Multiple Texture Boltzmann Machines

Jyri J. Kivinen

Christopher K. I. Williams

Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh, UK

Abstract

We assess the generative power of the mPoT-
model of [10] with tiled-convolutional weight
sharing as a model for visual textures by
specifically training on this task, evaluat-
ing model performance on texture synthe-
sis and inpainting tasks using quantitative
metrics. We also analyze the relative im-
portance of the mean and covariance parts
of the mPoT model by comparing its per-
formance to those of its subcomponents,
tiled-convolutional versions of the PoT/FoE
and Gaussian-Bernoulli restricted Boltzmann
machine (GB-RBM). Our results suggest
that while state-of-the-art or better perfor-
mance can be achieved using the mPoT, sim-
ilar performance can be achieved with the
mean-only model. We then develop a model
for multiple textures based on the GB-RBM,
using a shared set of weights but texture-
specific hidden unit biases. We show com-
parable performance of the multiple texture
model to individually trained texture models.

1 Introduction

We consider the statistical modelling of natural im-
ages using Boltzmann machines. Such Markov random
field models with hidden units have shown significant
promise for various unsupervised learning problems,
including as effective models for the statistics of natu-
ral images. One of the most flexible models proposed
in the literature is the recent Product of Student-t Ex-
perts (PoT) with non-zero means (mPoT) [10], which
includes third-order interactions between visible and
hidden units. Visual analysis of the samples drawn

Appearing in Proceedings of the 15" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

from the model (with tiled-convolutional weight shar-
ing) as shown in [10, Figure 3] suggests that although
piecewise smooth segments with clear intensity discon-
tinuities at their borders can be generated, the model
(as trained on natural image patches) does not hallu-
cinate textured regions. The flexibility of the model
can be increased by adding additional layers of hidden
units, but the samples shown in [11, Figure 3] again
do not show textured regions. These results suggest
it is over-optimistic to expect a single mPoT model to
be able to generate the wide variety of textures seen in
natural scenes. However, such a model could be effec-
tive for a sufficiently small subproblem such as mod-
elling individual textures. The generation of visual
texture is a necessary sub-component of any credible
model for visual scenes.

Our paper has two main contributions. First, we as-
sess the power of the mPoT as a model for textures by
specifically training on this task. A key advantage of
the texture task is that one can assess the generative
performance directly e.g. using the texture similarity
score from [4]. In contrast, current quantitative assess-
ment of generic natural image models is typically based
on discriminative performance of a classifier using fea-
tures derived from the models, which is a very indirect
way of evaluating generative performance. As well as
assessing the texture modelling power of the mPoT
with tiled-convolutional weight sharing, we also ana-
lyze the relative contributions of the mean and covari-
ance parts of the mPoT by comparing its performance
to those of its subcomponents, tiled-convolutional ver-
sions of the PoT/FoE and the Gaussian-Bernoulli re-
stricted Boltzmann machine (GRBM).

Secondly, we develop a Boltzmann machine which is
able to generate multiple textures; a natural extension
of a model for specific textures. The model modu-
lates a set of parameters shared across multiple tex-
tures with texture-specific parameters to create appro-
priate texture features. We compare the multi-texture
model to single-texture models for constrained and un-
constrained texture synthesis.

We begin in Section 2 by reviewing the models con-

Multiple Texture Boltzmann Machines

sidered for modelling individual textures. We then de-
scribe the experimental setup for the analysis of these
models, including data, assessment methods, mod-
elling and inference details in Section 3. This sec-
tion also gives the results, where we evaluate and ana-
lyze the performance and suitability of the methods as
models of textures. Section 4 then develops a multi-
texture Boltzmann machine and analyzes its proper-
ties, including a comparison of the generative perfor-
mance of the model to those of single-texture models.
Section 5 provides a summary and discussion.

2 Modelling of Individual Visual
Textures with Boltzmann Machines

Models based on Boltzmann machines have recently
shown significant promise for unsupervised learning
problems. These models consider two sets of variables,
hidden units h, and visible units v, and model the joint
distribution of the random variables with the Boltz-
mann distribution p(h,v) = % exp {—E (v,h)}, where
E (v,h) is the energy-function defined by the model,
and Z is a normalization constant also called the par-
tition function.

