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Chapter 1

Introduction

This chapter begins with an outline of the project. It presents the main motivation for

undertaking this project, and gives a brief account of previous related work.

1.1 Project Structure

My project concerns the λµT-calculus. The aim was to formalise λµT in the proof assistant

Isabelle/HOL, and to prove Type Preservation and Progress for the formalised calculus.

This is described in Section 3.1.

Additionally, the project involved building an interpreter in OCaml for a language

based on λµT, called µML (Section 3.3). The type-checking and evaluation functions

used in the interpreter were automatically extracted from the Isabelle formalisation. This

means that the Isabelle proofs still apply to them. Therefore, the core of the interpreter

is proved correct: evaluation obeys type preservation and progress. A diagram of the

project is shown in Figure 1.1.1.

These components constitute the core of the project, and have all been implemented

successfully. As time allowed, I worked on several extensions. I used the µML inter-

preter to prove classical propositions, illustrated in Section 4.2. Moreover, I extended the

λµT-calculus to λµT
top, and added booleans, products and sums (Section 3.2).

Given the work completed, the success criteria established in the project proposal have

been met. Moreover, a paper based on this work has been submitted to the International

Conference on Interactive Theorem Proving (ITP), and is currently under review.

1.2 Motivation

This section briefly discusses the rationale behind creating the λµT-calculus. It then

outlines the reasons why my project is interesting, explains how the scope of the project

was established, and motivates the choice of tools.

11
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EvaluationFront-End

Type
Preservation Progress

Isabelle formalisation of λµT

Type-checking

µML Interpreter (in OCaml)

Figure 1.1.1: The structure of the project.

1.2.1 The λµT-calculus

The λµT-calculus was introduced by Geuvers et al. [14]. It is a combination between

Parigot’s λµ-calculus [30] and Gödel’s System T [41].

The purpose of developing λµ is to interpret the computational content of classical

proofs. This is still an open area of research, which generated considerable interest. The

λµ-calculus can be viewed as an extension of the λ-calculus with control operators. It

is isomorphic to classical logic, under the Curry-Howard, or propositions-as-types, corre-

spondence [19].

System T is an extension of the simply-typed λ-calculus, adding a datatype for natural

numbers and primitive recursion on them. Gödel used it to prove consistency of arith-

metic [41].

The reason for combining λµ and System T is that Geuvers et al. [14] noticed a lack

of calculi with control that also incorporate datatypes. They motivate this lack saying

that, when combining control operators with datatypes, it is not straightforward to prove

standard results such as confluence and strong normalisation. Consequently, they develop

λµT and prove these results.

1.2.2 Contribution of my Project

The value of formally verifying mathematical or computer science theories is well-known.

For example, in the paper Winskel is (Almost) Right [28], Nipkow describes a formali-

sation in Isabelle/HOL of the first 100 pages of Winskel’s semantics textbook [43]. This

formalisation uncovered one serious mistake in a proof found in the textbook.

The λµT definitions and proofs outlined by Geuvers et al. [14] are all done manually,

apart from part of the strong normalisation proof. Therefore, a formalisation of λµT in a

proof assistant would increase the confidence in the correctness of these proofs.
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However, formalising theories in an interactive theorem prover takes a lot of time. The

proofs are “extremely laborious” [35], which is probably why they are not more wide-

spread. Consequently, I only chose to include Type Preservation and Progress proofs for

λµT in the core of my project. Although in the beginning this seemed too little, they

turned out to occupy most of the time spent on the project.

There are several reasons for this. I had never used a proof assistant before, so first,

I had to learn Isabelle. Moreover, there is no previous formalisation of the λµT-, or the

λµ-calculus as far as I know. Type Preservation and Progress proofs for simple languages

are described in the Part IB Semantics of Programming Languages course [40]. However,

the particularities of λµT require additional niceties to make the standard proofs work.

These were sometimes omitted in Geuvers et al. [14].

What is more, the original λµT formulation [14] does not use de Bruijn indices, and I

am not aware of any other work that does. As a result, I had to adapt all the definitions

and proofs myself to use de Bruijn indices. In practice, I had to prove a significant amount

of additional lemmas to handle them.

The µML interpreter is of interest because µML, as λµT, is isomorphic to classical

logic. This means that classical propositions can be proved in µML by encoding them as

a type, finding a term of that type, and type-checking it. This way of proving propositions

is similar to how the proof assistants Agda [1] and Coq [5] work for constructive logic.

There is no other implementation of a programming language based on the λµT-calculus,

as far as I know.

1.2.3 The Choice of Proof Assistant and Programming

Language

I chose to use Isabelle/HOL mainly because I could get appropriate supervision for the

project if I did so. As a beginner, learning Isabelle was made easier by the tutorials and

up-to-date documentation that the Isabelle/HOL maintainers provide [18,21,26,27,42].

The Isabelle code generation facility [18] proved very useful in this project. This

feature allows executable specifications, such as functions, to be exported from Isabelle

theories into Standard ML, OCaml, Haskell or Scala. It allowed me to automatically

generate code for the core of the µML interpreter, which is therefore verified. Among

the languages that Isabelle exports code to, I am familiar with SML and OCaml, from

the Part IA Foundations of Computer Science course [33], and the Part IB Compiler

Construction course [17], respectively. I chose to use OCaml because it is more widely

used for developing applications.

1.3 Related Work

Extracting computational content from classical proofs, and finding calculi that are iso-

morphic to classical logic, under the propositions-as-types correspondence, has attracted

a great deal of research. This interest began with an influential paper by Griffin [16].

Here, he types the C operator, from Felleisen’s λ-C [10], using the Double Negation Law,
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¬¬A→ A. Thus, the propositions-as-types correspondence is extended to classical logic.

The operator C is similar to call/cc in Scheme (call-with-current-continuation), so λ-C
includes a notion of control.

Following this development, a series of other calculi with control have emerged. Some

of them are Parigot’s λµ [30], the λ∆-calculus [39], and Crolard’s λct [7], a λ-calculus with

a catch/trow mechanism. There has been considerable research into the metatheoretical

properties of λµ, for example [9, 31, 32], and into different variants of λµ, for example

[11, 29], to name a few. The paper by Ariola and Herbelin [6] is an excellent study of

calculi with control and the logics that are isomorphic to them.



Chapter 2

Preparation

The main purpose of this chapter is to introduce the reader to the λµT-calculus and to

the proof assistant Isabelle/HOL. It also gives a brief account of the starting point of the

project, the methodology followed, and the tools used.

2.1 Starting Point

To the best of my knowledge, there is no previous formalisation of the λµT-calculus in

any proof assistant. Similarly, I am not aware of any implementation of a language based

on this calculus.

Prior to arranging this project, I had no experience working with proof assistants. I

started learning Isabelle in October 2016, when it became apparent that I was going to

use it for my project. For this purpose, I studied some of the material in the textbook

Concrete Semantics [26], and attempted the associated exercises. While formalising the

λµT-calculus, it proved useful to refer to a similar formalisation of the λ-calculus that is

part of the Isabelle distribution [2]. At the start of the project, my knowledge of OCaml

was limited to that gained in the Part IB Compiler Construction course [17].

2.2 The λµT-calculus

The λµT-calculus is an extension of the simply-typed λ-calculus. It incorporates a new

kind of abstraction (the µ-abstraction), a datatype of natural numbers, and a construct for

primitive recursion on this datatype. It has been shown that λµT obeys type preservation,

has a normal-form theorem, is confluent and strongly-normalising [14]. The calculus in

presented in the next six subsections.

2.2.1 Syntax

The syntax of the λµT-calculus is defined as:

Definition 2.2.1 (Syntax).

t, r, s ::= x | λx : ρ.r | ts | µα : ρ.c | 0 | St | nrecρ r s t
c, d ::= [α]t

15
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x : ρ ∈ Γ

Γ; ∆ ` x : ρ
(a) axiom

Γ, x : σ; ∆ ` t : τ

Γ; ∆ ` λx : σ.t : σ → τ
(b) lambda

Γ; ∆ ` t : σ → τ Γ; ∆ ` s : σ

Γ; ∆ ` ts : τ
(c) app

Γ; ∆ ` 0 : N
(d) zero

Γ; ∆ ` t : N

Γ; ∆ ` St : N
(e) suc

Γ; ∆ ` r : ρ Γ; ∆ ` s : N→ ρ→ ρ Γ; ∆ ` t : N

Γ; ∆ ` nrecρ r s t : ρ

(f) nrec

Γ; ∆, α : ρ ` c : ‚
Γ; ∆ ` µα : ρ.c : ρ

(g) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆

Γ; ∆ ` [α]t : ‚
(h) passivate

Figure 2.2.1: The rules for typing judgments in λµT [14].

Terms of the form [α]t are called commands or named terms, while all other terms

are unnamed. There are two kinds of variables: the usual λ-variables, and µ-variables,

denoted by lower-case Greek letters. A µ-variable labels, or names, the term inside a

command. Similarly to the λ-abstraction, there is a µ-abstraction which binds µ-variables.

The terms 0 and St are used to represent the natural numbers, while nrec is the primitive

recursor. Both kinds of abstraction and the nrec construct carry type annotations, ρ.

Terms that are α-equivalent are considered equal.

Definition 2.2.2 (Grammar of types).

ρ, σ, τ ::= N | ‚ | σ → τ

Here, N is the type of natural numbers and ‚ is a special type for commands.

2.2.2 The Typing Relation

There are two kinds of typing environments, one for λ-variables, denoted by Γ, and one

for µ-variables, denoted by ∆. These are sets of pairs of the form free variable:type.

The notation Γ; ∆ ` t : τ means that term t has type τ , given the typing environments Γ

and ∆. Similarly for commands.

Definition 2.2.3. The typing relation for λµT is defined in Figure 2.2.1.

Most typing rules are similar to the λ-calculus. A few interesting cases are described

below:

(nrec) This is the usual rule encountered in System T. The term t, which is a natural

number, keeps track of how many recursion steps still need to be unfolded;

if t is 0, then the expression evaluates to r; otherwise, s is applied to t and

the result of the next recursion step. The nrec construct is annotated with

its own type.
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(activate) This rule comes from λµ. It says that a µ-abstraction is typeable if the

command inside it is typeable. The type annotation of the µ-variable matches

the type of the µ-abstraction.

(passivate) This also comes from λµ. It reads as follows: a command [α]t is typeable if

the type of the term t agrees with the type that α has in the environment.

2.2.3 Logical Substitution and Structural Substitution

In order to define the reduction relation, logical substitution and structural substitution

are defined.

Definition 2.2.4. Logical substitution is defined recursively on the structure of terms

and named terms similarly to substitution in the λ-calculus. The notation t[x := s] means

substitute s for all free occurrences of x in t. Logical substitution is capture avoiding for

both λ- and µ-variables.

Structural substitution is specific to the λµT-calculus. It can be defined by introducing

the notion of a λµT context:

Definition 2.2.5. Contexts in λµT are given by the grammar:

E ::= � | Et | SE | nrecρ r s E

Definition 2.2.6. Substituting a term for the hole in a context is defined as follows:

�[t] := t

(Es)[t] := E[t]s

(SE)[t] := SE[t]

(nrecρ r s E)[t] := nrecρ r s E[t]

Definition 2.2.7. Structural substitution is defined recursively on the structure of terms

and commands:

x[α := βE] := x

(λx : ρ.r)[α := βE] := λx : ρ.(r[α := βE])

(ts)[α := βE] := (t[α := βE])(s[α := βE])

0[α := βE] := 0

(St)[α := βE] := S(t[α := βE])

(nrecρ r s t)[α := βE] := nrecρ (r[α := βE]) (s[α := βE]) (t[α := βE])

(µγ : ρ.c)[α := βE] := µγ : ρ.(c[α := βE])

([α]t)[α := βE] := [β]E[t[α := βE]]

([γ]t)[α := βE] := [γ]t[α := βE] provided that γ 6= α

Structural substitution is capture avoiding for both λ- and µ-variables.
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The notation t[α := βE] means that when a named term of the form [α]s (where α is

free) is encountered inside t, the µ-variable α is replaced by β, the context E is placed

around the term s, and structural substitution is applied recursively to s. So overall, the

command [α]s is replaced with the command [β]E[s[α := βE]].

Structural substitution is a key component of the λµT-calculus. The way it operates

highlights the role of commands. The µ-variable in a command [α]s tags the term s. This

tag allows structural substitution to directly access s, when it is part of a bigger term,

and apply an operation to it, given by the context E. This feature is specific to λµT; in

the λ-calculus there is no mechanism to access subterms directly, any operation has to be

applied to a whole term.

2.2.4 The Reduction Relation

Given two more auxiliary definitions, the λµT reduction relation can be defined:

Definition 2.2.8. The expression FCV(t) represents the set of free µ-variables of t.

Analogously, FV(t) is the set of free λ-variables of t.

Definition 2.2.9. A term or command is λ-closed if it has no free λ-variables. Similarly,

a term is µ-closed if it has no free µ-variables. A term is closed if it has no free λ- or

µ-variables.

Notation 2.2.10. The notation n represent the term Sn0.

Definition 2.2.11. The one-step reduction relation for λµT is defined as below:

(λx : ρ.t)r → t[x := r] (β)

S(µα : ρ.c)→ µα : ρ.(c[α := α (S�)]) (µS)

(µα : σ → τ.c)s→ µα : τ.(c[α := α (�s)]) (µR)

µα : ρ.[α]t→ t provided that α /∈ FCV(t) (µη)

[α]µβ : ρ.c→ c[β := α �] (µi)

nrecρ r s 0→ r (0)

nrecρ r s (Sn)→ s n (nrecρ r s n) (S)

nrecρ r s (µα : N.c)→ µα : ρ.(c[α := α (nrecρ r s �)]) (µN)

Reduction is also allowed inside any λµT term, so these rules can be applied to any

subterm. This leads to an evaluation strategy similar to full β-reduction in the λ-calculus.

The reduction rules are described below, paying particular attention to the use of

structural substitution:

(β) This is the usual β-reduction of the λ-calculus.

(µR) This rule is part of λµ, and describes the case when a µ-abstraction serves as the

function in a function application. The use of the structural substitution means

that all free occurrences of [α]t inside c are replaced by [α](ts). There are similar

rules for successor (µS), and nrec (µN).
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Γ, A `MC A; ∆
(id)

Γ `MC ;A,∆

Γ `MC A; ∆
(activate)

Γ `MC A;A,∆

Γ `MC ;A,∆
(passivate)

Γ, A `MC B; ∆

Γ `MC A→ B; ∆
(→i)

Γ `MC A→ B; ∆ Γ `MC A; ∆

Γ `MC B; ∆
(→e)

Figure 2.2.2: Minimal Classical Natural Deduction [6].

(µi) All free occurrences of β in c are replaced by α. This rule also comes from λµ.

In Parigot’s original presentation [30], it is called a renaming rule because all the

named terms of the form β[t] change their name to α.

(0)/(S) These are the usual rules for primitive recursion from System T. The last argu-

ment of nrec is only allowed to be a natural number. Primitive recursion cannot

be performed on arbitrary terms because this would break confluence [14].

Notation 2.2.12. The reflexive-transitive closure of → is denoted by →∗ .

2.2.5 A Propositions-as-Types Correspondence for λµT

The propositions-as-types correspondence, also known as the Curry-Howard isomorphism

[19], relates the simply-typed λ-calculus to Intuitionistic Natural Deduction. In this

context, types are viewed as propositions, terms as proofs, and β-reduction as proof

simplification, namely cut-elimination [38]. This correspondence has subsequently been

extended to other calculi and logics.

In this section, I present a similar correspondence: a mapping from a system called

Minimal Classical Natural Deduction [6] to λµT. This was originally presented by Parigot

[30] for the λµ-calculus.

Definition 2.2.13. Minimal Classical Natural Deduction [6] is defined in Figure 2.2.2. It

is presented in the style of the sequent calculus, where sequents have the usual meaning.

The symbols Γ and ∆ stand for sets of formulae. The only logical connective is impli-

cation, →.

In general, a comma in the antecedent of a sequent is used to denote conjunction,

and a comma in the succedent, disjunction. Apart from this, Parigot [30] introduces

by convention a semicolon on the right-hand-side. This also denotes disjunction, but it

is used to isolate a distinguished formula, called the active formula, on the left of the

semicolon. This is a formula explicitly mentioned in the rule. The rules (activate) and

(passivate) cause a formula from ∆ to become active or inactive, respectively.

Minimal Classical Natural Deduction implements minimal classical logic [20]. The

inference rules are the same as in an intuitionistic natural deduction system. However,

allowing multiple conclusions on the right-hand-side of a sequent makes this system clas-

sical, as Gentzen showed [12,13].

