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Abstract

In this paper we investigate multi-task learning in the context of Gaussian Pro-
cesses (GP). We propose a model that learns a shared covariance function on
input-dependent features and a “free-form” covariance matrix over tasks. This al-
lows for good flexibility when modelling inter-task dependencies while avoiding
the need for large amounts of data for training. We show that under the assump-
tion of noise-free observations and a block design, predictions for a given task
only depend on its target values and therefore a cancellation of inter-task trans-
fer occurs. We evaluate the benefits of our model on two practical applications:
a compiler performance prediction problem and an exam score prediction task.
Additionally, we make use of GP approximations and properties of our model in
order to provide scalability to large data sets.

1 Introduction

Multi-task learning is an area of active research in machine learning and has received a lot of at-
tention over the past few years. A common set up is that there are multiple related tasks for which
we want to avoid tabula rasa learning by sharing information across the different tasks. The hope is
that by learning these tasks simultaneously one can improve performance over the “no transfer” case
(i.e. when each task is learnt in isolation). However, as pointed out in [1] and supported empirically
by [2], assuming relatedness in a set of tasks and simply learning them together can be detrimental.
It is therefore important to have models that will generally benefit related tasks and will not hurt
performance when these tasks are unrelated. We investigate this in the context of Gaussian Process
(GP) prediction.

We propose a model that attempts to learn inter-task dependencies based solely on the task identities
and the observed data for each task. This contrasts with approaches in [3, 4] where task-descriptor
features t were used in a parametric covariance function over different tasks—such a function may
be too constrained by both its parametric form and the task descriptors to model task similarities
effectively. In addition, for many real-life scenarios task-descriptor features are either unavailable
or difficult to define correctly. Hence we propose a model that learns a “free-form” task-similarity
matrix, which is used in conjunction with a parameterized covariance function over the input features
x.

For scenarios where the number of input observations is small, multi-task learning augments the data
set with a number of different tasks, so that model parameters can be estimated more confidently;
this helps to minimize over-fitting. In our model, this is achieved by having a common covariance
function over the features x of the input observations. This contrasts with the semiparametric latent
factor model [5] where, with the same set of input observations, one has to estimate the parameters
of several covariance functions belonging to different latent processes.

For our model we can show the interesting theoretical property that there is a cancellation of inter-
task transfer in the specific case of noise-free observations and a block design. We have investigated
both gradient-based and EM-based optimization of the marginal likelihood for learning the hyper-
parameters of the GP. Finally, we make use of GP approximations and properties of our model in



order to scale our approach to large multi-task data sets, and evaluate the benefits of our model on
two practical multi-task applications: a compiler performance prediction problem and a exam score
prediction task.

The structure of the paper is as follows: in section 2 we outline our model for multi-task learning,
and discuss some approximations to speed up computations in section 3. Related work is described
in section 4. We describe our experimental setup in section 5 and give results in section 6.

2 The Model

Given a set X of N distinct inputs x1, . . . ,xN we define the complete set of responses for M tasks
as y = (y11, . . . , yN1, . . . , y12, . . . , yN2, . . . , y1M , . . . , yNM )T, where yil is the response for the lth

task on the ith input xi. Let us also denote the N ×M matrix Y such that y = vec Y .

Given a set of observations yo, which is a subset of y, we want to predict some of the unobserved
response-values yu at some input locations for certain tasks.

We approach this problem by placing a GP prior over the latent functions {fl} so that we directly
induce correlations between tasks. Assuming that the GPs have zero mean we set

〈fl(x)fk(x′)〉 = Kf
lkkx(x,x′) yil ∼ N (fl(xi), σ2

l ), (1)

where Kf is a positive semi-definite (PSD) matrix that specifies the inter-task similarities, kx is a
covariance function over inputs, and σ2

l is the noise variance for the lth task. Below we focus on
stationary covariance functions kx; hence, to avoid redundancy in the parametrization, we further
let kx be only a correlation function (i.e. it is constrained to have unit variance), since the variance
can be explained fully by Kf .