In our experiments we consider three models based
on Boltzmann machines, all of which model the visible
units v as normally distributed conditional on the hid-
den units h; this is a setup popular in the modelling
of continuous-valued data, such as natural images. Al-
though other models providing such parameterizations
do exist, these three models provide the typical spec-
trum of structure, namely whether the mean is con-
strained to be zero or not, and whether the covariance
matrix is constrained to be diagonal or not. In order
to scale up to large images, we use tiled-convolutional
weight sharing, as in [10]. In a convolutional weight
sharing scheme one considers multiple feature planes
each consisting of multiple hidden units in a grid.
Each unit connects to a local receptive field of visible
units with weights that are feature-plane specific, and
shared across the plane. In a tiled-convolutional archi-
tecture there are again multiple feature planes which
share features, but for a single feature plane the units
connect to non-overlapping visible unit receptive fields
which together tile the entire image. There are then
multiple feature planes associated with similar tilings,
but with different offsets.

For simplicity of the presentation, the mathemati-
cal descriptions of these models are shown in a non-
convolutional setting as much as possible. In the fol-
lowing sections we outline the Gaussian-RBM, PoT
and mPoT models, and in section 2.4 we discuss some
other generative models for visual texture.

2.1 Gaussian RBM

Convolutional Gaussian RBMs (also called Gaussian-
Bernoulli RBMs) were introduced by Lee et. al. [6] and
have been popular in modelling large natural images.
The energy function for the model for single-channel
observables can be defined as follows:

.
Ecreu (v, h™) = %

_ m - T
Zk:hk (bk+o MLy, V), (1)

where a denotes the vector of visible-layer biases, by
denotes a bias and M., a weight kernel for feature
layer k, and ¢ > 0 is a scalar parameter. Con-
ditional on the visible units v, the binary hiddens
h™ are independent and distributed according to a
Bernoulli distribution. Conditional on h™ the visi-
ble units have an independent Gaussian distribution:
p(v|h™) = N (v;a+ocMh™, o%I) where o deter-
mines the noise level. It is important to note that the
covariance matrix of the conditional distribution is di-
agonal/spherical (because the units are conditionally
independent), and the model places significant focus
on modelling the means of these distributions. Be-
low we denote this model Tm, to emphasize that it is
tiled-convolutional, and that it focusses on modelling
the conditional means, rather than covariances.

2.2 PoT

The Product of Student-t Experts (PoT) [9] model be-
longs to the Product-of-Experts (PoE) framework, in
which the probability of visible units is defined as a
normalized product of experts, where each expert is
a non-linear potential function acting on visible units.
The Fields-of-Experts model (FoE) [12] extends the
model to share experts convolutionally across the dif-
ferent unit sites so as to scale up to large images.
The PoT can be formulated with auxilliary continuous-
valued hidden units h® [9], leading to the energy func-
tion:

1 2
Epor(v,h¢) = Z h; <1 + 5 [C,ij:|)+(1—’Yj) log h;,
J

(2)
where C.; is a filter associated with expert j, and
v is a scalar parameter. Conditional on the vis-
ible units, the hidden units are independent with
Gamma distributions. Conditional on the hidden
units, the visible units are distributed jointly accord-
ing to a zero-mean multivariate Gaussian: p(v | h¢) =

N (v; 0, (C diag {h°} CT)_l)7 where diag {h} de-
notes a diagonal matrix with the elements of h® in
the diagonal, and C is a matrix of size the number of

Jyri J. Kivinen, Christopher K. I. Williams

visible units times the number of hidden units (or the
experts). In contrast to the Gaussian RBM, the visible
units can be coupled in their joint distribution condi-
tional on the hidden units because the precision matrix
is not restricted to be diagonal, with the structure be-
ing dependent on the hidden unit activation pattern.
Below this model is denoted as TPoT, to indicate that
it is a tiled-convolutional version of the PoT.

2.3 mPoT

The mPoT [10] is constructed by combining the
energy-functions of the GRBM and the PoT, with
shared visible units, but different hidden units for the
two parts:

EmPoT(V7 hc, hm) = EGRBM (V, hm) + EPoT (V, hc)

(3)
Conditional on the visible wunits, the hidden
units h¢ and h™ are independent and dis-
tributed according to Gamma-, and Bernoulli-
distributions, as in the two models separately. Con-
ditional on the hidden wunits, the visible units
are distributed jointly as multivariate Gaussians:
p(v|[h®,h™) = N (v;A(a+ o 'Mh™), A), where
A = (Cdiag{h°}C" + 0*21)71. The mean can be
non-zero, and the precision can be non-diagonal, being
dependent on the hidden unit assignments. Below
this model is denoted as TmPoT, to indicate that it is
a tiled-convolutional version of the mPoT.