Minimal Classical Natural Deduction validates Peirce’s Law, ((A → B) → A) → A,

but not Ex Falso Quodlibet, ⊥ → A, nor the Double Negation Law, ¬¬A→ A [6]. In this
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Γ, A `MC A; ∆
(id) 7→ x : A ∈ Γ

Γ; ∆ ` x : A
(axiom)

Γ, A `MC B; ∆

Γ `MC A→ B; ∆
(→i) 7→ Γ, x : A; ∆ ` t : B

Γ; ∆ ` λx : A.t : A→ B
(lambda)

Γ `MC A→ B; ∆ Γ `MC A; ∆

Γ `MC B; ∆
(→e) 7→ Γ; ∆ ` t : A→ B Γ; ∆ ` s : A

Γ; ∆ ` ts : B
(app)

Γ `MC ;A,∆

Γ `MC A; ∆
(activate) 7→ Γ; ∆, α : A ` c : ‚

Γ; ∆ ` µα : A.c : A
(activate)

Γ `MC A;A,∆

Γ `MC ;A,∆
(passivate) 7→ Γ; ∆ ` t : A α : A ∈ ∆

Γ; ∆ ` [α]t : ‚ (passivate)

Figure 2.2.3: A Propositions-as-Types correspondence between Minimal Classical

Natural Deduction and λµT.

sense, it does not implement full classical logic, hence the adjective minimal. However,

this can be repaired by adding an elimination rule for ⊥ (Section 3.2.1).

Proposition 2.2.14. (Ariola and Herbelin [6]) A formula A is provable in minimal clas-

sical logic if and only if there exists a closed λµ term t such that ` t : A.

The propositions-as-types correspondence between λµT and Minimal Classical Natural

Deduction is given in Figure 2.2.3. One can see that the natural numbers in λµT do not

have a proposition associated with them. This is because, although propositions can be

viewed as types, there is no natural way of interpreting some datatypes, such as natural

numbers, as propositions [23].

Making the correspondence between Minimal Classical Natural Deduction and λµ

explicit reveals the role of µ-variables. As in the λ-calculus, λ-variables are used to index

formulae in the antecedent of a sequent. Similarly, µ-variables are needed to index inactive

formulae in the succedent. The (passivate) rule causes a formula to become inactive by

giving it an index, while the µ-binding mechanism makes a formula active. The type ‚,

for commands, is not associated with any formula in the logic; it is a placeholder for the

case when the sequent has no active formula.

2.2.6 Computational Content of λµT

In the λµT-calculus, commands and µ-abstractions introduce a control mechanism. There

are two ways of interpreting it [6,14]. The first one is to consider the command [α]t, where

Γ; ∆ ` [α]t : ‚, as a continuation α that is waiting for a term t, of type ∆(α). In this
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interpretation, the role of the µ-abstraction µα : ρ.c is to choose a particular result by

capturing a continuation that returns a result of type ρ.

The second interpretation regards µ-abstractions as forming a catch-throw mechanism:

Definition 2.2.15. Catch and throw can be defined as follows:

catchα t := µα : ρ.[α]t

throwβ s := µ_ : ρ.[β]s

where the notation _ represents any µ-variable different from β that does not appear

free in s.

The catch expression defined above catches an exception labelled α, from t. Similarly,

throw throws the result of s to β. Crolard [7] showed that a calculus with catch and

throw as primitives is equivalent to the λµ-calculus. Moreover, the reduction properties

of catch and throw are shown to be the expected ones [14].

2.3 Isabelle/HOL

Isabelle/HOL is an instantiation of the generic proof assistant Isabelle. Isabelle is part

of the LCF (Logic for Computable Functions) family of proof assistants [24]. It aims to

provide a common implementation for all systems in this family [15], hence the attribute

“generic”. Isabelle provides a metalogic in which different object logics can be declared,

the one used in Isabelle/HOL being higher-order logic. Roughly speaking, Isabelle works

by performing resolution and higher-order unification [34].

2.3.1 Proving in Isabelle/HOL

Isabelle allows the user to define datatypes and functions in a very similar fashion to

Standard ML, although only total functions that terminate are permitted. In addition,

one can, for example, define relations inductively. Given such definitions, Isabelle infers

introduction and elimination rules, similar to the rules of Natural Deduction. These rules,

together with induction and simplification (equational reasoning), can be used to prove

propositions about the objects defined.

There are two ways of writing proofs in Isabelle: one is the so called apply-style, and

the other involves using Isabelle’s structured proof language, Isar. In apply-style, the user

specifies proof methods or rules that are applied to the goal, in order to refine it to a form

that is known to be true. Isar is designed to make proofs more similar to pen-and-paper

ones, by structuring them as a human would do. This means that Isar proofs are more

easily understood by readers than apply-style proofs, but they take longer to write. In

my project, I combined these two styles of proofs. I used Isar to structure complicated

proofs with a lot of cases, and then apply-style to solve each case.
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inductive ev :: nat ⇒ bool where

ev0 : ev 0 |
evSS : ev n =⇒ ev (Suc(Suc n))

fun evn :: nat ⇒ bool where

evn 0 = True |
evn (Suc 0 ) = False |
evn (Suc(Suc n)) = evn n

lemma ev(Suc(Suc(Suc(Suc 0 ))))

apply(rule evSS )

apply(rule evSS )

apply(rule ev0 )

done

lemma ev m =⇒ evn m

apply(induction rule: ev .induct)

by simp-all

Figure 2.3.1: Isabelle code that defines an inductive predicate and a function that decide

whether a number is even. Two simple lemmas follow.

2.3.2 Example Definitions and Proofs

To help the reader form an idea about what proving in Isabelle is like, Figure 2.3.1 shows

an example. It contains two definitions and lemmas from Concrete Semantics [26].

First, an inductive predicate, ev, for even numbers is defined. It includes inductive

rules that exactly specify the set of even natural numbers. This is followed by the definition

of a function, evn, that decides whether a natural number is even. Intuitively, this function

computes the same set of natural numbers as the inductive predicate.

The first lemma proves that the number 4 is even. Initially, the goal is the statement

of the lemma itself. Rule evSS, from the definition of ev, is applied to the goal backwards,

as an introduction rule. This means that the premise of this rule becomes the new goal.

That is, the new goal is to prove 2 is even. Rule evSS is applied again in the same way.

The goal is now to prove that 0 is even. Rule ev0 is used to establish that this goal

is true.

The second lemma proves that if a number satisfies the inductive predicate ev, the

function evn returns True. The proof proceeds by rule induction on the hypothesis ev m.

This results in two subgoals, one for each rule in the definition of ev. These are both

proved using the automated proof method simp-all.

2.4 Tools and Design

The current release of Isabelle includes a user interface based on jEdit, which acts as an

IDE. I used this to carry out the λµT formalisation and proofs. Another useful feature of
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Isabelle, which I used to prepare this dissertation, is the ability to typeset Latex documents

automatically from theories.

I implemented the µML interpreter in OCaml, using the libraries OCamlLex and

Menhir to do lexing and parsing respectively. All the code and documents associated

with the project are part of a Git repository hosted on Bitbucket. Using a version control

system has proved an efficient way to back-up my project and communicate with my

supervisor.

The Isabelle formalisation of λµT, which forms a big part of my project, is an atypical

software component because it does not require testing. The proofs I completed ensure

that the definitions in the formalisation are correct, and Isabelle ensures that the proofs

are correct. Nevertheless, after writing all the necessary definitions and before proving the

main results about λµT, I wrote simple lemmas, similar to unit tests, as a sanity-check of

my definitions.

The implementation of the interpreter did require testing. This was to ensure that the

parser functions correctly, and that the transformation that the interpreter performs on

the parsed abstract syntax tree is correct. I automated these tests using OUnit, which is

a unit-test library for OCaml [4].
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Chapter 3

Implementation

This chapter is divided in three main sections. First, I present the λµT Isabelle formali-

sation, including outlines of the Type Preservation and Progress proofs, as well as other

important proofs. The next section is dedicated to extensions of λµT. Finally, I describe

the µML language and the implementation of its OCaml interpreter.

3.1 Formalising the λµT-calculus in Isabelle/HOL

This section presents the most important definitions, lemmas and proofs in the Isabelle

formalisation of λµT, and draws attention to those that posed difficulties. Most of these

follow the formulations in the paper that introduced λµT [14]. However, in the paper,

some proofs are only sketched or omitted altogether. As a result, I had to fill in the gaps

in my formalisation.

3.1.1 Defining the λµT Syntax Using de Bruijn Notation

The λµT terms and commands can be defined in Isabelle as two mutually recursive

datatypes, Figure 3.1.2. Similarly, the λµT types become another Isabelle datatype,

Figure 3.1.1.

To deal with α-equivalence, I chose to use de Bruijn notation [8]. Another option

is to use Nominal Isabelle [3], a library for Isabelle/HOL that uses Nominal techniques,

based on the work of Pitts [37], to address this problem. Using de Bruijn notation is the

standard approach, and it is easier to get started with, which is why I chose it.

In this scheme, each bound variable is represented by a number, its index, that indi-

cates the number of abstractions that need to be traversed to arrive at the one that binds

datatype type =

Nat

| Command

| Fun type type

Figure 3.1.1: The λµT types defined as a datatype in Isabelle.

25
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datatype dBT =

LVar nat

| Lbd type dBT

| App dBT dBT

| Mu type dBC

| Zero

| S dBT

| Nrec type dBT dBT dBT

and dBC =

MVar nat dBT

Figure 3.1.2: The λµT terms and commands defined as two mutually recursive

datatypes in Isabelle.

this variable. Each free variable has an index that represents it when the variable appears

in the top-level context, not enclosed in any abstractions. If the free variable occurs inside

n abstractions, its index is incremented by n. This is best illustrated with an example

from the λ-calculus. If the index of the free variable x is 3 in the top-level context, the

λ-terms λy.λz.((z y) x) and λv.λw.((w v) x) are both represented in de Bruijn notation

as λ.λ.((0 1) 5).

Applying this notation to λµT means that there will be two disjoint sets of indices:

one for λ-variables, and one for µ-variables. A λ-abstraction is written as:

λ : ρ.t

where ρ is a type annotation. The binder is not specified anymore because it is implicitly 0.

Similarly, µ-abstractions are written as:

µ : ρ.c

3.1.2 The Typing Relation

In Isabelle, I chose to define typing environments, Γ and ∆, as functions from natu-

ral numbers to types. An empty typing environment can be expressed by any function

whatsoever because it is never going to be accessed when a typing judgement is valid.

This is the method used in the λ-calculus implementation included in the Isabelle/HOL

distribution [2].

Consider the typing judgement:

Γ; ∆ ` λ : ρ.(3 0) : ρ→ δ

Using de Bruijn notation, the free variable 3, that appears inside the λ, corresponds to

variable 2 from the typing environment Γ. Therefore it must be the case that 2 has type

ρ→ δ in Γ.

In order to prove the judgement above, one would need to prove:

Γ〈0 : ρ〉; ∆ ` (3 0) : δ
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definition

shift :: (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a

where

e〈i :a〉 = (λj . if j < i then e j else if j = i then a else e (j−1 ))

Figure 3.1.3: Definition of the environment update function in Isabelle.

For this to be provable, the free variable 3 in the typing environment Γ〈0 : ρ〉 must have

the same type as 2 in Γ. To make sure that the typing environment is changed accordingly,

the update operation Γ〈0 : ρ〉 is a shifting operation: the value of Γ at 0 is now ρ, and

all other variables that were previously in the environment are shifted up by one. So, if

before, 2 was associated with ρ→ δ, now 3 is associated with this type instead.

Definition 3.1.1 (Updating a typing environment). In general, the operation 〈_ : _〉,
that is used to add a new variable to the typing environment, is defined as:

Γ〈n : ρ〉(m) :=


Γ(m) if m < n

ρ if m = n

Γ(m− 1) if m > n

where Γ is a function from natural numbers to λµT types.

In Isabelle, I defined environment update as a function, as in Figure 3.1.3. The keyword

definition is used for functions that are not recursive.

Using this representation of variables and typing environments, I defined the λµT

typing relation in Isabelle as an inductive predicate, Figure 3.1.4. Since terms and com-

mands are two mutually recursive datatypes, I had to define two mutually recursive typing

relations, one for each of them.

3.1.3 Logical Substitution

I defined logical substitution in Isabelle as two mutually recursive functions, one for terms

and one for commands, Figure 3.1.5.

All the rules are as expected apart from those for λ-variables, λ-abstractions, and

µ-abstractions:

1. The rule for λ-variables is:

x[y := s] :=


s if x = y

x− 1 if x > y

x if x < y

(3.1.1)

where x and y are natural numbers and s is a term. The need to decrement x if

x > y arises because the reduction rule (β):

(λ : ρ.t)r → t[0 := r]
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inductive typing-dBT :: (nat ⇒ type) ⇒ (nat ⇒ type) ⇒ dBT ⇒ type ⇒ bool

and typing-dBC :: (nat ⇒ type) ⇒ (nat ⇒ type) ⇒ dBC ⇒ type ⇒ bool

where

var : Γ x = T =⇒ Γ, ∆ `T ‘x : T

| zero: Γ, ∆ `T Zero : Nat

| suc: Γ, ∆ `T t : Nat =⇒ Γ, ∆ `T (S t) : Nat

| app: (Γ, ∆ `T t : (T1→T2 )) =⇒ (Γ, ∆ `T s : T1 )

=⇒ Γ, ∆ `T (t°s) : T2

| lambda: Γ〈0 :T1 〉, ∆ `T t : T2

=⇒ Γ, ∆ `T (λ T1 : t) : (T1→T2 )

| nrec: Γ, ∆ `T r : T =⇒
Γ, ∆ `T s : (Nat→T→T ) =⇒
Γ, ∆ `T t : Nat

=⇒ Γ, ∆ `T (Nrec T r s t) : T

| activate: Γ, ∆〈0 :T 〉 `C c : Command =⇒ Γ, ∆ `T (µ T : c) : T

| passivate: Γ, ∆ `T t : T =⇒ (∆ x = T )

=⇒ Γ, ∆ `C (<x> t) : Command

Figure 3.1.4: The λµT typing rules as an inductive predicate in Isabelle.

primrec

subst-dBT :: [dBT , dBT , nat ] ⇒ dBT and

subst-dBC :: [dBC , dBT , nat ] ⇒ dBC

where

subst-LVar : (‘i)[s/k ]T =

(if k < i then ‘ (i−1 ) else if k = i then s else (‘i))

| subst-Lbd : (λ T : t)[s/k ]T = λ T : (t [(liftL-dBT s 0 ) / k+1 ]T )

| subst-App: (t ° u)[s/k ]T = t [s/k ]T ° u[s/k ]T

| subst-Mu: (µ T : c)[s/k ]T = µ T : (c[(liftM-dBT s 0 ) / k ]C)

| subst-Zero: Zero[s/k ]T = Zero

| subts-S : (S t)[s/k ]T = (S (t [s/k ]T ))

| subst-Nrec: (Nrec T t u v)[s/k ]T = Nrec T (t [s/k ]T ) (u[s/k ]T ) (v [s/k ]T )

| subst-MVar : (<i> t)[s/k ]C = <i> (t [s/k ]T )

Figure 3.1.5: Logical substitution defined as a function in Isabelle.

The function ↑λ is denoted by liftL, and ↑µ by liftM.
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has to preserve typing. So if

Γ; ∆ ` (λ : ρ.t)r : δ (3.1.2)

holds, I wanted to ensure that

Γ; ∆ ` t[0 := r] : δ (3.1.3)

also holds. According to the typing rules, judgement 3.1.2 holds if

Γ〈0 : ρ〉; ∆ ` t : δ

is true. So, in order for judgement 3.1.3 to be provable, the free variables in t that

are greater than 0 need to be shifted down by 1.

2. The second case in the definition of logical substitution that needed to be adapted

is that of λ-abstractions:

(λ : ρ.t)[x := s] := λ : ρ.(t[x+ 1 := ↑0
λ (s)])

The value of x needs to be incremented because the index of a free variable is

incremented when the variable is inside a λ-abstraction. The function ↑0
λ (_) is

needed to ensure logical substitution is capture avoiding.

Definition 3.1.2 (Lifting functions). The function ↑nλ (t) takes as an argument a

term or command, t, and increases by 1 the index of all free λ-variables in t that

are greater or equal to n. The function ↑nµ (t) performs the same operation but for

free µ-variables.

Being capture avoiding is a standard property of substitution in the λ-calculus.

Using the previous example, it means that no free variable in s should have the

same name as the binding variable of the λ. Otherwise, such a free variable would

become bound as a result of the substitution.

3. When defining logical substitution for µ-abstractions, the function, ↑0
µ (_), needs to

be used:

(µ : ρ.c)[x := s] := µ : ρ.(c[x := ↑0
µ (s)])

3.1.4 Structural Substitution

I defined the λµT contexts as a datatype in Isabelle without any modifications. Context

substitution is defined as a function from contexts to terms.

The definition of structural substitution appears in Figure 3.1.6. The cases that needed

adaptation are described below:

1. (λ : ρ.r)[α := βE] := λ : ρ.(r[α := β ↑0
λ (E)])

The function ↑nλ (_) is the lifting function for free λ-variables applied to contexts.