The important property of this model is that the joint Gaussian distribution over y is not block-
diagonal wrt tasks, so that observations of one task can affect the predictions on another task. In
[4, 3] this property also holds, but instead of specifying a general PSD matrix Kf , these authors set
Kf

lk = kf (tl, tk), where kf (·, ·) is a covariance function over the task-descriptor features t.

One popular setup for multi-task learning is to assume that tasks can be clustered, and that there are
inter-task correlations between tasks in the same cluster. This can be easily modelled with a general
task-similarity Kf matrix: if we assume that the tasks are ordered with respect to the clusters, then
Kf will have a block diagonal structure. Of course, as we are learning a “free form” Kf the ordering
of the tasks is irrelevant in practice (and is only useful for explanatory purposes).

2.1 Inference

Inference in our model can be done by using the standard GP formulae for the mean and variance
of the predictive distribution with the covariance function given in equation (1). For example, the
mean prediction on a new data-point x∗ for task l is given by

f̄l(x∗) = (kf
l ⊗ kx

∗)
T Σ−1y Σ = Kf ⊗Kx + D ⊗ I (2)

where ⊗ denotes the Kronecker product, kf
l selects the lth column of Kf , kx

∗ is the vector of
covariances between the test point x∗ and the training points, Kx is the matrix of covariances
between all pairs of training points, D is an M ×M diagonal matrix in which the (l, l)th element is
σ2

l , and Σ is an MN ×MN matrix.

In section 2.3 we show that when there is no noise in the data (i.e. D = 0), there will be no transfer
between tasks.

2.2 Learning Hyperparameters

Given the set of observations yo, we wish to learn the parameters θx of kx and the matrix Kf

to maximize the marginal likelihood p(yo|X, θx,Kf ). One way to achieve this is to use the
fact that y|X ∼ N (0,Σ). Therefore, gradient-based methods can be readily applied to maxi-
mize the marginal likelihood. In order to guarantee positive-semidefiniteness of Kf , one possible



parametrization is to use the Cholesky decomposition Kf = LLT where L is lower triangular.
Computing the derivatives of the marginal likelihood with respect to L and θx is straightforward. A
drawback of this approach is its computational cost as it requires the inversion of a matrix of poten-
tial size MN × MN (or solving an MN × MN linear system) at each optimization step. Note,
however, that one only needs to actually compute the Gram matrix and its inverse at the visible
locations corresponding to yo.

Alternatively, it is possible to exploit the Kronecker product structure of the full covariance matrix
as in [6], where an EM algorithm is proposed such that learning of θx and Kf in the M-step is
decoupled. This has the advantage that closed-form updates for Kf and D can be obtained (see
equation (5)), and that Kf is guaranteed to be positive-semidefinite. The details of the EM algorithm
are as follows: Let f be the vector of function values corresponding to y, and similarly for F wrt
Y . Further, let y·l denote the vector (y1l, . . . , yNl)T and similarly for f ·l. Given the missing data,
which in this case is f , the complete-data log-likelihood is

Lcomp = −N

2
log |Kf | − M

2
log |Kx| − 1

2
tr

[(
Kf

)−1
FT (Kx)−1

F
]

− N

2

M∑
l=1

log σ2
l −

1
2

tr
[
(Y − F )D−1(Y − F )T

]
− MN

2
log 2π (3)

from which we have following updates:

θ̂x = arg min
θx

(
N log

∣∣∣〈FT (Kx(θx))−1
F

〉∣∣∣ + M log |Kx(θx)|
)

(4)

K̂f = N−1

〈
FT

(
Kx(θ̂x)

)−1

F

〉
σ̂2

l = N−1
〈
(y·l − f ·l)

T (y·l − f ·l)
〉

(5)

where the expectations 〈·〉 are taken with respect to p
(
f |yo,θx,Kf

)
, and ·̂ denotes the updated

parameters. For clarity, let us consider the case where yo = y, i.e. a block design. Then
p

(
f |y,θx,Kf

)
= N

(
(Kf ⊗Kx)Σ−1y, (Kf ⊗Kx)− (Kf ⊗Kx)Σ−1(Kf ⊗Kx)

)
.

