
for relational learning,” in Introduction to Statistical Relational Learning,
(L. Getoor and B. Taskar, eds.), MIT Press, 2007.

[137] C. Sutton and A. McCallum, “Piecewise training for structured prediction,”
Machine Learning, vol. 77, no. 2–3, no. 2–3, pp. 165–194, 2009.

[138] C. Sutton, A. McCallum, and K. Rohanimanesh, “Dynamic conditional
random fields: Factorized probabilistic models for labeling and segmenting
sequence data,” Journal of Machine Learning Research, vol. 8, pp. 693–723,
March 2007.

[139] C. Sutton and T. Minka, “Local training and belief propagation,” Technical
Report TR-2006-121, Microsoft Research, 2006.

[140] C. Sutton, K. Rohanimanesh, and A. McCallum, “Dynamic conditional
random fields: Factorized probabilistic models for labeling and segmenting
sequence data,” in International Conference on Machine Learning (ICML),
2004.

[141] C. Sutton, M. Sindelar, and A. McCallum, “Reducing weight undertraining
in structured discriminative learning,” in Conference on Human Language
Technology and North American Association for Computational Linguistics
(HLT-NAACL), 2006.

372 References

[142] B. Taskar, P. Abbeel, and D. Koller, “Discriminative probabilistic models for
relational data,” in Conference on Uncertainty in Artificial Intelligence (UAI),
2002.

[143] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,” in
Advances in Neural Information Processing Systems 16, (S. Thrun, L. Saul,
and B. Schölkopf, eds.), Cambridge, MA: MIT Press, 2004.

[144] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning, “Max-margin
parsing,” in Empirical Methods in Natural Language Processing (EMNLP04),
2004.

[145] B. Taskar, S. Lacoste-Julien, and D. Klein, “A discriminative matching
approach to word alignment,” in Conference on Human Language Technol-
ogy and Empirical Methods in Natural Language Processing (HLT-EMNLP),
pp. 73–80, 2005.

[146] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich part-of-
speech tagging with a cyclic dependency network,” in HLT-NAACL, 2003.

[147] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector
machine learning for interdependent and structured output spaces,” in Inter-
ational Conference on Machine Learning (ICML), ICML ’04, 2004.

[148] P. Viola and M. Narasimhan, “Learning to extract information from semi-
structured text using a discriminative context free grammar,” in Proceedings
of the ACM SIGIR, 2005.

[149] S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Mur-
phy, “Accelerated training of conditional random fields with stochastic
meta-descent,” in International Conference on Machine Learning (ICML),
pp. 969–976, 2006.

[150] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fami-
lies, and variational inference,” Foundations and Trends in Machine Learning,
vol. 1, no. 1-2, no. 1-2, pp. 1–305, 2008.

[151] M. J. Wainwright, “Estimating the wrong Markov random field: Benefits in the
computation-limited setting,” in Advances in Neural Information Processing
Systems 18, (Y. Weiss, B. Schölkopf, and J. Platt, eds.), Cambridge, MA: MIT
Press, 2006.

[152] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “Tree-based reparameteri-
zation framework for analysis of sum-product and related algorithms,” IEEE
Transactions on Information Theory, vol. 45, no. 9, no. 9, pp. 1120–1146, 2003.

[153] H. Wallach, “Efficient training of conditional random fields,” M.Sc. thesis,
University of Edinburgh, 2002.

[154] M. Welling and S. Parise, “Bayesian random fields: The Bethe-Laplace approx-
imation,” in Uncertainty in Artificial Intelligence (UAI), 2006.

[155] M. Wick, K. Rohanimanesh, A. Culotta, and A. McCallum, “SampleRank:
Learning preferences from atomic gradients,” in Neural Information Process-
ing Systems (NIPS) Workshop on Advances in Ranking, 2009.

[156] M. Wick, K. Rohanimanesh, A. McCallum, and A. Doan, “A discriminative
approach to ontology alignment,” in International Workshop on New Trends
in Information Integration (NTII), 2008.

References 373

[157] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free energy approx-
imations and generalized belief propagation algorithms,” Technical Report
TR2004-040, Mitsubishi Electric Research Laboratories, 2004.

[158] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy approx-
imations and generalized belief propagation algorithms,” IEEE Transactions
on Information Theory, vol. 51, no. 7, pp. 2282–2312, July 2005.

[159] C.-N. Yu and T. Joachims, “Learning structural svms with latent variables,”
in International Conference on Machine Learning (ICML), 2009.

[160] J. Yu, S. V. N. Vishwanathan, S. Güunter, and N. N. Schraudolph, “A quasi-
Newton approach to nonsmooth convex optimization problems in machine
learning,” Journal of Machine Learning Research, vol. 11, pp. 1145–1200,
March 2010.

[161] Y. Zhang and C. Sutton, “Quasi-Newton Markov chain Monte Carlo,” in
Advances in Neural Information Processing Systems (NIPS), 2011.