It increments the indices of all free λ-variables in E by 1. This is needed to make

structural substitution capture avoiding for λ-variables.
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primrec

struct-subst-dBT :: [dBT , nat , nat , ctxt ] ⇒ dBT

and

struct-subst-dBC :: [dBC , nat , nat , ctxt ] ⇒ dBC

where

struct-LVar : (‘i)[j =k E ]T = (‘i)

| struct-Lbd : (λ T : t)[j =k E ]T = (λ T : (t [j =k (liftL-ctxt E 0 )]T ))

| struct-App: (t°s)[j =k E ]T = (t [j =k E ]T )°(s[j =k E ]T )

| struct-Zero: Zero[j =k E ]T = Zero

| struct-Suc: (S t)[j =k E ]T = S (t [j =k E ]T )

| struct-Nrec: (Nrec T r s t)[j =k E ]T = Nrec T (r [j =k E ]T ) (s[j =k E ]T ) (t [j =k E ]T )

| struct-Mu: (µ T : c)[j =k E ]T = µ T : (c[(j +1 )=(k+1 ) (liftM-ctxt E 0 )]C)

| struct-MVar : (<i> t)[j =k E ]C =

(if i=j then (<k> (ctxt-subst E (t [j =k E ]T )))

else (if j<i ∧ i≤k then (<i−1> (t [j =k E ]T ))

else (if k≤i ∧ i<j then (<i+1> (t [j =k E ]T ))

else (<i> (t [j =k E ]T )))))

Figure 3.1.6: Structural substitution as a primitive recursive function in Isabelle.

2. (µ : ρ.c)[α := βE] := µ : ρ.(c[(α + 1) := (β + 1) ↑0
µ (E)])

The context E is lifted to make structural substitution capture avoiding for

µ-variables. The free µ-variables α and β are incremented because they are now

inside a µ-abstraction.

3. In the rule for µ-variables, I had to carefully adjust the de Bruijn indices of the free

µ-variables encountered:

([γ]t)[α := βE] :=


[β](E[t[α := βE]]) if γ = α

[γ − 1](t[α := βE]) if α < γ ≤ β

[γ + 1](t[α := βE]) if β ≤ γ < α

[γ](t[α := βE]) otherwise

(3.1.4)

The case split above is needed to ensure that typing in preserved under structural

substitution. An informal explanation would be as follows: after the substitution,

the free variable α is replaced in the typing environment by β. First, examine

the case α < γ ≤ β. If α has been added to the typing environment using the

environment update operation 〈_ : _〉, γ actually represents the variable γ − 1

shifted up by 1. However, if β is added instead, γ − 1 is not shifted up. Hence the

need to decrement γ by 1 when α is replaced by β. The case β ≤ γ < α is similar.

The definition of this case has been a source of difficulties and required experimenta-

tion. I only realised a case split is needed when I was unable to prove the Structural

Substitution lemma, needed for Type Preservation of λµT.
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inductive beta-terms :: [dBT , dBT ] ⇒ bool

and beta-command :: [dBC , dBC ] ⇒ bool

where

beta: (λ T : t)°r →β t [r/0 ]T

| muSuc: S (µ T : c) →β µ T : (c[0 = 0 (CSuc ♦)]C)

| muApp: (µ (T1→T2 ) : c)°s →β µ T2 : (c[0 = 0 (♦ • (liftM-dBT s 0 ))]C)

| muRename: (0 /∈ (fmv-dBT t 0 )) =⇒ (µ T : (<0> t)) →β dropM-dBT t 0

| mVar : <i> (µ T : c) C→β (dropM-dBC (c[0 = i ♦]C) i)

| nrecZero: Nrec T r s Zero →β r

| nrecSuc: is-natval n =⇒ Nrec T r s (S n) →β s°n°(Nrec T r s n)

| nrecMu: Nrec T r s (µ T1 : c)

→β µ T : (c[0 = 0 (CNrec T (liftM-dBT r 0 ) (liftM-dBT s 0 ) ♦)]C)

| lambda: s →β t =⇒ (λ T : s) →β (λ T : t)

| appL: s →β u =⇒ (s°t) →β (u°t)

| appR: t →β u =⇒ (s°t) →β (s°u)

| mu: c C→β d =⇒ (µ T : c) →β (µ T : d)

| suc: s →β t =⇒ (S s) →β (S t)

| nrecL: r →β u =⇒ (Nrec T r s t) →β (Nrec T u s t)

| nrecM : s →β u =⇒ (Nrec T r s t) →β (Nrec T r u t)

| nrecR: t →β u =⇒ (Nrec T r s t) →β (Nrec T r s u)

| mVar2 : t →β s =⇒ (<i> t) C→β (<i> s)

Figure 3.1.7: The λµT reduction relation as an inductive predicate in Isabelle.

3.1.5 The Reduction Relation

Using the definitions of substitution, I formalised the λµT reduction relation as an induc-

tive predicate. All the rules appear in Figure 3.1.7. Below, I draw attention to some of

the rules that needed adjustments:

1. In rules (µR) and (µN), a structural substitution has to be performed inside a

µ-abstraction, as a result of the reduction. The context used for the structural

substitution is either (� s) or (nrecρ r s �). To avoid capture of the free µ-variables

in these contexts, their indices need to be incremented by 1.

(µ : σ → τ.c)s→ µ : τ.(c[0 := 0 (� ↑0
µ (s))]) (µR)

nrecρ r s (µ : N.c)→ µ : ρ.(c[0 := 0 (nrecρ ↑0
µ (r) ↑0

µ (s) �)]) (µN)
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2. In rule (µη), the indices of the free µ-variables in t need to be adjusted when t is

no longer inside a µ-abstraction:

µ : ρ.[0]t→ ↓0
µ (t) provided that 0 /∈ FCV(t) (µη)

Definition 3.1.3 (Drop function). The function ↓nµ (t) takes as an argument a term

or command, t, and decreases by 1 the index of the free µ-variables in t that are

strictly greater than n. It can be seen as the opposite of ↑nµ (t).

To check the side condition of this reduction rule, I defined functions that calculate

the set of free µ-variables of a term and command respectively.

3. One thing to note is that, in rule (β), the free λ-variables in t do not need any

further adjustment, although t loses an enclosing λ-abstraction:

(λ : ρ.t)r → t[0 := r] (β)

thanks to the way logical substitution is implemented.

4. All the reduction rules which are explicitly stated can be used inside any term or

command. Therefore, in my Isabelle formalisation of the reduction relation, I added

new rules, known as congruence rules, such as:

t→ u =⇒ (ts)→ (us)

Definition 3.1.4. The reflexive-transitive closure of the reduction relation is defined as

an inductive predicate with rules:

t→∗ t
t→ s ∧ s→∗ u =⇒ t→∗ u

3.1.6 Logical Substitution Lemma

This section begins the presentation of lemmas used in the proof of Type Preservation.

For convenience, I only state them for terms, but they can be formulated in exactly the

same way for commands.

Lemma 3.1.5. For any typing environment Γ, variable index n, and types ρ and δ:

Γ〈n : ρ〉〈0 : δ〉 = Γ〈0 : δ〉〈n+ 1 : ρ〉

Proof. By the definition of 〈_ : _〉.

Lemma 3.1.6 (Lifting preserves typing).

Γ; ∆ ` t : ρ =⇒ Γ〈x : δ〉; ∆ ` ↑xλ (t) : ρ

Γ; ∆ ` t : ρ =⇒ Γ; ∆〈α : δ〉 ` ↑αµ (t) : ρ
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Proof. Each implication is proved separately by rule induction on the typing judgement

Γ; ∆ ` t : ρ.

I used these two results to prove a substitution lemma for logical substitution, similar

to the one in the typed λ-calculus. This shows that typing is preserved under logical

substitution:

Lemma 3.1.7 (Logical Substitution lemma). If

Γ〈x : δ〉; ∆ ` t : ρ

and

Γ; ∆ ` r : δ

then

Γ; ∆ ` t[x := r] : ρ

Proof. The proof is done by rule induction on the first typing judgement. An interesting

case is (lambda):

(lambda) Assume that

Γ〈x : δ〉; ∆ ` (λ : ρ.t) : ρ→ σ

Γ; ∆ ` r : δ

Therefore,

Γ〈x : δ〉〈0 : ρ〉; ∆ ` t : σ

We need to prove that:

Γ; ∆ ` (λ : ρ.t)[x := r] : ρ→ σ

By the definition of logical substitution, this is equivalent to proving:

Γ〈0 : ρ〉; ∆ ` t[(x+ 1) := ↑0
λ (r)] : σ

This follows from the induction hypothesis using Lemmas 3.1.5 and 3.1.6.

Figure 3.1.8 shows how the Logical Substitution lemma is proved in Isabelle. This is

an example of an apply-style proof, which is arguably not very readable. First, the lemma

is stated for both terms and commands. The proof proceeds by mutual induction on the

typing judgements of t and c. Some automated proof methods such as auto and fastforce

are used, while the results in Lemma 3.1.6 are applied explicitly.
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theorem subst-type:

Γ1 , ∆ `T t : T =⇒ Γ, ∆ `T r : T1 =⇒ Γ1 = Γ〈k :T1 〉 =⇒ Γ, ∆ `T t [r/k ]T : T

Γ1 , ∆ `C c : Command =⇒ ∀Γ.∀ r .∀T1 . (Γ, ∆ `T r : T1 −→
(∀ k . (Γ1 = Γ〈k :T1 〉−→ Γ, ∆ `C c[r/k ]C : Command)))

apply(induct arbitrary : Γ k T1 r rule: typing-dBT-typing-dBC .inducts)

apply(auto)

apply(rotate-tac 2 )

apply(drule liftL-type(1 ))

apply(fastforce)

apply(rotate-tac 2 )

apply(drule liftM-type(1 ))

apply(fastforce)

done

Figure 3.1.8: The Logical Substitution lemma proved in Isabelle.

3.1.7 Contextual Typing Judgements

Structural substitution is formulated using λµT contexts. To express the fact that struc-

tural substitution preserves typing, contextual typing judgements are introduced [14]. I

defined this in Isabelle as an inductive predicate.

Definition 3.1.8. The rules for contextual typing judgments are presented in

Figure 3.1.9. The notation Γ; ∆ ` E : σ ⇐ ρ means that E[t] has type σ in the given

environment if Γ; ∆ ` t : ρ.

Lemma 3.1.9. The typing judgement:

Γ; ∆ ` E[t] : σ

holds if and only if the following two judgements both hold:

Γ; ∆ ` E : σ ⇐ ρ

Γ; ∆ ` t : ρ

This expresses the fact that contextual typing judgements have the desired meaning.

Proof. The forward direction is proved by structural induction on the context E. The

reverse direction, by rule induction on the contextual typing judgement.

Introducing contextual typing judgements allowed me to formulate and prove the

following property of the reflexive-transitive closure of the reduction relation:

Lemma 3.1.10. If

Γ; ∆ ` E : σ ⇐ ρ

then

E[µ : ρ.c]→∗ µ : σ.(c[0 := 0 ↑0
µ (E)])

Proof. By structural induction on the context E.
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Γ; ∆ ` � : ρ⇐ ρ (hole)
Γ; ∆ ` E : N⇐ ρ

Γ; ∆ ` SE : N⇐ ρ
(suc)

Γ; ∆ ` E : σ → δ ⇐ ρ Γ; ∆ ` t : σ

Γ; ∆ ` Et : δ ⇐ ρ
(app)

Γ; ∆ ` r : σ Γ; ∆ ` s : N→ σ → σ Γ; ∆ ` E : N⇐ ρ

Γ; ∆ ` nrec r s E : σ ⇐ ρ
(nrec)

Figure 3.1.9: Contextual typing judgements in λµT [14].

The assumption about the type of the context E is needed because the µ-abstraction

that results from the reduction needs to have the same type, σ, as E[µ : ρ.c]. Therefore,

the type annotation of this µ-abstraction needs to be σ. This is a consequence of the fact

that the one-step reduction relation preserves typing, which I will prove in Section 3.1.9.

The lemma above is an example of a proposition from the original λµT paper [14] which

I had to adapt in order for it to be provable in my formalisation. The original formulation

does not include the typing assumption for E. This is because type annotations on

the µ- and λ-abstractions are omitted. In this sense, my formulation of the lemma is

more precise.

3.1.8 Structural Substitution Lemma

Using contextual typing judgements, I introduce a lemma for contexts which states that

lifting preserves typing of contexts:

Lemma 3.1.11 (Lifting preserves typing for contexts).

Γ; ∆ ` E : σ ⇐ ρ =⇒ Γ〈x : δ〉; ∆ ` ↑xλ (E) : σ ⇐ ρ

Γ; ∆ ` E : σ ⇐ ρ =⇒ Γ; ∆〈α : δ〉 ` ↑αµ (E) : σ ⇐ ρ

Proof. Each implication is proved by rule induction on the contextual typing judgement.

Using the results presented so far, I proved a substitution lemma for structural sub-

stitution:

Lemma 3.1.12 (Structural Substitution lemma). Given that

Γ; ∆〈α : δ〉 ` t : ρ

Γ; ∆ ` E : σ ⇐ δ

both hold, then

Γ; ∆〈β : σ〉 ` t[α := β ↑βµ (E)] : ρ
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Proof. By rule induction on the first typing judgement. I present the (activate) and

(passivate) cases. The (lambda) case is similar to (activate) and all the other cases follow

from the induction hypothesis.

(activate) By assumption, we know that:

Γ; ∆〈α : δ〉 ` (µ : ρ.c) : ρ

Γ; ∆ ` E : σ ⇐ δ

Therefore, using Lemmas 3.1.5 and 3.1.11 respectively:

Γ; ∆〈0 : ρ〉〈α + 1 : δ〉 ` c : ‚ (3.1.5)

Γ; ∆〈0 : ρ〉 ` ↑0
µ (E) : σ ⇐ δ (3.1.6)

We need to prove:

Γ; ∆〈β : σ〉 ` (µ : ρ.c)[α := β ↑βµ (E)] : ρ

which is equivalent to:

Γ; ∆〈0 : ρ〉〈β + 1 : σ〉 ` c[(α + 1) := (β + 1) ↑0
µ (↑βµ (E))] : ‚

again by Lemma 3.1.5 about commutativity of 〈_ : _〉. It can be shown that:

↑0
µ (↑βµ (E)) = ↑β+1

µ (↑0
µ (E))

so we can use assumptions 3.1.5 and 3.1.6, together with the induction hy-

pothesis, to deduce the conclusion.

(passivate) By assumption, we know that:

Γ; ∆〈α : δ〉 ` [γ]t : ‚ (3.1.7)

Γ; ∆ ` E : σ ⇐ δ (3.1.8)

and we need to prove:

Γ; ∆〈β : σ〉 ` ([γ]t)[α := β ↑βµ (E)] : ‚ (3.1.9)

At this point, a case split needs to be done according to the value of γ

relative to α and β. The cases are the ones in the definition of structural

substitution for commands. In fact, I realised the need of doing a case split

in this definition while trying to prove the current lemma. This need arises

because the operation 〈_ : _〉 shifts up the variables in the environment.

Cases α 6= γ: the conclusion follows from the induction hypothesis and as-

sumptions 3.1.7 and 3.1.8.

Case γ = α: from the definition of structural substitution and the typing

rules, the conclusion, 3.1.9, becomes equivalent to:

Γ; ∆〈β : σ〉 ` (↑βµ (E))[t[α := β ↑βµ (E)]] : σ
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We can break this down into two statements using Lemma 3.1.9 about con-

textual typing judgements. The first one is:

Γ; ∆〈β : σ〉 ` ↑βµ (E) : σ ⇐ δ

which follows from assumption 3.1.8 and Lemma 3.1.11, about context lifting.

And the second one is:

Γ; ∆〈β : σ〉 ` t[α := β ↑βµ (E)] : δ

which follows from the induction hypothesis.

I had to make an adjustment in the statement of Lemma 3.1.12 above, compared to its

original presentation [14], to cope with the use of de Bruijn indices. When the context E

is used for structural substitution, all its free µ-variables greater or equal to β are lifted,

↑βµ (E). This is because E was previously typed in environment ∆, but in the conclusion

the environment is ∆〈β : σ〉.

3.1.9 Type Preservation Theorem

Having proved the logical substitution and structural substitution lemmas, I was able to

prove that λµT obeys type preservation. This is one of the main results I aimed to prove

in my project.

Theorem 3.1.13 (Type Preservation). Given any λµT terms (or commands) t and s,

any type ρ, and typing environments Γ and ∆, if:

Γ; ∆ ` t : ρ

and

t→ s

then

Γ; ∆ ` s : ρ

Proof. By rule induction on the typing judgement Γ; ∆ ` t : ρ. Some of the cases are:

(passivate) Assume that:

Γ; ∆ ` [α]t : ‚
[α]t→ d (3.1.10)

We can do a case split on the reduction in 3.1.10. An interesting case is:

– or t = µ : ρ.c, where ρ = ∆(α), and d = ↓αµ (c[0 := α �]). We can

deduce from the assumptions that:

Γ; ∆〈0 : ρ〉 ` c : ‚
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We can use the fact Γ; ∆ ` � : ρ⇐ ρ to apply the structural substitution

lemma and obtain:

Γ; ∆〈α : ρ〉 ` c[0 := α �] : ‚
To obtain the final result:

Γ; ∆ ` ↓αµ (c[0 := α �]) : ‚
one can prove that decrementing the µ-variables in c using ↓αµ (_) pre-

serves typing. This is a similar result to the one proved for lifting.