We have seen that Σ needs to be inverted (in time O(M3N3)) for both making predictions and
learning the hyperparameters (when considering noisy observations). This can lead to computational
problems if MN is large. In section 3 we give some approximations that can help speed up these
computations.

2.3 Noiseless observations and the cancellation of inter-task transfer

One particularly interesting case to consider is noise-free observations at the same locations for
all tasks (i.e. a block-design) so that y|X ∼ Normal(0,Kf ⊗ Kx). In this case maximizing the
marginal likelihood p(y|X) wrt the parameters θx of kx reduces to maximizing −M log |Kx| −
N log |Y T (Kx)−1Y |, an expression that does not depend on Kf . After convergence we can obtain
Kf as K̂f = 1

N Y T (Kx)−1Y . The intuition behind is this: The responses Y are correlated via Kf

and Kx. We can learn Kf by decorrelating Y with (Kx)−1 first so that only correlation with respect
to Kf is left. Then Kf is simply the sample covariance of the de-correlated Y .

Unfortunately, in this case there is effectively no transfer between the tasks (given the kernels). To
see this, consider making predictions at a new location x∗ for all tasks. We have (using the mixed-
product property of Kronecker products) that

f(x∗) =
(
Kf ⊗ kx

∗
)T (

Kf ⊗Kx
)−1

y (6)

=
(
(Kf )T ⊗ (kx

∗)
T
) (

(Kf )−1 ⊗ (Kx)−1
)
y (7)

=
[(

Kf (Kf )−1
)
⊗

(
(kx

∗)
T(Kx)−1

)]
y (8)

=

 (kx
∗)

T(Kx)−1y·1
...

(kx
∗)

T(Kx)−1y·M

 , (9)

and similarly for the covariances. Thus, in the noiseless case with a block design, the predictions
for task l depend only on the targets y·l. In other words, there is a cancellation of transfer. One can



in fact generalize this result to show that the cancellation of transfer for task l does still hold even
if the observations are only sparsely observed at locations X = (x1, . . . ,xN ) on the other tasks.
After having derived this result we learned that it is known as autokrigeability in the geostatistics
literature [7], and is also related to the symmetric Markov property of covariance functions that is
discussed in [8]. We emphasize that if the observations are noisy, or if there is not a block design,
then this result on cancellation of transfer will not hold. This result can also be generalized to
multidimensional tensor product covariance functions and grids [9].

3 Approximations to speed up computations

The issue of dealing with large N has been much studied in the GP literature, see [10, ch. 8] and
[11] for overviews. In particular, one can use sparse approximations where only Q out of N data
points are selected as inducing inputs[11]. Here, we use the Nyström approximation of Kx in the
marginal likelihood, so that Kx ≈ K̃x def= Kx

·I(Kx
II)−1Kx

I·, where I indexes Q rows/columns of
Kx. In fact for the posterior at the training points this result is obtained from both the subset of
regressors (SoR) and projected process (PP) approximations described in [10, ch. 8].

Specifying a full rank Kf requires M(M + 1)/2 parameters, and for large M this would be a lot of
parameters to estimate. One parametrization of Kf that reduces this problem is to use a PPCAmodel
[12] Kf ≈ K̃f def= UΛUT + s2IM , where U is an M × P matrix of the P principal eigenvectors
of Kf , Λ is a P × P diagonal matrix of the corresponding eigenvalues, and s2 can be determined
analytically from the eigenvalues of Kf (see [12] and references therein). For numerical stability,
we may further use the incomplete-Cholesky decomposition setting UΛUT = L̃L̃T, where L̃ is a
M × P matrix. Below we consider the case s = 0, i.e. a rank-P approximation to Kf .

Applying both approximations to get Σ ≈ Σ̃ def= K̃f ⊗ K̃x + D ⊗ IN , we have, after using the
Woodbury identity, Σ̃−1 = ∆−1 − ∆−1B

[
I ⊗Kx

II + BT∆−1B
]−1

BT∆−1 where B
def= (L̃ ⊗

Kx
·I), and ∆ def= D⊗ IN is a diagonal matrix. As K̃f ⊗ K̃x has rank PQ, we have that computation

of Σ̃−1y takes O(MNP 2Q2).