(app) The two interesting cases are:

– t = (λ : σ.r)w and s = r[0 := w]. For this case, we can use the logical

substitution lemma together with the induction hypothesis.

– t = (µ : σ → τ.c)r and s = µ : τ.(c[0 := 0 ↑0
µ (� r)]). The structural

substitution lemma is used in this case.

The formulation of the Type Preservation theorem, for terms and commands, in Is-

abelle appears in Figure 3.1.10. The proof is done by mutual induction on the typing

judgements for t and c. The complete proof can be found in Appendix A.1.

This is an example of a structured proof, where I used the Isar proof language to

separate the cases that arise from the induction. In this proof, it is convenient to do so

because a lot of the cases need to be handled manually.

In Figure 3.1.10, I included the proof of the application case. First, the assumptions

and the goal of this case are stated explicitly. Then, the proof proceeds in apply-style

because this is less verbose. Notice that the logical substitution lemma, subst-type, is

used. Then, a specific instantiation of the structural substitution lemma is applied. This

is similar to what I described in the (app) case, in the proof above.

3.1.10 Progress Theorem

In order to formulate a progress theorem, which is the second main theorem in my project,

I need to introduce the notion of values in λµT. I defined them in Isabelle as an inductive

predicate.

Definition 3.1.14. The set of values in λµT is defined inductively as:

v := 0 | Sn | λ : ρ.t

Lemma 3.1.15. For any λ-closed value v, such that Γ; ∆ ` v : ρ:

ρ = N =⇒ v = n where n is a natural number

ρ = σ → τ =⇒ v = λ : σ.r for some term r

Proof. By structural induction on the value v.
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theorem type-preservation:

Γ, ∆ `T t : T =⇒ t →β s =⇒ Γ, ∆ `T s : T

Γ, ∆ `C c : Command =⇒ ∀ d . (c C→β d −→ Γ, ∆ `C d : Command)

proof(induct arbitrary : s rule: typing-dBT-typing-dBC .inducts)

fix Γ ∆ t T1 T2 s sa

assume Γ , ∆ `T t : T1 → T2

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T1 → T2 )

Γ , ∆ `T s : T1

(
∧

sa. s →β sa =⇒ Γ , ∆ `T sa : T1 )

t ° s →β sa

thus Γ , ∆ `T sa : T2

apply(safe)

apply(clarsimp simp add : subst-type)

apply(frule struct-subst-type-command

[where ?∆1 .0 = ∆〈0 :T1 → T2 〉 and ?∆ = ∆ and ?α = 0

and ?T1 .0 = T1 → T2 and ?E = ♦ • s and ?U = T2 ])

apply(fastforce)+

done

. . .

Figure 3.1.10: The Type Preservation theorem in Isabelle, and proof of the application

case.

Using values, I can define the notion of normal form. Intuitively, terms that are in

normal form are those that cannot reduce anymore.

Definition 3.1.16 (Normal Form). A term t is in normal form if:

� t is a value or

� t = µ : ρ.[α]v for some value v, and µ-variable α

To prove the progress theorem, I first proved a lemma about normal forms [14]. In Is-

abelle, I chose to write the proof of this lemma as a structured proof to enhance readability

(Appendix A.2).

Lemma 3.1.17.

1. Consider a λ-closed term t, such that Γ; ∆ ` t : ρ. If there is no term s such that

t→ s, then t is in normal form.

2. Consider a λ-closed commad c, such that Γ; ∆ ` c : ‚. For any term t and µ-variable

β such that c = [β]t, if t cannot reduce anymore, then t is in normal form.

Proof. By mutual rule induction on the typing judgements Γ; ∆ ` t : ρ and Γ; ∆ ` c : ‚.

Most cases are easy to prove using the assumptions, induction hypothesis, and

Lemma 3.1.15 about values. I describe two of them:
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(app) Assume:

Γ; ∆ ` rs : ρ

∀ u. rs 6→ u

where r and s are λ-closed. This means that Γ; ∆ ` r : σ → ρ, for some type

σ, and ∀ u. r 6→ u. So we can apply the induction hypothesis for r. In the case

where r is a value, we know from Lemma 3.1.15 that r = λ : σ.v for some value

v. Otherwise, r = µ : σ → ρ.[α]v. In both cases we arrive at a contradiction

because rs would reduce.

(activate) So far, I have omitted stating results for both terms and commands because

they have a very similar formulation. I also glossed over the fact that the induc-

tions performed were actually mutual inductions over terms and commands.

In this lemma, however, I gave the formulation for commands explicitly be-

cause it is not obvious. The need for this formulation appears when trying to

prove the current case.

Assume:

Γ; ∆ ` µ : ρ.c : ρ

∀ u. µ : ρ.c 6→ u (3.1.11)

where µ : ρ.c is λ-closed. Therefore, Γ; ∆〈0 : ρ〉 ` c : ‚. There exist some

β and t such that c = [β]t, where t cannot reduce anymore, according to

assumption 3.1.11. We can now apply the induction hypothesis for c to deduce

that either:

– t is a value, and, since µ : ρ.c = µ : ρ.[β]t, we are done or

– t = µ : σ.[γ]v for some µ-variable γ and value v, where σ = ∆〈0 : ρ〉(β).

In this case, µ : ρ.c = µ : ρ.([β]µ : σ.[γ]v), and we obtain a contradiction

because this term can reduce by rule (µi).

Theorem 3.1.18 (Progress). For any λ-closed term t, if Γ; ∆ ` t : ρ then either:

� there exists a term s such that t→ s or

� t is in normal form

Proof. The conclusion follows directly from Lemma 3.1.17 about normal forms.

3.2 Extending the λµT-calculus

In this section, I present two additions to the λµT-calculus that I implemented in Isabelle.

These are both extensions to my original project.

The first one is adding a new type of commands, and a ⊥ type to represent falsity [6].

The resulting calculus is called λµT
top. This extension is motivated by the desire to make

λµT isomorphic to full classical logic.
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Γ, A `C A; ∆
(id)

Γ `C ;A,∆

Γ `C A; ∆
(activate)

Γ `C A;A,∆

Γ `C ;A,∆
(passivate)

Γ, A `C B; ∆

Γ `C A→ B; ∆
(→i)

Γ `C A→ B; ∆ Γ `C A; ∆

Γ `C B; ∆
(→e)

Γ `C ⊥; ∆

Γ `C ; ∆
(⊥e)

Figure 3.2.1: Classical Natural Deduction [6].

The second one is adding boolean, product and sum types to λµT
top. This makes

it easier to write propositions as λµT
top types, and is a step towards making the µML

language more similar to ML.

3.2.1 From λµT to λµT
top

In Section 2.2.5, I showed that the λµT-calculus is isomorphic to Minimal Classical Natural

Deduction, which implements minimal classical logic. This means that it validates Peirce’s

Law but not the Double Negation Law. Consequently, Parigot [30] shows that the Double

Negation Law can be proved in λµ, and hence also in λµT, by a term that is not closed,

but has a free µ-variable.

In principle, it is not a problem that some classical proofs can only be represented

in λµT by terms with free µ-variables. The Progress theorem holds for terms that are

not closed under µ-variables, so these terms are well-behaved as well. However, the µML

interpreter only accepts closed terms, as it is the case in other programming languages.

Non-closed terms are undesirable from a programming perspective because substituting

them in an arbitrary context may cause capture, leading to unexpected behaviour. More-

over, two non-closed terms that represent the same proof would not be α-equivalent. In

order to prove classical propositions using the interpreter, I would like their proofs to be

closed λµT terms. Consequently, I attempted to extend λµT to be isomorphic with full

classical logic.

To transform Minimal Classical Natural Deduction to Classical Natural Deduction,

which implements full classical logic, Figure 3.2.1, Ariola and Herbelin show that it is

enough to add an elimination rule for falsity [6]. They extend λµ accordingly, adding

a typing rule for the type falsity, ⊥, and a new type of commands, [>]t, to obtain the

λµtop-calculus.

I adopted the same approach for the λµT-calculus. The new grammars of types and

commands appear in Figure 3.2.2, together with the collected typing rules for λµT.

In [>]t, > can be regarded as a distinguished µ-variable. It behaves the same as

µ-variables under substitution but it cannot be bound by any abstraction or used as

a µ-binder. Therefore, it is never a free µ-variable and it cannot appear in a typing

environment.

The typing rule (top) closely matches the rule (⊥e) from Classical Natural Deduc-

tion. Also, it is very similar to (passivate), reinforcing the point that > is just a special

µ-variable.
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ρ, σ, τ ::= N | ‚ | σ → τ | ⊥

c, d ::= [α]t | [>]t

x : ρ ∈ Γ

Γ; ∆ ` x : ρ
(a) axiom

Γ, x : σ; ∆ ` t : τ

Γ; ∆ ` λx : σ.t : σ → τ
(b) lambda

Γ; ∆ ` t : σ → τ Γ; ∆ ` s : σ

Γ; ∆ ` ts : τ
(c) app

Γ; ∆ ` 0 : N
(d) zero

Γ; ∆ ` t : N

Γ; ∆ ` St : N
(e) suc

Γ; ∆ ` r : ρ Γ; ∆ ` s : N→ ρ→ ρ Γ; ∆ ` t : N

Γ; ∆ ` nrecρ r s t : ρ

(f) nrec

Γ; ∆, α : ρ ` c : ‚
Γ; ∆ ` µα : ρ.c : ρ

(g) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆

Γ; ∆ ` [α]t : ‚
(h) passivate

Γ; ∆ ` t : ⊥
Γ; ∆ ` [>]t : ‚

(i) top

Figure 3.2.2: The new syntax in λµT
top and all its typing judgements.

3.2.2 Extending the Isabelle Formalisation of λµT to λµT
top

In this section, I present the modifications I made to the λµT formalisation in order to

incorporate the new features of λµT
top. The following significant changes were made to the

λµT definitions:

1. In the structural substitution:

t[α := βE]

α or β can now be >. Therefore, I decided to change the types of these two

arguments to be nat option, rather than nat. None is used to represent > and

Some γ is used to represent the µ-variable γ.

2. With regards to reduction, > behaves like a µ-variable. I only needed to add two

new reduction rules for >. The first one resembles the (µi) rule for commands. The

second one enables reduction inside commands.

[>]µ : ⊥.c→↓0
µ (c[Some 0 := None �])

s→ t =⇒ [>]s→ [>]t

Most of the proofs I described in Section 3.1 were updated without difficulty to deal

with the addition of ⊥. In the case where the proof was carried out by rule induction on

a typing judgement, I added a new case for ⊥. Similarly, I added a case for [>]t to all

structural inductions on commands.

Below, I highlight the changes I had to make to the Type Preservation and Progress

theorems.
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1. In the Type Preservation proof, I had to add the case Γ,∆ ` [>]t : ‚. If t = µ : ⊥.c
then t reduces to ↓0

µ (c[Some 0 := None �]). To prove this term is well-typed, I had

to prove a structural substitution lemma for >:

Γ,∆〈α : ⊥〉 ` t : ρ =⇒ Γ,∆ `↓αµ (t[Some α := None �])

This follows easily by rule induction on the typing judgement of t.

2. The proof of the Progress theorem is modified because the definition of normal form

is extended: a term µ : ρ.[>]v, where v is a value, is also in normal form.

3.2.3 Adding Booleans, Products and Sums to λµT
top

Following the example by Pierce [36] for the simply-typed λ-calculus, I extended λµT
top

with more datatypes. The main points that have to be considered are outlined below:

1. Syntax. The boolean type, the product type and the sum type are added to the

grammar:

ρ, σ, τ ::= . . . Bool | σ × τ | σ + τ

There are new kinds of terms to populate each of these types:

t, r, s ::= . . . true | false | if : ρ t then r else s |
(|t, s|) : ρ | π1t | π2t |
inl : ρ t | inr : ρ t | case : ρ t of inl x⇒ s | inr y ⇒ r

Below is an explanation of the new syntax. In all cases, the type annotation ρ is

the type of the whole expression.

� The notation (|t, s|) represents the pair formed by terms t and s. The term

π1t is the projection of the left element of the pair t. Similarly, π2t is the

right-projection.

� The term inl : ρ t is a sum, where t is the left component. Similarly for inr.

The case construct does a case split on term t, which can be either inl or inr.

2. Typing rules. Under propositions-as-types, the sum type is isomorphic to disjunc-

tion and the product type to conjunction. Therefore, the typing rule (pair), in

Figure 3.2.3, is very similar to the introduction rule for conjunction in Natural De-

duction, and (proj1) and (proj2) correspond to conjunction elimination. Similarly

for disjunction.

In my Isabelle formalisation, I extended the datatypes for types and terms similarly.

Then, I added the typing rules from Figure 3.2.3 to the inductive predicate for typing.

In the case : ρ t of inl x⇒ s | inr y ⇒ r expression, variables x and y are λ-binders.

They are similar to the binder in the λ-abstraction. Therefore, they do not appear in the

Isabelle Case constructor. They are implicitly represented by the de Bruijn index 0 inside

s and r respectively. So, in Isabelle case is represented as:
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Γ; ∆ ` true : Bool
(true)

Γ; ∆ ` false : Bool
(false)

Γ; ∆ ` t : Bool Γ; ∆ ` s : ρ Γ; ∆ ` r : ρ

Γ; ∆ ` if : ρ t then s else r : ρ
(if)

Γ; ∆ ` t : σ Γ; ∆ ` s : τ

Γ; ∆ ` ((|t, s|) : σ × τ) : σ × τ
(pair)

Γ; ∆ ` t : σ × τ
Γ; ∆ ` π1t : σ

(proj1)
Γ; ∆ ` t : σ × τ
Γ; ∆ ` π2t : τ

(proj1)

Γ; ∆ ` t : σ

Γ; ∆ ` (inl : σ + τ t) : σ + τ
(inl)

Γ; ∆ ` t : τ

Γ; ∆ ` (inr : σ + τ t) : σ + τ
(inr)

Γ; ∆ ` t : σ + τ Γ, x : σ; ∆ ` s : ρ Γ, y : τ ; ∆ ` r : ρ

Γ; ∆ ` (case : ρ t of inl x⇒ s | inr y ⇒ r) : ρ
(case)

Figure 3.2.3: The typing rules for boolean, products, and sums in λµT
top.

Case type dBT dBT dBT (Case - - Of Inl⇒ -|Inr⇒ -)

3. Reduction rules. The most important reduction rules that I added to the Isabelle

inductive predicate can be found in Figure 3.2.4. Most of the rules are the expected

ones. The congruence rules are omitted.

Interesting rules arise from the interaction with the µ-abstraction. To understand

these better, one can look at if more carefully. Without taking into consideration

µ-abstractions, the reduction rules for if are:

if : ρ true then s else r → s

if : ρ false then s else r → r

t→ u =⇒ if : ρ t then s else r → if : ρ u then s else r

An expression such as if : ρ (µ : Bool.[α]v) then s else r, where v is a value,

is well-typed but cannot reduce using the three rules above. However, it is not in

normal form either, because it is not a value, nor of the form µ : ρ.[α]v, where v

is a value. Therefore, using only these reduction rules, Lemma 3.1.17, which says

that terms that cannot reduce anymore are in normal form, is not valid anymore.

To address this problem, I added rule 3.2.1, from Figure 3.2.4:

if : ρ (µ : σ.c) then s else r → µ : ρ.(c[Some 0 := Some 0 (if : ρ � ↑0
µ (s) ↑0

µ (r))])

This rule is similar to rule (µN), for nrec. The reduction rules 3.2.2 through 3.2.8

address the same problem of reduction in the presence of a µ-abstraction.

What is more, these rules justify the need of annotating nrec, if, pairs and case

with their own type. The µ-abstraction on the right-hand-side of these reduction
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if : ρ true then s else r → s

if : ρ false then s else r → r

if : ρ (µ : σ.c) then s else r → µ : ρ.(c[Some 0 := Some 0 (if : ρ � ↑0
µ (s) ↑0

µ (r))])

(3.2.1)

π1((|t, s|) : σ × τ)→ t

π2((|t, s|) : σ × τ)→ s

π1(µ : σ × τ.c)→ µ : σ.(c[Some 0 := Some 0 (π1�)]) (3.2.2)

π2(µ : σ × τ.c)→ µ : τ.(c[Some 0 := Some 0 (π2�)]) (3.2.3)

(|µ : σ.c, s|) : σ × τ → µ : σ × τ.(c[Some 0 := Some 0 ((|�, ↑0
µ (s)|) : σ × τ)]) (3.2.4)

(|t, µ : τ.c|) : σ × τ → µ : σ × τ.(c[Some 0 := Some 0 ((| ↑0
µ (t), �|) : σ × τ)]) (3.2.5)

case : ρ (inl : σ + τ u) of inl x⇒ s | inr y ⇒ r → s[x := u]

case : ρ (inr : σ + τ u) of inl x⇒ s | inr y ⇒ r → r[y := u]

case : ρ (µ : σ + τ.c) of inl x⇒ s | inr y ⇒ r

→ µ : ρ.(c[Some 0 := Some 0 (case : ρ � of inl x⇒ ↑0
µ (s) | inr y ⇒ ↑0

µ (r))]) (3.2.6)

inl : σ + τ (µ : σ.c)→ µ : σ + τ.(c[Some 0 := Some 0 (inl : σ + τ �)]) (3.2.7)

inr : σ + τ (µ : τ.c)→ µ : σ + τ.(c[Some 0 := Some 0 (inr : σ + τ �)]) (3.2.8)

Figure 3.2.4: Reduction rules for booleans, products, and sums in λµT
top.
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rules needs to be annotated with the type of the expression on the left-hand-side.

This is required to make reduction preserve typing. Therefore, the type on the left-

hand side needs to be known when the reduction is performed. It is customary to

annotate inl and inr with their types to obtain uniqueness of typing.

4. Extending the Isabelle proofs. This took a long time because a lot of new cases

appeared. For example, 9 new typing rules were added. Therefore, I had to add 9

cases to every structured proof done by rule induction on a typing judgement, for

example the Structural Substitution lemma, Type Preservation, and Lemma 3.1.17

about normal forms.

Before updating the proof of the Progress Theorem, I had to update the definition

of values. I added 5 new types of values, similar to those added to the simply-typed

λ-calculus:

v := . . . true | false | (|v1, v2|) : ρ | inl : ρ v | inr : ρ v

where v, v1, and v2 are values. As a result, Lemma 3.1.15, which specifies which

values each type is inhabited by, had to be extended.

3.3 The µML Language

In this section, I describe the language µML, which is based on λµT
top with booleans,

products and sums. Additionally, I explain how I implemented an interpreter for µML

in OCaml. Over the course of the project, I incrementally added features to µML, as I

was extending the λµT Isabelle formalisation. However, I only describe the final version

of the language here.

The syntax of µML mirrors closely the syntax of the λµT
top-calculus. It is given it

Figure 3.3.1, where I also make explicit the correspondence between the syntax of the

language and the syntax of the calculus.

3.3.1 Typing and Reduction in µML

The typing rules in µML are the same as in λµT
top, and the reduction rules of the two

are very similar. As a result, I was able to use my Isabelle formalisation to automatically

generate OCaml code [18] for the µML type-inference and reduction functions. This

means that the Type Preservation and Progress proofs, as well as all other proofs I did in

Isabelle, transfer to µML, assuming that the code generation facility works correctly. Un-

der this assumption, the interpreter is guaranteed to perform type inference and reduction

correctly.

Given environments Γ and ∆, the type of any term or command in λµT
top is unique.

Therefore, the Isabelle inductive predicate that defines the typing relation can be turned

into a function from environments and terms to types. This process creates a naive

type-inference function for the interpreter.

Generating code for the reduction function proved more complicated because the in-

ductive predicate that defines the reduction relation does not have a functional form. At
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type ::= nat (N)

| comm (‚)

| type→ type (function type)

| bot (⊥)

| bool (Bool)

| type ∗ type (product type)

| type+ type (sum type)

expr ::= x (λ-variables)

| n (Sn)

| suc expr (St)

| fun(x : type)→ expr end (λx : ρ.t)

| (expr) (expr) (application)

| bind(a : type)→ command end (µa : ρ.c)

| nrec : (type)→ (expr, expr, expr) end (nrecρ r s t)

| true
| false
| if : type expr then expr else expr end (if : ρ t then s else r)

| proj1(expr) (π1t)

| proj2(expr) (π2t)

| {expr, expr} : type ((|t, s|) : ρ)

| inl : type(expr) (inl : ρ t)

| inr : type(expr) (inr : ρ t)

| case : type expr of inl x→ expr | inr y → expr end

(case : ρ t of inl x⇒ s | inr y ⇒ r)

command ::= [a].expr ([a]t)

| [abort].expr ([>]t)

where x ranges over λ-variables and a over µ-variables, and n is a natural number.

Figure 3.3.1: The syntax of the µML language.
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lemma red-in-beta:

red-term t = Some u =⇒ t →β u∧
d . red-command c = Some d =⇒ c C→β d

lemma beta-in-red :

red-term t = None =⇒ ∀ u. ¬(t →β u)

red-command c = None =⇒ ∀ d . ¬(c C→β d)

Figure 3.3.2: Isabelle lemmas that prove the correct behaviour of the reduction function.

some point, there may be different one-step reductions that a term can undergo, since the

reduction strategy in λµT
top resembles full β-reduction

To choose a reduction order for the interpreter, while preserving the same rules, I had

to define a separate reduction function in Isabelle that I then exported to OCaml (Ap-

pendix A.3). This is a rather long-winded solution, but I arrived at it after a considerable

amount of experimentation with other methods that did not work.

This method itself posed some difficulties. These were due to an inefficiency in the

Isabelle function package [21] when dealing with large function definitions. As a re-

sult, I was not able to use overlapping patterns in the definition, which complicated it

considerably.

Additionally, I had to prove that this reduction function has the desired behaviour

compared to the λµT
top reduction relation. To show this, I proved two lemmas which

appear in Figure 3.3.2. Informally, the first one says that if a term t can reduce to u using

the reduction function, then it can also reduce to u using the reduction relation. So the

reduction function does not perform any reductions that are not permitted.

The second lemma says that if a term t cannot reduce anymore using the reduc-

tion function, then it cannot reduce using the reduction relation either. Coupled with

Lemma 3.1.17, which says that a λµT
top term that cannot reduce anymore is in normal

form, it follows that the reduction function reduces terms to a λµT
top normal form.

Proving these two lemmas was not included in the original plan of the project. I

carried out both proofs as structured proofs, by mutual structural induction on t and c.

The proofs were not especially difficult but each case required manual steps, making these

two proofs long.

3.3.2 The Front-End of the µML Interpreter

I implemented the remaining components of the interpreter, lexer, parser, and

pretty-printer, in OCaml. For this, I used OCamlLex and Menhir respectively. These

are standard lexer and parser generators for OCaml [25].

The µML code is parsed into an abstract syntax tree (AST) represented by two

OCaml variant types. One variant type is used for both terms and commands, and one

for µML types. A function is used to attach a de Bruijn index to each variable in the

AST. Then, two mutually recursive functions translate terms and commands to the λµT
top

AST exported from Isabelle. There is a similar function for types.
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AST

Tokens

indices

µML outputµML code

AST with
de Bruijn

Isabelle
λµT

top

AST

Evaluated
result as a
λµT

top AST

translate

Lexing

Parsing

indices

add de Bruijn

Type inference
+ Reduction

Pretty-printing

Figure 3.3.3: Diagram of the stages in the interpreter.

Figure 3.3.4: Example usage of the µML REPL. In the first expression, the bind

around the function is contracted, and then the function applied to argument 1. In the

second expression, the bind is pulled out of the projection constructor.

This λµT
top AST can be given as an argument to the type-inference and reduction

functions generated by Isabelle. The final result of the reduction, and the type of the

term are then pretty-printed. This whole process is illustrated in Figure 3.3.3.

A user has two ways of interacting with the µML interpreter. A read-evaluate-print

loop (REPL) can be started from the command line. The user types a term to be evalu-

ated. The result is printed out together with its type. An example is given in Figure 3.3.4.

To allow editing of keyboard input and persistent history, I wrapped my REPL into the

rlwrap Unix utility [22].

The second interaction mode is by invoking the interpreter’s top-level module with a

µML source file as input. The results of the evaluation are written to a specified output

file. The input file can contain multiple expressions to be evaluated. This facility is useful

when a lot of expressions need to be evaluated.
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Chapter 4

Evaluation

This chapter starts with an overview of the work undertaken. I then show how the µML

interpreter can be used to prove classical propositions, which is the main motivation for

implementing it. Next, I describe the testing I performed for the interpreter and the

λµT
top formalisation. Finally, I compare the performance of the interpreter with that of

the Poly/ML interpreter.

4.1 Work Completed

In addition to implementing the core of the project, I had time to work on several exten-

sions. These are all described in the following two subsections.

4.1.1 Project Core

The first goal of the project was to become familiar with Isabelle. The material in Con-

crete Semantics [26] provided a useful introduction, but by no means an exhaustive one.

Frequently during the project, I had to research new Isabelle features that would allow me

to complete my task, usually in the Isabelle reference manual [42], or tutorials [18,21,27].

Overall, I acquired enough Isabelle knowledge to allow me to complete the rest of the

project.

Most of my time was spent working on the Isabelle λµT formalisation and proofs.

Understanding how to use de Bruijn indices correctly in λµT proved to be time-consuming.

In the end, I managed to formalise all necessary definitions in Isabelle and complete the

two main proofs that I set out to do, Type Preservation and Progress.

I defined the µML language based on λµT, and implemented an interpreter in OCaml

for it. The typing and reduction functions of the interpreter were automatically generated

from the λµT Isabelle formalisation. Doing code generation in Isabelle for the reduction

function proved more difficult than I expected. The lexer, parser, pretty-printer, and the

code needed to combine these components was written in OCaml.

Given the results described so far, all the success criteria in the project proposal have

been met.

51
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4.1.2 Extensions

The extensions I implemented are as follows:

1. I extended the λµT-calculus, to λµT
top to make it isomorphic to full classical logic,

when considering only closed terms. This extension was not included in the project

proposal because I only discovered later that this would be desirable.

2. I added more datatypes to λµT
top, namely booleans, products and sums. This ad-

dition, similarly to the previous one, involved extending all my Isabelle definitions

and proofs, and the µML interpreter accordingly.

3. The type annotations in λµT
top make type inference straightforward. Therefore, the

typing function exported from Isabelle, and used in the interpreter, can already

perform type inference, rather than type checking, as the proposal stipulated.

4. I used the interpreter to prove several classical propositions: Peirce’s Law, the Dou-

ble Negation Law, the equivalence between conjunction and disjunction respectively,

and their classical definitions.

4.2 Proving Classical Propositions using the µML In-

terpreter

This section contains some examples of classical proofs given as µML terms, which can be

type-checked by the interpreter. Since µML is not polymorphic, I replaced type variables

with arbitrary concrete types. Their choice does not influence the validity of the proof.

1. A λµT
top term, whose type is the Double Negation Law, ((τ → ⊥) → ⊥) → τ , is

given below. It is similar to the one proposed by Parigot in λµ [30]:

λy : ((τ → ⊥)→ ⊥).µα : τ.[>](y λx : τ.µβ : ⊥.[α]x)

The equivalent µML term is therefore:

fun(y:(nat->bot)->bot)->

bind(a:nat)->

[abort].(y (fun(x:nat)->bind(b:bot)->[a].x end end))

end

end

The interpreter gives this the correct type: ((nat->bot)->bot)->nat.

2. A λµ term that proves Peirce’s Law, ((σ → τ) → σ) → σ, is also given by

Parigot [30]:

λx : (σ → τ)→ σ.µα : σ.[α](x λy : σ.µβ : τ.[α]y)
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The corresponding µML term is:

fun(x:(nat->comm)->nat)->

bind(a:nat)->

[a].(x (fun(y:nat)->bind(b:comm)->[a].y end end))

end

end

of type ((nat->comm)->nat)->nat, as expected.

In classical logic, conjunction and disjunction can be defined in terms of implication

and negation as:

A ∧B ≡ ¬(A→ ¬B)

A ∨B ≡ ¬A→ B

I showed that the built-in conjunction operator, that can be added to Classical Natural

Deduction, is equivalent to the definition above. To do this, I looked for λµT
top terms that

prove the propositions:

A ∧B → ¬(A→ ¬B)

¬(A→ ¬B)→ A ∧B

I proved a similar result for disjunction. By definition, consider ¬A to be the same

as A→ ⊥.

3. Conjunction:

� In λµT
top extended with booleans, products and sums, a term that has type

A×B → ((A→ (B → ⊥))→ ⊥) is:

λx : A×B.λy : A→ B → ⊥.(y (π1x) (π2x))

The corresponding µML term is:

fun(x:nat*comm)->

fun(y:nat->comm->bot)-> (y (proj1(x)) (proj2(x)))

end

end

of type nat*comm->(nat->comm->bot)->bot, as expected.

� Finding a term of type ((A→ (B → ⊥))→ ⊥)→ A×B is more involved:

λx : (A→ B → ⊥)→ ⊥.µα : A×B.[>](x λy : A.λz : B.µβ : ⊥.[α](|y, z|))

Its typing derivation is given in Figure 4.2.1.
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. . .

(axiom)
Γ, y : A, z : B;

∆, β : ⊥ ` y : A

(axiom)
Γ, y : A, z : B;

∆, β : ⊥ ` z : B
(pair)

Γ, y : A, z : B; ∆, β : ⊥ ` (|y, z|) : A×B
(passivate)

Γ, y : A, z : B; ∆, β : ⊥ ` [α](|y, z|) : ‚
(activate)

Γ, y : A, z : B; ∆ ` µβ : ⊥.[α](|y, z|) : ⊥
(lambda)

Γ, y : A; ∆ ` λz : B.µβ : ⊥.[α](|y, z|) : B → ⊥
(lambda)

Γ; ∆ ` λy : A.λz : B.µβ : ⊥.[α](|y, z|) : A→ B → ⊥
(app)

x : (A→ B → ⊥)→ ⊥;α : A×B ` (x λy : A.λz : B.µβ : ⊥.[α](|y, z|)) : ⊥
(top)

x : (A→ B → ⊥)→ ⊥;α : A×B ` [>](x λy : A.λz : B.µβ : ⊥.[α](|y, z|)) : ‚
(activate)

x : (A→B→⊥)→⊥;` µα : A×B.[>](x λy : A.λz : B.µβ :⊥.[α](|y, z|)) : A×B
(lambda)

` λx : (A→ B → ⊥)→ ⊥.µα : A×B.[>](x λy : A.λz : B.µβ : ⊥.[α](|y, z|))
: ((A→ B → ⊥)→ ⊥)→ A×B

where Γ = {x : (A→ B → ⊥)→ ⊥} and ∆ = {α : A×B}.

Figure 4.2.1: Proof of the proposition ((A→ B → ⊥)→ ⊥)→ A ∧B as a λµT
top term.

In µML this is:

fun(x:(nat->comm->bot)->bot)->

bind(a:nat*comm)->

[abort].(x

(fun(y:nat)->

fun(z:comm)->

bind(b:bot)->

[a].{y, z}:nat*comm

end

end

end))

end

end

and has type ((nat->comm->bot)->bot)->nat*comm.

4. Disjunction:

� A λµT
top term of type A+B → ((A→ ⊥)→ B) is:

λx : A+B.λy : A→ ⊥.(case : B x of inl z ⇒ µα : B.[>](y z) | inr w ⇒ w)
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with the corresponding µML term:

fun(x:nat+comm)->

fun(y:nat->bot)->

case:comm x of inl z->bind(a:comm)-> [abort].(y z) end |

inr w->w

end

end

end

of type nat+comm->(nat->bot)->comm.

� For the inverse implication, ((A→ ⊥)→ B)→ A+B, a term of this type is:

λx : (A→ ⊥)→ B.µα : A+B.[>](λy : B.µβ : ⊥.[α](inr : A+B y)

(x λz : A.µγ : ⊥.[α](inl : A+B z)))

The typing derivation is given in Figure 4.2.2.

The corresponding µML term is:

fun(x:(nat->bot)->comm)->

bind(a:nat+comm)->

[abort].((fun(y:comm)->

bind(b:bot)->

[a].(inr:nat+comm(y))

end

end)

(x (fun(z:nat)->

bind(c:bot)->

[a].(inl:nat+comm(z))

end

end))

)

end

end

of type ((nat->bot)->comm)->nat+comm.

4.3 Unit Tests for the Isabelle λµT Formalisation

The Isabelle formalisation of λµT is accompanied by proofs, the main ones being Type

Preservation and Progress. As a result, unit tests are not necessary to ensure that the

formalisation behaves correctly.

However, writing the definitions of the formalisation took a lot of time, and I could

only do the proofs after this was complete. In the meantime, to get some assurance that
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(axiom)

Γ, y : B; ∆, β : ⊥ ` y : B
(inr)

Γ, y : B; ∆, β : ⊥ `
(inr :A+B y) :A+B

(passivate)
Γ, y :B; ∆, β :⊥ `

[α](inr :A+B y) :‚
(activate)

Γ, y :B; ∆`µβ :⊥.
[α](inr :A+B y) :⊥

(lambda)
Γ; ∆`λy :B.µβ :⊥.

[α](inr :A+B y) :B→⊥

. . .

(axiom)

Γ, z : A; ∆, γ : ⊥ ` z : A
(inl)

Γ, z : A; ∆, γ : ⊥ `
(inl :A+B z) :A+B

(passivate)
Γ, z : A; ∆, γ :⊥ `

[α](inl :A+B z) :‚
(activate)

Γ, z :A; ∆ ` µγ :⊥.
[α](inl :A+B z) :⊥

(lambda)
Γ; ∆ ` λz :A.µγ :⊥.