For the EM algorithm, the approximation of K̃x poses a problem in (4) because for the rank-deficient
matrix K̃x, its log-determinant is negative infinity, and its matrix inverse is undefined. We overcome
this by considering K̃x = limξ→0(Kx

·I(Kx
II)−1Kx

I·+ξ2I), so that we solve an equivalent optimiza-
tion problem where the log-determinant is replaced by the well-defined log |Kx

I·K
x
·I | − log |Kx

II |,
and the matrix inverse is replaced by the pseudo-inverse. With these approximations the compu-
tational complexity of hyperparameter learning can be reduced to O(MNP 2Q2) per iteration for
both the Cholesky and EM methods.

4 Related work

There has been a lot of work in recent years on multi-task learning (or inductive transfer) using
methods such as Neural Networks, Gaussian Processes, Dirichlet Processes and Support Vector
Machines, see e.g. [2, 13] for early references. The key issue concerns what properties or aspects
should be shared across tasks. Within the GP literature, [14, 15, 16, 17, 18] give models where
the covariance matrix of the full (noiseless) system is block diagonal, and each of the M blocks is
induced from the same kernel function. Under these models each y·i is conditionally independent,
but inter-task tying takes place by sharing the kernel function across tasks. In contrast, in our model
and in [5, 3, 4] the covariance is not block diagonal.

The semiparametric latent factor model (SLFM) of Teh et al [5] involves having P latent processes
(where P ≤ M ) and each of these latent processes has its own covariance function. The noiseless
outputs are obtained by linear mixing of these processes with a M × P matrix Φ. The covariance
matrix of the system under this model has rank at most PN , so that when P < M the system
corresponds to a degenerate GP. Our model is similar to [5] but simpler, in that all of the P latent
processes share the same covariance function; this reduces the number of free parameters to be fitted
and should help to minimize overfitting. With a common covariance function kx, it turns out that
Kf is equal to ΦΦT, so a Kf that is strictly positive definite corresponds to using P = M latent



processes. Note that if P > M one can always find an M ×M matrix Φ′ such that Φ′Φ′T = ΦΦT.
We note also that the approximation methods used in [5] are different to ours, and were based on the
subset of data (SoD) method using the informative vector machine (IVM) selection heuristic.

In the geostatistics literature, the prior model for f· given in eq. (1) is known as the intrinsic cor-
relation model [7], a specific case of co-kriging. A sum of such processes is known as the linear
coregionalization model (LCM) [7] for which [6] gives an EM-based algorithm for parameter es-
timation. Our model for the observations corresponds to an LCM model with two processes: the
process for f· and the noise process. Note that SLFM can also be seen as an instance of the LCM
model. To see this, let Epp be a P ×P diagonal matrix with 1 at (p, p) and zero elsewhere. Then we
can write the covariance in SLFM as (Φ⊗I)(

∑P
p=1 Epp⊗Kx

p )(Φ⊗I)T =
∑P

p=1(ΦEppΦT)⊗Kx
p ,

where ΦEppΦT is of rank 1.

Evgeniou et al. [19] consider methods for inducing correlations between tasks based on a correlated
prior over linear regression parameters. In fact this corresponds to a GP prior using the kernel
k(x,x′) = xT Ax′ for some positive definite matrix A. In their experiments they use a restricted
form of Kf with Kf

lk = (1 − λ) + λMδlk (their eq. 25), i.e. a convex combination of a rank-1
matrix of ones and a multiple of the identity. Notice the similarity to the PPCA form of Kf given in
section 3.

5 Experiments

We evaluate our model on two different applications. The first application is a compiler performance
prediction problem where the goal is to predict the speed-up obtained in a given program (task) when
applying a sequence of code transformations x. The second application is an exam score prediction
problem where the goal is to predict the exam score obtained by a student x belonging to a specific
school (task). In the sequel, we will refer to the data related to the first problem as the compiler data
and the data related to the second problem as the school data.