[α](inl :A+B z) :A→⊥
(app)

Γ; ∆ ` x λz :A.µγ : ⊥.
[α](inl : A+B z) : B

(app)
x : (A→ ⊥)→ B;α : A+B ` λy : B.µβ : ⊥.[α](inr : A+B y)

(x λz : A.µγ : ⊥.[α](inl : A+B z)) : ⊥
(top)

x : (A→ ⊥)→ B;α : A+B ` [>](λy : B.µβ : ⊥.[α](inr : A+B y)

(x λz : A.µγ : ⊥.[α](inl : A+B z))) : ‚
(activate)

x : (A→ ⊥)→ B ` µα : A+B.[>](λy : B.µβ : ⊥.[α](inr : A+B y)

(x λz : A.µγ : ⊥.[α](inl :A+B z))) : A+B
(lambda)

` λx : (A→ ⊥)→ B.µα : A+B.[>](λy : B.µβ : ⊥.[α](inr : A+B y)

(x λz : A.µγ : ⊥.[α](inl : A+B z)))

: ((A→ ⊥)→ B)→ A+B

where Γ = {x : (A→ ⊥)→ B} and ∆ = {α : A+B}

Figure 4.2.2: Proof of the proposition ((A→ ⊥)→ B)→ A ∨B as a λµT
top term.
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the definitions were correct, I proved small lemmas that check their behaviour. These

serve the same purpose as unit tests do in a traditional software development project.

Below is an example that tests the inductive predicate for typing:

schematic-goal Γ, ∆ `T µ ?T1 : (<0> (λ T : (‘0 ))) : ?T2

by force

Isabelle unifies the variables ?T1 and ?T2 with the type T→T, and proves that the

typing judgement is valid.

The following lemma tests that structural substitution is capture-avoiding for

λ-variables:

lemma (λ T1 : (µ T2 : (<2> (‘2 ))))[(Some 1 )=(Some 2 ) (♦ • (‘0 ))]T

= (λ T1 : (µ T2 : (<3> ((‘2 )°(‘1 )))))

by simp

The free λ-variable 0, from the context (� 0), is incremented by 1 when placed inside a

λ-abstraction: λ : T1 .µ : T2 .[3](2 1).

I proved similar lemmas to test other cases of interest in the definitions of typing

and structural substitution. In addition, I wrote such tests for the logical substitution

function, the lifting functions, the functions that calculate the set of free variables in a

term, and the reduction relation.

Figure 4.3.1 shows a test for the reflexive-transitive closure of the reduction relation.

It proves that the λµT term:

µα : N.[α]S((λf : N→ N.µβ : N.[β](f 0)) (λx : N.µγ : N.[α]x))

reduces in multiple steps to 0. The proof is done using several lemmas, one for each step

in the reduction. This term is given as an example in the original λµT paper [14] to

illustrate the reduction rules for µ-abstractions.

lemma

(µ Nat : (<0> (S

((λ (Nat→Nat) : (µ Nat : (<0> ((‘0 )°Zero))))°

(λ Nat : (µ Nat : (<1> (‘0 ))))))))

→β
∗ Zero

using ex1 ex2 ex3 ex4 ex5 ex6 ex7 step-term by auto

Figure 4.3.1: Unit test for the reduction relation.

4.4 Testing the µML Interpreter

The front-end of the µML interpreter is not verified. As a result, I had to write tests to

check its behaviour, all of which pass successfully. As I added more features to µML, the

suite of tests increased. To manage these, I used the OUnit library [4], which is a unit

test framework for OCaml, similar to JUnit. I automated the tests using a Makefile.

The tests are organised in three categories, each of them covering each piece of µML

syntax:
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"basic syntax" >:: (fun _ -> assert_equal [

"4";

"111";

"(((((x b) f) e) w) g)";

"(x y)";

"bind(a:comm) -> [a].x end";

"nrec:(nat) -> (x, y, z) end";

"fun(x:(nat->comm)) -> x end"]

(test_frontend_ounit (open_in parser_basicsyntax)))

Figure 4.4.1: OUnit test for the parser.

"fun4" >:: (fun _ -> assert_equal

"(Lbd Nat (Lbd Nat (App (Lbd Nat (S (LVar 0))) (LVar 1))))"

(test_translate_ounit (Fun ("x", TNat, (Fun ("y", TNat,

(App ((Fun ("x", TNat, (Suc (Var "x")))), (Var "x"))))))) ));

Figure 4.4.2: OUnit test for the translation between the AST produced

by the parser and the λµT
top AST.

1. Tests for the parser. These check that the lexer and parser work correctly together.

Figure 4.4.1 shows an example. The input µML expressions are read from a file.

They are each transformed into an abstract syntax tree (AST) by the lexer and

parser. Each AST is pretty-printed, and the results compared against the ones

specified in the test.

2. Tests for the translation of the AST produced by the parser to the λµT
top AST ex-

ported from Isabelle. This translation involves replacing variables with de Bruijn

indices. Therefore, I focused on testing function abstractions, µ-abstractions and

case statements because they introduce binders, which need to be handled carefully

(for example: Figure 4.4.2).

3. Tests for the whole interpreter. This is a series of tests that checks that µML

expressions are interpreted correctly. There is a set of such tests for each feature of

the language. Figure 4.4.3 gives a test for booleans. These tests work similarly to

the ones for the parser.

4.5 Performance of the µML Interpreter

Simple arithmetic operations can be encoded in λµT, and therefore in µML, using the

datatype for natural numbers and primitive recursion. These encodings are the standard

ones from System T [41]. I used this kind of operations, namely addition, predecessor

and factorial, to compare the performance of the µML interpreter with the Poly/ML 5.2

interpreter.
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let booleans_tests = "tests for booleans" >:::[

"basic expressions" >::

(fun _ -> assert_equal [

"true : bool\n";

"false : bool\n";

"3 : nat\n";

"false : bool\n";

"7 : nat\n";

"9 : nat\n";

"fun(x:bot)->bind(a:nat)->[abort].x end end : bot->nat\n"]

(process_ounit (open_in evaluation_booleans)))

]

Figure 4.4.3: OUnit test for interpreting expressions involving booleans.

I ran each operation in both interpreters and measured the real time taken by each,

as reported by the Unix time utility. The programs were timed in a VirtualBox run-

ning 64-bit Ubuntu 14.04.1 LTS, on a machine with an Intel i5 1.6 GHz CPU, running

Windows 10 natively.

Addition can be represented in λµT by the term [14]:

+ := λm : N.λn : N.(nrecN n (λx : N.λy : N.Sy) m)

If m is 0, the term m + n reduces to n as expected. Otherwise, if m is of the form Sm′,

it reduces to:

S (nrecN n (λx : N.λy : N.Sy) m′)

Therefore, the term + computes the sum of m and n. Notice that the number of one-step

reductions needed is linear in m. This is because nrec needs to be unfolded m times.

Therefore, the time complexity is O(m).

The corresponding µML expression for addition is:

fun(m:nat)->

fun(n:nat)->

nrec:(nat)->(n, (fun(x:nat)->fun(y:nat)-> suc y end end), m)

end

end

end

In ML, I defined a datatype for natural numbers, and an addition function for it. This

function takes linear time in the size of its first argument, like the µML function does:

datatype nat = Zero

| Suc of nat;

fun add Zero n = n

| add (Suc m) n = Suc (add m n);
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µML Interpreter Poly/ML 5.2

Expression Mean Standard deviation Mean Standard deviation

20 + 5 26.16 3.94 16.93 3.97

40 + 5 118.37 7.48 35.46 6.62

pred 20 16.47 2.66 12.86 3.75

pred 40 88.73 8.59 25.46 6.58

fact 6 879.77 26.61 133.00 16.37

Figure 4.5.1: Time taken to evaluate expressions using the µML interpreter and

Poly/ML 5.2, respectively. The values are given in ms. The run-time for each expression

is averaged over 30 runs, discarding outliers.

I chose to represent addition in ML in this way in order to obtain a meaningful comparison

with µML.

The time taken to compute 20 + 5 and 40 + 5 using these expressions is given in

Figure 4.5.1. The run-time for each expression is averaged over 30 runs, discarding out-

liers, and the standard deviation is calculated. The values are given in ms.

For the operation 20 + 5, the time taken by the two interpreters is of the same order

of magnitude. However, when computing 40 + 5, the time taken by µML more than

quadruples. This should not be the case, taking into consideration the time complexity

of the operation. Instead, the run-time should double, as it does in the case of Poly/ML.

The predecessor operation in λµT, and hence µML, takes constant time. It can be

encoded as:

pred := λm : N.(nrecN 0 (λx : N.λy : N.x) m)

pred Sn→∗ (λx : N.λy : N.x) n (nrecN 0 (λx : N.λy : N.x) n)→∗ n

In ML, a function with the same time complexity is:

fun pred Zero = Zero

| pred (Suc n) = n;

The time taken for the two interpreters to perform pred 20 is comparable, Figure 4.5.1.

For pred 40, ML takes double the time because printing the result using Suc constructors

is linear in the size of the result. The same should be true for µML. However, some

inefficiencies manifest themselves here, as in the case of addition.

Factorial is another operation that is very inefficient in λµT and µML. To define it,

multiplication needs to be defined first [14]:

∗ := λm : N.λn : N.(nrecN 0 (λx : N.λy : N.n+ y) m)

Here, + is the addition operation defined previously. Since each addition, n + y, takes

O(n) time, it means that multiplication takes O(mn) time. Factorial can be defined in

terms of multiplication as follows:

fact := λm : N.(nrecN 1 (λx : N.λy : N.(Sx) ∗ y) m)
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It requires m multiplications, 1 ∗ 2 ∗ 3 ∗ . . . ∗m, which are performed left-to-right. So each

multiplication has the form k ∗ (k − 1)!, and therefore takes O(k!) time. As a result, the

factorial operation takes O(
∑m

k=1 k!) time, which is super-exponential.

In ML, I defined a factorial function with the same time complexity as follows:

fun times Zero n = Zero

| times m Zero = Zero

| times (Suc m) n = add n (times m n);

fun fact Zero = (Suc Zero)

| fact (Suc n) = times (Suc n) (fact n);

Examining Figure 4.5.1, it is clear that computing factorial in this way is not feasible

in general. Even for a small number like 6, the µML run-time is almost 1s.

In conclusion, µML suffers from inefficiencies when performing arithmetic operations.

A possible explanation is that the code generated by Isabelle for the reduction function is

not as efficient as reduction in Poly/ML. This is expected since Poly/ML is a dedicated in-

terpreter, which contains specific optimisations, while the Isabelle code generation facility

is general-purpose, and not targeted towards performance.
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Chapter 5

Conclusion

This chapter briefly reviews the contents of the project and the work completed. It also

outlines some of the possible ways this project can be extended in the future.

5.1 Outcome of the Project

My project concerned the λµT-calculus, an extension of the λ-calculus with con-

trol operators and natural numbers, that is isomorphic to classical logic under the

propositions-as-types correspondence. One of the aims was to formalise λµT in

Isabelle/HOL, using de Bruijn indices, and to prove Type Preservation and Progress,

which has never been done before in an interactive theorem prover.

One of the challenges I faced was learning Isabelle as a complete beginner, sufficiently

well to allow me to implement the project. Another challenge was the use of de Bruijn

notation. This proved more time-consuming than expected. Consequently, if I were to

attempt this project again, I would seriously consider using techniques similar to Nominal

Isabelle [3] instead, in order to deal with α-equivalence. Despite these difficulties, I

managed to complete the λµT formalisation and all the necessary proofs. Moreover, I

extended this formalisation to λµT
top, added a range of new datatypes, and updated all

the proofs to reflect these changes.

A further goal was to define the µML language, based on λµT, and to implement

an interpreter for it in OCaml. To do this, I used Isabelle’s code generation mechanism

to automatically export type-inference and reduction functions to OCaml, from the λµT

formalisation. Later, I moved to using the formalisation of λµT
top with datatypes for this

purpose. This posed some difficulties in the case of the reduction function. It required

experimentation with Isabelle’s function package [21], because of an inefficiency I en-

countered in it, and two additional proofs, not foreseen in the project proposal. These

obstacles were overcome successfully. Although the µML interpreter suffers from some

inefficiencies, it achieves its main purpose, that of proving classical propositions.

Given the work described above, I can conclude that the project was a success. All

the success criteria established in the project proposal have been met, and extensions

implemented.
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5.2 Future Work

Not a great deal of research has been done into the λµT-calculus. Therefore, there is

potential for a lot of interesting future work.

One natural extension to my project would be to prove confluence of the λµT-calculus

in Isabelle. The pen-and-paper proof is outlined in the original presentation of λµT [14].

It would be interesting to extend this proof to λµT
top with booleans, products and sums,

which has not been explored before in the literature. As Geuvers et al. [14] observe, a

long-term goal would be to extend λµT with dependent types, to increase expressivity.

As far as the µML language is concerned, one could add recursion, polymorphism and

let-bindings. This would make it more powerful and bring it closer to ML. Corresponding

changes would need to be made to the underlying calculus.

Such changes would allow µML to be used as a target language for the Isabelle code

generation facility. The underlying logic used in Isabelle/HOL is classical, whereas ML’s

type-system is based on intuitionistic logic. Therefore, more programs could potentially

be extracted to the extended variant of µML mentioned above than to ML. This in-

cludes extracting classical proofs to µML programs, rather than only exporting executable

specifications.
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Appendix A

Isabelle Code

A.1 Type Preservation

theorem type-preservation:
Γ, ∆ `T t : T =⇒ t →β s =⇒ Γ, ∆ `T s : T
Γ, ∆ `C c : Command =⇒
∀ d . (c C→β d −→ Γ, ∆ `C d : Command)

proof(induct arbitrary : s
rule: typing-dBT-typing- dBC .inducts)

fix Γ :: nat ⇒ Types.type and x T ∆ s
assume Γ x = T

LVar x →β s
thus Γ , ∆ `T s : T

by blast
next

fix Γ ∆ s
assume Zero →β s
thus Γ , ∆ `T s : Nat

by blast
next

fix Γ ∆ t s
assume Γ , ∆ `T t : Nat

S t →β s
and IH :

∧
s. t →β s =⇒ Γ , ∆ `T s : Nat

thus Γ , ∆ `T s : Nat
apply(safe)
apply(frule struct-subst-type-command

[where ?∆1 .0 = ∆〈0 :type.Nat〉
and ?∆ = ∆ and ?α = 0
and ?T1 .0 = Nat and ?E = CSuc ♦
and ?U = Nat ])

apply(fastforce)+
done

next
fix Γ ∆ t T1 T2 s sa
assume Γ , ∆ `T t : T1 → T2

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T1 → T2 )
Γ , ∆ `T s : T1
(
∧

sa. s →β sa =⇒ Γ , ∆ `T sa : T1 )
t ° s →β sa

thus Γ , ∆ `T sa : T2
apply(safe)

apply(clarsimp simp add : subst-type)
apply(frule struct-subst-type-command

[where ?∆1 .0 = ∆〈0 :T1 → T2 〉
and ?∆ = ∆ and ?α = 0
and ?T1 .0 = T1 → T2 and ?E = ♦ • s
and ?U = T2 ])

apply(fastforce)+
done

next
fix Γ T1 ∆ t T2 s
assume Γ〈0 :T1 〉 , ∆ `T t : T2

(
∧

s. t →β s =⇒ Γ〈0 :T1 〉 , ∆ `T s : T2 )
(λ T1 : t) →β s

thus Γ , ∆ `T s : T1 → T2
by (auto simp add : subst-type)

next
fix Γ ∆ r T s t sa
assume Γ , ∆ `T r : T

(
∧

s. r →β s =⇒ Γ , ∆ `T s : T )
Γ , ∆ `T s : Nat → T → T
(
∧

sa. s →β sa =⇒
Γ , ∆ `T sa : Nat → T → T )

Γ , ∆ `T t : Nat
(
∧

s. t →β s =⇒ Γ , ∆ `T s : Nat)
Nrec T r s t →β sa

thus Γ , ∆ `T sa : T
apply(safe)
apply(fastforce)+
apply(frule struct-subst-type-command

[where ?∆1 .0 = ∆〈0 :Nat〉 and ?∆ = ∆
and ?α = 0 and ?T1 .0 = Nat
and ?E = CNrec T r s ♦ and ?U = T ])

apply(fastforce)+
done

next
fix Γ ∆ T c s
assume Γ , ∆〈0 :T 〉 `C c : Command

∀ d . c C→β d −→
Γ , ∆〈0 :T 〉 `C d : Command
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(µ T : c) →β s
thus Γ , ∆ `T s : T

apply(safe)
apply(fastforce simp add : dropM-type(1 ))
apply(clarsimp)

done
next

fix Γ ∆ t T x
assume Γ , ∆ `T t : T

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T )
∆ x = T

thus ∀ d . <x> t C→β d −→
Γ , ∆ `C d : Command

apply(safe)
apply(rule dropM-env(2 )

[where ?∆1 .0 = ∆〈x :∆ x 〉])
apply(drule struct-subst-type-command

[where ?∆1 .0 = ∆〈0 :∆ x 〉 and ?∆ = ∆
and ?α = 0 and ?T1 .0 = ∆ x
and ?E = ♦ and ?U = ∆ x ])

apply(fastforce)+
done

next
fix Γ ∆ t
assume Γ , ∆ `T t : ⊥

(
∧

s. t →β s =⇒ Γ , ∆ `T s : ⊥)
thus ∀ d . <>> t C→β d −→

Γ , ∆ `C d : Command
apply(safe)
apply(clarsimp

simp add : struct-subst-type-top)+
done

next
fix Γ ∆ s
assume dBT .True →β s
thus Γ , ∆ `T s : Bool

by(clarsimp)
next

fix Γ ∆ s
assume dBT .False →β s
thus Γ , ∆ `T s : Bool

by(clarsimp)
next

fix Γ ∆ t1 t2 T t3 s
assume Γ , ∆ `T t1 : Bool

(
∧

s. t1 →β s =⇒ Γ , ∆ `T s : Bool)
Γ , ∆ `T t2 : T
(
∧

s. t2 →β s =⇒ Γ , ∆ `T s : T )
Γ , ∆ `T t3 : T
(
∧

s. t3 →β s =⇒ Γ , ∆ `T s : T )
(If T t1 Then t2 Else t3 ) →β s

thus Γ , ∆ `T s : T
apply −
apply(erule beta-cases)
apply(fastforce)+
apply(clarsimp)
apply(frule struct-subst-type-command

[where ?∆ = ∆ and ?E = CIf T ♦ t2 t3

and ?U = T and ?T1 .0 =Bool
and ?α = 0 and ?β = 0 ])

apply(fastforce)+
done

next
fix Γ ∆ t1 T1 t2 T2 s
assume Γ , ∆ `T t1 : T1

(
∧

s. t1 →β s =⇒ Γ , ∆ `T s : T1 )
Γ , ∆ `T t2 : T2
(
∧

s. t2 →β s =⇒ Γ , ∆ `T s : T2 )
((|t1 ,t2 |):(T1×tT2 )) →β s

thus Γ , ∆ `T s : T1 ×t T2
apply −
apply(erule beta-cases)
apply(fastforce)+
apply(clarsimp)
apply(frule struct-subst-type-command

[where ?∆ = ∆
and ?E = (|♦, t2 |)l:(T1 ×t T2 )
and ?U = T1 ×t T2
and ?T1 .0 =T1 and ?α = 0
and ?β = 0 ])

apply(fastforce)+
apply(clarsimp)
apply(frule struct-subst-type-command

[where ?∆ = ∆
and ?E = (|t1 , ♦|)r:(T1×t T2 )
and ?U = T1 ×t T2
and ?T1 .0 =T2 and ?α = 0
and ?β =0 ])

apply(fastforce)+
done

next
fix Γ ∆ t T1 T2 s
assume Γ , ∆ `T t : T1 ×t T2

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T1 ×t T2 )
(π1 t) →β s

thus Γ , ∆ `T s : T1
apply(safe)
apply(fastforce)
apply(frule struct-subst-type-command

[where ?∆ = ∆ and ?E = Π1♦
and ?U = T1 and ?T1 .0 =T1 ×t T2
and ?α = 0 and ?β = 0 ])

apply(fastforce)+
done

next
fix Γ ∆ t T1 T2 s
assume Γ , ∆ `T t : T1 ×t T2

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T1 ×t T2 )
(π2 t) →β s

thus Γ , ∆ `T s : T2
apply(safe)
apply(fastforce)
apply(frule struct-subst-type-command

[where ?∆ = ∆ and ?E = Π2♦
and ?U = T2 and ?T1 .0 =T1 ×t T2
and ?α = 0 and ?β = 0 ])
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apply(fastforce)+
done

next
fix Γ ∆ t T1 T2 s
assume Γ , ∆ `T t : T1

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T1 )
Inl (T1 +t T2 ) t →β s

thus Γ , ∆ `T s : T1 +t T2
apply −
apply(erule beta-cases)
apply(fastforce)
apply(clarsimp)
apply(drule struct-subst-type-command

[where ?∆ = ∆
and ?E = CInl (T1 +t T2 ) ♦
and ?U = T1 +tT2 and ?T1 .0 = T1
and ?α = 0 and ?β = 0 ])

apply(fastforce)+
done

next
fix Γ ∆ t T1 T2 s
assume Γ , ∆ `T t : T2

(
∧

s. t →β s =⇒ Γ , ∆ `T s : T2 )
Inr (T1 +t T2 ) t →β s

thus Γ , ∆ `T s : T1 +t T2
apply −
apply(erule beta-cases)
apply(fastforce)
apply(clarsimp)
apply(drule struct-subst-type-command

[where ?∆ = ∆
and ?E = CInr (T1 +t T2 ) ♦

and ?U = T1 +tT2 and ?T1 .0 = T2
and ?α = 0 and ?β = 0 ])

apply(fastforce)+
done

next
fix Γ ∆ t0 T1 T2 t1 T t2 s
assume Γ , ∆ `T t0 : T1 +t T2

(
∧

s. t0 →β s =⇒ Γ , ∆ `T s : T1 +t T2 )
Γ〈0 :T1 〉 , ∆ `T t1 : T
(
∧

s. t1 →β s =⇒ Γ〈0 :T1 〉 , ∆ `T s : T )
Γ〈0 :T2 〉 , ∆ `T t2 : T
(
∧

s. t2 →β s =⇒ Γ〈0 :T2 〉 , ∆ `T s : T )
thus (Case T t0 Of Inl⇒ t1 |Inr⇒ t2 ) →β s

=⇒ Γ , ∆ `T s : T
apply −
apply(erule beta-cases)
apply(fastforce simp add : subst-type)+
apply(clarsimp)
apply(drule struct-subst-type-command

[where ?∆ = ∆ and ?U = T
and ?T1 .0 = T1 +t T2
and ?E = CCase T ♦ Of CInl⇒ t1 |

CInr⇒t2
and ?β = 0 ])

apply(fastforce)
apply(rule refl)
apply(fastforce)

done
qed

A.2 Progress

lemma normal-forms:
Γ, ∆ `T t : T =⇒ flv-dBT t 0 = {} =⇒ (∀ s. ¬(t →β s)) =⇒

(is-val t) ∨ (∃ U β v . t = (µ U : (<β> v)) ∧ (is-val v))
∨ (∃ U v . t = (µ U : (<>> v)) ∧ (is-val v))

Γ, ∆ `C c : T =⇒ flv-dBC c 0 = {} =⇒ (∀ β t . c = (<β> t) −→ (∀ d . ¬(t →β d)) −→
((is-val t) ∨ (∃ U γ v . t = (µ U : (<γ> v)) ∧ (is-val v))
∨ (∃ U v . t = (µ U : (<>> v)) ∧ (is-val v))))

∧ (∀ t . c = (<>> t) −→ (∀ d . ¬(t →β d)) −→
((is-val t) ∨ (∃ U γ v . t = (µ U : (<γ> v)) ∧ (is-val v))
∨ (∃ U v . t = (µ U : (<>> v)) ∧ (is-val v))))

proof(induct rule: typing-dBT-typing-dBC .inducts)
fix Γ x T ∆
assume flv-dBT (‘x ) 0 = {}

∀ s. (¬ (‘x ) →β s)
thus is-val (‘x ) ∨ (∃U β v . ‘x = (µ U : (<β> v)) ∧ is-val v)
∨ (∃U v . ‘x = (µ U :(<>> v)) ∧ is-val v)

by(clarsimp)
next

fix Γ ∆
assume flv-dBT Zero 0 = {}

∀ s. ¬ Zero →β s
thus is-val Zero ∨ (∃U β v . Zero = (µ U : (<β> v)) ∧ is-val v)
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∨ (∃U v . Zero = (µ U :(<>> v)) ∧ is-val v)
by(clarsimp)

next
fix Γ ∆ t
assume Γ , ∆ `T t : Nat

(flv-dBT t 0 = {} =⇒ ∀ s. (¬ t →β s) =⇒
(is-val t) ∨ (∃U β v . t = (µ U : (<β> v)) ∧ is-val v)
∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (S t) 0 = {}
∀ s. ¬ S t →β s

thus is-val (S t) ∨ (∃U β v . S t = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . S t = (µ U :(<>> v)) ∧ is-val v)

by(fastforce)
next

fix Γ ∆ t T1 T2 s
assume Γ , ∆ `T t : T1 → T2

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

Γ , ∆ `T s : T1
(flv-dBT s 0 = {} =⇒ ∀ sa. ¬ s →β sa =⇒
is-val s ∨ (∃U β v . s = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . s = (µ U :(<>> v)) ∧ is-val v))
flv-dBT (t ° s) 0 = {}
∀ sa. ¬ t ° s →β sa

thus is-val (t ° s) ∨ (∃U β v . t ° s = (µ U : (<β> v)) ∧ is-val v)
∨ (∃U v . t ° s = (µ U :(<>> v)) ∧ is-val v)

apply(clarsimp)
apply(subgoal-tac ∀ s. ¬ t →β s)
apply(clarsimp)
apply(rule disjE [where ?P = is-val t and ?Q = (∃U β v . t = (µ U : (<β> v)) ∧ is-val v)])
apply(fastforce)
apply(drule typed-values [where ?Γ = Γ and ?∆ = ∆ and ?T = T1→T2 and ?T1 .0 = T1

and ?T2 .0 = T2 ])
apply(fastforce)+

done
next

fix Γ T1 ∆ t T2
assume Γ〈0 :T1 〉 , ∆ `T t : T2

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (λ T1 :t) 0 = {}
∀ s. ¬ (λ T1 :t) →β s

thus is-val (λ T1 :t) ∨ (∃U β v . (λ T1 :t) = (µ U : (<β> v)) ∧ is-val v)
∨ (∃U v . λT1 :t = (µ U :(<>> v)) ∧ is-val v)

by(fastforce)
next

fix Γ ∆ r T s t
assume Γ , ∆ `T r : T

(flv-dBT r 0 = {} =⇒ ∀ s. ¬ r →β s =⇒
is-val r ∨ (∃U β v . r = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . r = (µ U :(<>> v)) ∧ is-val v))
Γ , ∆ `T s : Nat → T → T
(flv-dBT s 0 = {} =⇒ ∀ sa. ¬ s →β sa =⇒
is-val s ∨ (∃U β v . s = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . s = (µ U :(<>> v)) ∧ is-val v))
Γ , ∆ `T t : Nat
(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))
flv-dBT (Nrec T r s t) 0 = {}
∀ sa. ¬ Nrec T r s t →β sa

thus is-val (Nrec T r s t) ∨ (∃U β v . Nrec T r s t = (µ U : (<β> v)) ∧ is-val v)
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∨ (∃U v . Nrec T r s t = (µ U :(<>> v)) ∧ is-val v)
apply(clarsimp)
apply(subgoal-tac ∀ s. ¬ t →β s)
apply(clarsimp)
apply(rule disjE [where ?P = is-val t and ?Q = (∃U β v . t = (µ U : (<β> v)) ∧ is-val v)])
apply(fastforce)
apply(drule typed-values [where ?Γ = Γ and ?∆ = ∆ and ?T = Nat and ?T1 .0 = T1

and ?T2 .0 = T2 ])
apply(fastforce)
apply(fastforce)
apply(clarsimp)
apply(rule disjE [where ?P = t = Zero and ?Q = (∃ v1 . t = S v1 ∧ is-natval v1 )])
apply(blast)+

done
next

fix Γ ∆ T c
assume Γ , ∆〈0 :T 〉 `C c : Command

(flv-dBC c 0 = {} =⇒ (∀β t . c = (<β> t) −→ (∀ d . ¬ t →β d)
−→ (is-val t ∨ (∃U γ v . t = (µ U : (<γ> v)) ∧ is-val v)
∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v)))
∧ (∀ t . c = <>> t −→ (∀ d . ¬ t →β d)

−→ is-val t ∨ (∃U γ v . t = (µ U :(<γ> v)) ∧ is-val v)
∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v)))

flv-dBT (µ T :c) 0 = {}
∀ s. ¬ (µ T :c) →β s

thus is-val (µ T :c) ∨ (∃U β v . (µ T :c) = (µ U : (<β> v)) ∧ is-val v)
∨ (∃U v . µ T :c = (µ U :(<>> v)) ∧ is-val v)

apply(clarsimp)
apply(cases c)
apply(fastforce)+

done
next

fix Γ ∆ t T x
assume Γ , ∆ `T t : T

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U : (<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))
∆ x = T
flv-dBC (<x> t) 0 = {}

thus (∀β ta. <x> t = <β> ta −→ (∀ d . ¬ ta →β d)
−→ is-val ta ∨ (∃U γ v . ta = (µ U : (<γ> v)) ∧ is-val v)
∨ (∃U v . ta = (µ U :(<>> v)) ∧ is-val v)) ∧

(∀ ta. <x> t = <>> ta −→ (∀ d . ¬ ta →β d)
−→ is-val ta ∨ (∃U γ v . ta = (µ U :(<γ> v)) ∧ is-val v)
∨ (∃U v . ta = (µ U :(<>> v)) ∧ is-val v))

by(clarsimp)
next

fix Γ ∆ t
assume Γ , ∆ `T t : ⊥

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

flv-dBC (<>> t) 0 = {}
thus (∀β ta. <>> t = <β> ta −→ (∀ d . ¬ ta →β d) −→

is-val ta ∨ (∃U γ v . ta = (µ U :(<γ> v)) ∧ is-val v)
∨ (∃U v . ta = (µ U :(<>> v)) ∧ is-val v)) ∧

(∀ ta. <>> t = <>> ta −→ (∀ d . ¬ ta →β d) −→
is-val ta ∨ (∃U γ v . ta = (µ U :(<γ> v)) ∧ is-val v) ∨ (∃U v . ta = (µ U :(<>> v)) ∧ is-val v))

by(clarsimp)
next
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fix Γ ∆
assume flv-dBT True 0 = {}

∀ s. ¬ True →β s
thus is-val True ∨ (∃U β v . True = (µ U :(<β> v)) ∧ is-val v)

∨ (∃U v . True = (µ U :(<>> v)) ∧ is-val v)
by(clarsimp)

next
fix Γ ∆
assume flv-dBT False 0 = {}

∀ s. ¬ False →β s
thus is-val False ∨ (∃U β v . False = (µ U :(<β> v)) ∧ is-val v)

∨ (∃U v . False = (µ U :(<>> v)) ∧ is-val v)
by(clarsimp)

next
fix Γ ∆ t1 t2 T t3
assume Γ , ∆ `T t1 : Bool

(flv-dBT t1 0 = {} =⇒ ∀ s. ¬ t1 →β s =⇒ is-val t1
∨ (∃U β v . t1 = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t1 = (µ U :(<>> v)) ∧ is-val v))

Γ , ∆ `T t2 : T
(flv-dBT t2 0 = {} =⇒ ∀ s. ¬ t2 →β s =⇒ is-val t2
∨ (∃U β v . t2 = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t2 = (µ U :(<>> v)) ∧ is-val v))

Γ , ∆ `T t3 : T
(flv-dBT t3 0 = {} =⇒ ∀ s. ¬ t3 →β s =⇒ is-val t3
∨ (∃U β v . t3 = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t3 = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (If T t1 Then t2 Else t3 ) 0 = {}
∀ s. ¬ (If T t1 Then t2 Else t3 ) →β s

thus is-val (If T t1 Then t2 Else t3 )
∨ (∃U β v . (If T t1 Then t2 Else t3 ) = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . (If T t1 Then t2 Else t3 ) = (µ U : (<>> v)) ∧ is-val v)

apply(clarsimp)
apply(subgoal-tac ∀ s. ¬t1→β s)
apply(clarsimp)
apply(rule disjE )
apply(assumption)

apply(cases t1 rule: is-val .cases)
apply(clarsimp)
apply(blast)+

done
next

fix Γ ∆ t1 T1 t2 T2
assume Γ , ∆ `T t1 : T1

(flv-dBT t1 0 = {} =⇒ ∀ s. ¬ t1 →β s =⇒
is-val t1 ∨ (∃U β v . t1 = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . t1 = (µ U :(<>> v)) ∧ is-val v))