We are interested in assessing the benefits of our approach not only with respect to the no-transfer
case but also with respect to the case when a parametric GP is used on the joint input-dependent and
task-dependent space as in [3]. To train the parametric model note that the parameters of the covari-
ance function over task descriptors kf (t, t′) can be tuned by maximizing the marginal likelihood,
as in [3]. For the free-form Kf we initialize this (given kx(·, ·)) by using the noise-free expression
K̂f = 1

N Y T (Kx)−1Y given in section 2.3 (or the appropriate generalization when the design is
not complete). For both applications we have used a squared-exponential (or Gaussian) covariance
function kx and a non-parametric form for Kf . Where relevant the parametric covariance function
kf was also taken to be of squared-exponential form. Both kx and kf used an automatic relevance
determination (ARD) parameterization, i.e. having a length scale for each feature dimension. All
the length scales in kx and kf were initialized to 1, and all σ2

l were constrained to be equal for all
tasks and initialized to 0.01.

5.1 Description of the Data

Compiler Data. This data set consists of 11 C programs for which an exhaustive set of 88214
sequences of code transformations have been applied and their corresponding speed-ups have been
recorded. Each task is to predict the speed-up on a given program when applying a specific trans-
formation sequence. The speed-up after applying a transformation sequence on a given program
is defined as the ratio of the execution time of the original program (baseline) over the execution
time of the transformed program. Each transformation sequence is described as a 13-dimensional
vector x that records the absence/presence of one-out-of 13 single transformations. In [3] the task-
descriptor features (for each program) are based on the speed-ups obtained on a pre-selected set of
8 transformations sequences, so-called “canonical responses”. The reader is referred to [3, section
3] for a more detailed description of the data.

School Data. This data set comes from the Inner London Education Authority (ILEA) and
has been used to study the effectiveness of schools. It is publicly available under the name
of “school effectiveness” at http://www.cmm.bristol.ac.uk/learning-training/
multilevel-m-support/datasets.shtml. It consists of examination records from 139



secondary schools in years 1985, 1986 and 1987. It is a random 50% sample with 15362 students.
This data has also been used in the context of multi-task learning by Bakker and Heskes [20] and
Evgeniou et al. [19]. In [20] each task is defined as the prediction of the exam score of a student
belonging to a specific school based on four student-dependent features (year of the exam, gen-
der, VR band and ethnic group) and four school-dependent features (percentage of students eligible
for free school meals, percentage of students in VR band 1, school gender and school denomina-
tion). For comparison with [20, 19] we evaluate our model following the set up described above
and similarly, we have created dummy variables for those features that are categorical forming a
total of 19 student-dependent features and 8 school-dependent features. However, we note that
school-descriptor features such as the percentage of students eligible for free school meals and the
percentage of students in VR band 1 actually depend on the year the particular sample was taken.

It is important to emphasize that for both data sets there are task-descriptor features available. How-
ever, as we have described throughout this paper, our approach learns task similarity directly without
the need for task-dependent features. Hence, we have neglected these features in the application of
our free-form Kf method.

6 Results

For the compiler data we have M = 11 tasks and we have used a Cholesky decomposition
Kf = LLT . For the school data we have M = 139 tasks and we have preferred a reduced rank
parameterization of Kf ≈ K̃f = L̃L̃T , with ranks 1, 2, 3 and 5. We have learnt the parame-
ters of the models so as to maximize the marginal likelihood p(yo|X, Kf ,θx) using gradient-based
search in MATLAB with Carl Rasmussen’s minimize.m. In our experiments this method usually
outperformed EM in the quality of solutions found and in the speed of convergence.

Compiler Data: For this particular application, in a real-life scenario it is critical to achieve good
performance with a low number of training data-points per task given that a training data-point
requires the compilation and execution of a (potentially) different version of a program. Therefore,
although there are a total of 88214 training points per program we have followed a similar set up
to [3] by considering N = 16, 32, 64 and 128 transformation sequences per program for training.
All the M = 11 programs (tasks) have been used for training, and predictions have been done at
the (unobserved) remaining 88214 − N inputs. For comparison with [3] the mean absolute error
(between the actual speed-ups of a program and the predictions) has been used as the measure
of performance. Due to the variability of the results depending on training set selection we have
considered 10 different replications.