Γ , ∆ `T t2 : T2
(flv-dBT t2 0 = {} =⇒ ∀ s. ¬ t2 →β s =⇒
is-val t2 ∨ (∃U β v . t2 = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . t2 = (µ U :(<>> v)) ∧ is-val v))

flv-dBT ((|t1 ,t2 |):(T1 ×t T2 )) 0 = {}
∀ s. ¬ ((|t1 ,t2 |):(T1 ×t T2 )) →β s

thus is-val ((|t1 ,t2 |):(T1 ×t T2 )) ∨ (∃U β v . ((|t1 ,t2 |):(T1 ×t T2 )) = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . ((|t1 ,t2 |):(T1 ×t T2 )) = (µ U :(<>> v)) ∧ is-val v)

by(fastforce)
next

fix Γ ∆ t T1 T2
assume Γ , ∆ `T t : T1 ×t T2

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
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is-val t ∨ (∃U β v . t = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))
flv-dBT (π1 t) 0 = {}
∀ s. ¬ (π1 t) →β s

thus is-val (π1 t) ∨ (∃U β v . (π1 t) = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . (π1 t) = (µ U :(<>> v)) ∧ is-val v)

apply(clarsimp)
apply(subgoal-tac ∀ s. ¬ t →β s)
apply(clarsimp)
apply(rule disjE )
apply(assumption)
apply(cases t rule: is-val .cases)
apply(fastforce)+

done
next

fix Γ ∆ t T1 T2
assume Γ , ∆ `T t : T1 ×t T2

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (π2 t) 0 = {}
∀ s. ¬ (π2 t) →β s

thus is-val (π2 t) ∨ (∃U β v . (π2 t) = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . (π2 t) = (µ U :(<>> v)) ∧ is-val v)

apply(clarsimp)
apply(subgoal-tac ∀ s. ¬ t →β s)
apply(clarsimp)
apply(rule disjE )
apply(assumption)
apply(cases t rule: is-val .cases)
apply(fastforce)+

done
next

fix Γ ∆ t T1 T2
assume Γ , ∆ `T t : T1

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (Inl (T1 +t T2 ) t) 0 = {}
∀ s. ¬ Inl (T1 +t T2 ) t →β s

thus is-val (Inl (T1 +t T2 ) t) ∨
(∃U β v . Inl (T1 +t T2 ) t = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . Inl (T1 +t T2 ) t = (µ U :(<>> v)) ∧ is-val v)

by(fastforce)
next

fix Γ ∆ t T1 T2
assume Γ , ∆ `T t : T2

(flv-dBT t 0 = {} =⇒ ∀ s. ¬ t →β s =⇒
is-val t ∨ (∃U β v . t = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (Inr (T1 +t T2 ) t) 0 = {}
∀ s. ¬ Inr (T1 +t T2 ) t →β s

thus is-val (Inr (T1 +t T2 ) t) ∨
(∃U β v . Inr (T1 +t T2 ) t = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . Inr (T1 +t T2 ) t = (µ U :(<>> v)) ∧ is-val v)

by(fastforce)
next

fix Γ ∆ t0 T1 T2 t1 T t2
assume Γ , ∆ `T t0 : T1 +t T2

(flv-dBT t0 0 = {} =⇒ ∀ s. ¬ t0 →β s =⇒ is-val t0 ∨ (∃U β v . t0 = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . t0 = (µ U :(<>> v)) ∧ is-val v))

Γ〈0 :T1 〉 , ∆ `T t1 : T
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(flv-dBT t1 0 = {} =⇒ ∀ s. ¬ t1 →β s =⇒ is-val t1
∨ (∃U β v . t1 = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t1 = (µ U :(<>> v)) ∧ is-val v))

Γ〈0 :T2 〉 , ∆ `T t2 : T
(flv-dBT t2 0 = {} =⇒ ∀ s. ¬ t2 →β s =⇒ is-val t2
∨ (∃U β v . t2 = (µ U :(<β> v)) ∧ is-val v) ∨ (∃U v . t2 = (µ U :(<>> v)) ∧ is-val v))

flv-dBT (Case T t0 Of Inl⇒ t1 |Inr⇒ t2 ) 0 = {}
∀ s. ¬ (Case T t0 Of Inl⇒ t1 |Inr⇒ t2 ) →β s

thus is-val (Case T t0 Of Inl⇒ t1 |Inr⇒ t2 ) ∨
(∃U β v . (Case T t0 Of Inl⇒ t1 |Inr⇒ t2 ) = (µ U :(<β> v)) ∧ is-val v)
∨ (∃U v . (Case T t0 Of Inl⇒ t1 |Inr⇒ t2 ) = (µ U :(<>> v)) ∧ is-val v)

apply(clarsimp)
apply(subgoal-tac ∀ s. ¬ t0 →β s)
apply(clarsimp)
apply(rule disjE )
apply(assumption)
apply(cases rule: is-val .cases)
apply(blast)+

done
qed

theorem progress-closed :
Γ, ∆ `T t : T =⇒ flv-dBT t 0 = {} =⇒

((is-val t) ∨ (∃ U β v . t = (µ U : (<β> v)) ∧ (is-val v)) ∨
(∃ U v . t = (µ U : (<>> v)) ∧ (is-val v))) ∨
(∃ s. t →β s)

apply(rule disjCI )
apply(rule normal-forms)
apply(fastforce)+

done

A.3 Isabelle Definition of the Reduction Function

Used in the Interpreter

function red-term :: dBT ⇒ dBT option
and red-command :: dBC ⇒ dBC option
where

red-app: red-term (s°t)
= (case s of

(λ T :r) ⇒ Some (r [t/0 ]T )
|(µ (T1→T2 ) : c) ⇒

Some (µ T2 : (c[(Some 0 ) = (Some 0 ) (♦ • (liftM-dBT t 0 ))]C))
| - => (case (red-term s) of

Some u ⇒ Some (u°t)
|None ⇒ (case (red-term t) of

Some u ⇒ Some (s°u)
|None ⇒ None)))

| red-lambda: red-term (λ T : s)
= (case (red-term s) of

Some u ⇒ Some (λ T : u)
|None ⇒ None)

| red-suc: red-term (S t)
= (case t of

(µ T : c) ⇒ Some (µ T : (c[(Some 0 ) = (Some 0 ) (CSuc ♦)]C))
| - ⇒ (case (red-term t) of

Some u ⇒ Some (S u)
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|None ⇒ None))

| red-mu: red-term (µ T : c)
= (case c of

(<0> t) ⇒ (if (0 /∈ (fmv-dBT t 0 )) then Some (dropM-dBT t 0 )
else (case (red-command (<0> t)) of

Some d ⇒ Some (µ T : d)
|None ⇒ None))

| - ⇒ (case (red-command c) of
Some d ⇒ Some (µ T : d)
|None ⇒ None))

| red-mVar : red-command (<i> t)
= (case t of

(µ T : c) ⇒ Some (dropM-dBC (c[(Some 0 ) = (Some i) ♦]C) i)
| - ⇒ (case (red-term t) of

Some u ⇒ Some (<i> u)
|None ⇒ None))

| red-nrec: red-term (Nrec T r s t)
= (case t of

Zero ⇒ Some r
|(S n) ⇒ (if is-natval n then Some (s°n°(Nrec T r s n))

else (case red-term (S n) of
Some u ⇒ Some (Nrec T r s u)
|None ⇒(case (red-term r) of

Some u ⇒ Some (Nrec T u s (S n))
|None ⇒ (case (red-term s) of

Some u ⇒ Some (Nrec T r u (S n))
|None ⇒ None))))

|(µ T1 : c) ⇒ Some (µ T : (c[(Some 0 ) =
(Some 0 ) (CNrec T (liftM-dBT r 0 ) (liftM-dBT s 0 ) ♦)]C))

| - ⇒ (case (red-term r) of
Some u ⇒ Some (Nrec T u s t)
|None ⇒ (case (red-term s) of

Some u ⇒ Some (Nrec T r u t)
|None ⇒ (case (red-term t) of

Some u ⇒ Some (Nrec T r s u)
|None ⇒ None))))

| red-top: red-command (<>> t)
= (case t of

(µ T : c) ⇒ Some (dropM-dBC (c[(Some 0 ) = None ♦]C) 0 )
| - ⇒ (case (red-term t) of

Some u ⇒ Some (<>> u)
|None ⇒ None))

| red-if : red-term (If T t1 Then t2 Else t3 )
= (case t1 of

True ⇒ Some t2
|False ⇒ Some t3
|(µ U : c) ⇒ Some µ T :(c[(Some 0 ) =

(Some 0 ) (CIf T ♦ (liftM-dBT t2 0 ) (liftM-dBT t3 0 ))]C)
| - ⇒ (case red-term t1 of

Some s1 ⇒ Some (If T s1 Then t2 Else t3 )
|None ⇒ None))

| red-proj1 : red-term (π1 t)
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= (case t of
(|t1 , t2 |):T ⇒ Some t1
|(µ T1×tT2 : c) ⇒ Some µ T1 :(c[(Some 0 ) = (Some 0 ) (Π1 ♦)]C)
| - ⇒ (case red-term t of

Some s ⇒ Some (π1 s)
|None ⇒ None))

| red-proj2 : red-term (π2 t)
= (case t of

(|t1 , t2 |):T ⇒ Some t2
|(µ T1×tT2 : c) ⇒ Some µ T2 :(c[(Some 0 ) = (Some 0 ) (Π2 ♦)]C)
| - ⇒ (case red-term t of

Some s ⇒ Some (π2 s)
|None ⇒ None))

| red-pair : (red-term (|t1 , t2 |):T )
= (case t1 of

µ T1 : c ⇒ Some µ T :(c[(Some 0 ) =
(Some 0 ) (|♦, (liftM-dBT t2 0 )|)l:T ]C)

| - ⇒ (case t2 of
µ T2 : c ⇒ Some µ T :(c[(Some 0 ) =

(Some 0 ) (|(liftM-dBT t1 0 ), ♦|)r:T ]C)
| - ⇒ (case red-term t1 of

Some s1 ⇒ Some (|s1 , t2 |):T
|None ⇒ (case red-term t2 of

Some s2 ⇒ Some (|t1 , s2 |):T
|None ⇒ None))))

| red-case: red-term (Case U t Of Inl⇒ t1 |Inr⇒ t2 )
= (case t of

(Inl T s) ⇒ Some (t1 [s/0 ]T )
|(Inr T s) ⇒ Some (t2 [s/0 ]T )
|(µ T : c) ⇒ Some µ U :(c[(Some 0 ) = (Some 0 )

(CCase U ♦ Of CInl⇒ (liftM-dBT t1 0 )|CInr⇒ (liftM-dBT t2 0 ))]C)
| - ⇒ (case red-term t of

Some u ⇒ Some (Case U u Of Inl⇒ t1 |Inr⇒ t2 )
|None ⇒ None))

| red-inl : red-term (Inl T s)
= (case s of

µ U : c ⇒ Some µ T :(c[(Some 0 ) = (Some 0 ) (CInl T ♦)]C)
| - ⇒ (case red-term s of

Some u ⇒ Some (Inl T u)
|None ⇒ None))

| red-inr : red-term (Inr T s)
= (case s of

µ U : c ⇒ Some µ T :(c[(Some 0 ) = (Some 0 ) (CInr T ♦)]C)
| - ⇒ (case red-term s of

Some u ⇒ Some (Inr T u)
|None ⇒ None))

| red-term-lvar : red-term (‘x ) = None
| red-term-zero: red-term Zero = None
| red-term-true: red-term True = None
| red-term-false: red-term False = None

by pat-completeness auto
termination by lexicographic-order
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Introduction

The Curry-Howard correspondence [1] is a result from programming language theory

which relates types from the typed λ-calculus to propositions in intuitionistic logic. The

λµ-calculus is a calculus whose types correspond to propositions in classical logic in the

same way. This calculus was introduced by M. Parigot in [2], and builds on the work

of T. Griffin, who was the first to notice, in [3], the correspondence between constructs

specific to classical logic and control operators in programming languages. Apart from the

terms in the λ-calculus, the λµ-calculus has µ-variables that can name any subterm of a

λ-term. The λµT-calculus, which forms the basis of this project, was introduced in [4]. It

is an extension of the λµ-calculus containing in addition a datatype for natural numbers

based on Gödel’s T. This is an attempt to produce a calculus that has both control

operators and datatypes, and therefore bears a stronger resemblance to a programming

language.

My project aims to derive a language from the λµT-calculus, then implement an

interpreter for this language. The next step is to formally prove metatheoretical properties

of the language, such as type preservation and type progress, that are described in [4],

using the proof assistant Isabelle. Two important parts of the interpreter, the type-checker

79
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and the evaluator, are to be implemented first in Isabelle, then exported to OCaml, where

they can be executed. The reason for formalising them in Isabelle is that properties of

the language can then be proved mechanically. The lexer, parser and pretty-printer for

the interpreter will be implemented in OCaml, which is why the Isabelle implementation

will be exported to OCaml code.

Starting point

To the best of my knowledge, there is no previous implementation of a language derived

directly from the λµT-calculus, neither a formalisation of its properties that are described

in [4].

In preparation for this project, I have read the paper [4] to familiarise myself with the

λµT-calculus. Also, I have consulted papers [2, 3] to gain a better understanding of the

λµ-calculus and what is meant by its correspondence to classical logic.

Prior to arranging this project, I had no experience working with proof assistants.

When it became apparent that I was going to use Isabelle, I started working through the

examples and exercises in the tutorial Programming and Proving in Isabelle/HOL, which

constitutes the first part of the book [5]. My current knowledge of OCaml is limited to

the exposure I had to it through the Part IB Compiler Construction course.

Resources required

The software that this project requires, such as Isabelle and the OCaml compiler, is

open-source. I plan to use my own computer for working on the project. Its specifications

are: Intel i5 1.6 GHz CPU, 8 GB RAM, 128 GB SSD disk, running Windows 10. I

accept full responsibility for this machine and I have made contingency plans to protect

myself against hardware and/or software failure. My contingency plan includes storing

all my code and other documents in a Git repository hosted on Bitbucket, as well as on

Google Drive (with automatic backups), and making weekly checkpoints of the work on an

external SSD drive that I own. Should my computer fail, I will be able to easily transfer

my work to one of the MCS machines. I do not require any other special resources.

Work to be done

The aim of the project is to produce a verified interpreter for a language based on the

λµT-calculus, and prove properties of this language. Therefore, the project will have the

following components:

1. Learning Isabelle well enough to write the automated proofs necessary for this

project. I am going to do this by continuing to read [5], and doing any other tuto-

rials that might be useful. At the same time, I need to become more comfortable

using OCaml.
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2. Defining a programming language derived from the λµT-calculus. My starting point

for this is the paper [4], where the calculus is defined. I will attempt to adapt the

definition of the reduction rules given here to ones that do not use contexts, as this

would make the implementation of the evaluation function more straightforward.

3. Formalising the λµT-calculus in Isabelle. For this, I will use the De Bruijn index

notation to represent bound variables.

4. Writing an interpreter for my language. This includes: exporting the type-checker

and evaluator from Isabelle to OCaml using Isabelle’s code generation feature [6];

writing a lexer and parser in OCaml, using OCamllex and Menhir respectively;

writing a pretty printer; putting all these components together.

5. Proving type preservation for my programming language in Isabelle.

6. Proving type progress.

Success criteria

Whether the following goals have been achieved can be used as an indicator for the success

of the project:

1. Become familiar enough with using OCaml and writing proofs in Isabelle so as to

be able to complete the rest of the project.

2. Define a language based on the λµT-calculus.

3. Formalise the λµT-calculus in Isabelle.

4. Generate OCaml code for the type-checker and evaluator based on this formalisation.

5. Write a lexer, parser, and pretty-printer in OCaml. Use these components, and the

code generated by Isabelle, to create an interpreter for my language.

6. Prove type preservation for my language in Isabelle.

7. Prove type progress for my language in Isabelle.

Possible extensions

Should the time allow, possible extensions of the project include:

1. Proving more properties of the language in Isabelle, such as confluence.

2. Proving some results that are true in classical logic but not in intuitionistic logic,

such as Euclid’s proof of the infinitude of primes. This can be done by writing a

program in my language that type-checks, and whose result type corresponds to the

statement of the theorem. The ease with which such proofs can be written can serve

as an evaluation metric.
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3. Implementing a type inference algorithm for my language.

4. Extending the calculus with more datatypes so that the properties proved previously

still hold. This should be accompanied by proofs in Isabelle that these properties

are preserved. Then, the interpreter can be extended to include the new datatypes.

The motivation for this extension is to make the calculus more similar to a real

programming language.

Timetable

The planned starting date is 21/10/2016.

Michaelmas term

1. Weeks 3–4: Learn to use Isabelle well enough to do the automated proofs required

by the project. Familiarise myself more with OCaml. Read any other papers that

might be useful apart from the ones I have already read.

Milestone: Be able to use Isabelle and OCaml at a satisfactory level, and

have the required theoretical background for the project.

2. Weeks 5–6: Design a language based on the λµT-calculus and formalise the

calculus in Isabelle. Then export the code to OCaml.

Milestone: Have the type-checker and evaluator working in OCaml.

3. Weeks 7–8: Implement the other components of the interpreter in OCaml: lexer,

parser, pretty-printer. Glue all the components together.

Milestone: Have a working interpreter.

4. Christmas vacation: Solve any issues with the interpreter. Do more research

into the methods for proving type preservation and start this proof for my language

in Isabelle.

Milestone: The interpreter is finished. The proof of type preservation is

underway.

Lent term

5. Weeks 1–2: Write the progress report and prepare the presentation. Finish the

type preservation proof. Start the proof of type progress.

Milestone: The type preservation proof is finished.
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6. Weeks 3–5: Do the type progress proof in Isabelle.

Milestone: The type progress proof is finished.

7. Weeks 6–8: Work on the evaluation of the project. Start any extensions if there

is time.

Milestone: Have the evaluation data.

8. Easter vacation: Write the main chapters of the dissertation. At this point, I

hope to reuse material that I have written in the course of the project. Continue

implementing some of the extensions if there is time.

Milestone: The dissertation is entirely written.

Easter term

9. Weeks 1–2: Improve the dissertation where necessary.

Milestone: The dissertation is in its final form.

10. Week 3: Proof read the dissertation and submit it early.

Milestone: The dissertation and code are submitted.
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