Figure 1 shows the mean absolute errors obtained on the compiler data for some of the tasks (top
row and bottom left) and on average for all the tasks (bottom right). Sample task 1 (histogram)
is an example where learning the tasks simultaneously brings major benefits over the no transfer
case. Here, multi-task GP (transfer free-form) provides a reduction on the mean absolute error of
up to 6 times. Additionally, it is consistently (although only marginally) superior to the parametric
approach. For sample task 2 (fir), our approach not only significantly outperforms the no transfer
case but also provides greater benefits over the parametric method (which for N = 64 and 128
is worse than no transfer). Sample task 3 (adpcm) is the only case out of all 11 tasks where our
approach degrades performance, although it should be noted that all the methods perform similarly.
Further analysis of the data indicates that learning on this task is hard as there is a lot of variability
that cannot be explained by the 1-out-of-13 encoding used for the input features. Finally, for all tasks
on average (bottom right) our approach brings significant improvements over single task learning
and consistently outperforms the parametric method. For all tasks except one our model provides
better or roughly equal performance than the non-transfer case and the parametric model.

School Data: For comparison with [20, 19] we have made 10 random splits of the data into training
(75%) data and test (25%) data. Due to the categorical nature of the data there are a maximum
of N = 202 different student-dependent feature vectors x. Given that there can be multiple ob-
servations of a target value for a given task at a specific input x, we have taken the mean of these
observations and corrected the noise variances by dividing them over the corresponding number of
observations. As in [19], the percentage explained variance is used as the measure of performance.
This measure can be seen as the percentage version of the well known coefficient of determination
r2 between the actual target values and the predictions.
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Figure 1: Panels (a), (b) and (c) show the average mean absolute error on the compiler data as a
function of the number of training points for specific tasks. no transfer stands for the use of a single
GP for each task separately; transfer parametric is the use of a GP with a joint parametric (SE)
covariance function as in [3]; and transfer free-form is multi-task GP with a “free form” covariance
matrix over tasks. The error bars show ± one standard deviation taken over the 10 replications.
Panel (d) shows the average MAE over all 11 tasks, and the error bars show the average of the
standard deviations over all 11 tasks.

The results are shown in Table 1; note that larger figures are better. The parametric result given in
the table was obtained from the school-descriptor features; in the cases where these features varied
for a given school over the years, an average was taken. The results show that better results can
be obtained by using multi-task learning than without. For the non-parametric Kf , we see that the
rank-2 model gives best performance. This performance is also comparable with the best (29.5%)
found in [20]. We also note that our no transfer result of 21.1% is much better than the baseline of
9.7% found in [20] using neural networks.

no transfer parametric rank 1 rank 2 rank 3 rank 5

21.05 (1.15) 31.57 (1.61) 27.02 (2.03) 29.20 (1.60) 24.88 (1.62) 21.00 (2.42)

Table 1: Percentage variance explained on the school dataset for various situations. The figures in
brackets are standard deviations obtained from the ten replications.

On the school data the parametric approach for Kf slightly outperforms the non-parametric method,
probably due to the large size of this matrix relative to the amount of data. One can also run the
parametric approach creating a task for every unique school-features descriptor1; this gives rise to
288 tasks rather than 139 schools, and a performance of 33.08% (±1.57). Evgeniou et al [19] use a
linear predictor on all 8 features (i.e. they combine both student and school features into x) and then
introduce inter-task correlations as described in section 4. This approach uses the same information
as our 288 task case, and gives similar performance of around 34% (as shown in Figure 3 of [19]).

1Recall from section 5.1 that the school features can vary over different years.



7 Conclusion

In this paper we have described a method for multi-task learning based on a GP prior which has
inter-task correlations specified by the task similarity matrix Kf . We have shown that in a noise-
free block design, there is actually a cancellation of transfer in this model, but not in general. We
have successfully applied the method to the compiler and school problems. An advantage of our
method is that task-descriptor features are not required (c.f. [3, 4]). However, such features might
be beneficial if we consider a setup where there are only few datapoints for a new task, and where
the task-descriptor features convey useful information about the tasks.
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