2.4 Other texture models

Of course texture modelling has a long history and
is not restricted to Boltzmann machine models. One
simple texture model is a Gaussian random field; for
example Heess et al [4] consider a simplified FoE with
quadratic potentials, which they call the Gaussian FoE
(GFoE). The FoE was extended to use bimodal po-
tentials in [4] to create the BiFoE model, and their
results show that this generally improved performance
over the GFoE and FoE models. In earlier work Zhu et
al [15] proposed a model based on fixed (rather than
learned) filters, but with non-parameteric potentials.
Finally we mention the nonparametric texture synthe-
sis method [2]. This grows a patch of texture from a
seed, but does so without an explicit generative model;
instead it pastes in new pixels based on the match to
a reference sample of texture.

The analysis in [4] shows that the FoE with Student-t
potentials defines a unimodal density for p(v) with its
mode at v = 0, and that the BiFoE creates a multi-
modal distribution with modes away from the origin.
The BiFoE does not have explicit latent variables, al-
though one can reformulate it by replacing the bimodal

potential with a mixture of two Gaussians, and adding
a hidden unit for each bimodal potential to specify
which Gaussian is being used [3, Appendix A.2]. In
this case v is conditionally Gaussian given the hidden
units, with a mean that depends on the hidden units,
and a fixed non-diagonal covariance. In addition in the
mixture-of-Gaussians BiFoE the mean and covariance
depend on the same filters. The mPoT generalizes
this construction by decoupling the mean and covari-
ance parameterization, and providing the freedom for
them to vary separately.

3 Dissecting Boltzmann Machine
Texture Models

In this section we analyze the performance of the con-
ditionally Gaussian Boltzmann machine models in tex-
ture modelling. Below we first discuss the data used for
the experiments, and then in section 3.2 give details
of how the models were trained. Results for uncon-
strained texture synthesis are given in section 3.3, and
for constrained synthesis (inpainting) in section 3.4.

3.1 Data

The data used in the experiments were Brodatz-
texture images'. We applied similar rescaling as in [4]:
the 640x640 textures were rescaled to either 480x480
or to 320x320, preserving all major texture features.
We then normalized each texture to have zero mean,
and applied global scaling so that the standard devi-
ation of each texture was 4. This scaling was used
because the parameter ¢ in eq. 1 was fixed to unity
in our code; it is equivalent to setting o = 1/4 in the
GRBM energy (and rescaling a) if the texture were
normalized to unit variance. The evaluation metrics
used for quantitative analysis are insensitive to these
normalization steps. Each image was divided into a
top half used for training, and a bottom half for car-
rying out testing.

3.2 Learning

The training data consisted of patches of size 98 x 98
randomly cropped out of the the preprocessed training
textures, and processed in batches of size 64. We ex-
perimented with several receptive field sizes, and the
number of hidden units for the models. Increasing the
number of hidden units typically improved the gener-
ative quality. We used a receptive field size of 11 x 11,
and the tiling was done diagonally with a stride of one
pixel. Thus there are 11 sets of filters (one for each off-
set), and we used 32 filters per set for both the mean

"http://www.ux.uis.no/~tranden/brodatz.html.

Multiple Texture Boltzmann Machines

h™ and covariance h¢ hidden units, when applicable.
We held a fixed to zero.

All of the models were trained by approximate max-
imum likelihood, wusing stochastic gradient ascent
based on Fast Persistent chains Contrastive Diver-
gence (FPCD) [13]. The implementation for train-
ing the models heavily used the code by Marc’Aurelio
Ranzato?, especially for the tiled-convolutional mPoT.
We will now describe the main details of the learning
algorithms: The hidden variables in the TmPoT en-
ergy can be integrated out analytically to give the free
energy, as in [10, eq. 6]. Parameter learning can be
then done by computing the difference of positive and
negative phase expectations of the free-energy gradi-
ents. In our learning procedure we initialized the neg-
ative particles, which are used in the computation of
the negative phase, to zeros. They were updated dur-
ing each iteration using a single-step of hybrid Monte
Carlo (HMC) [8], which used a random momentum
sampled from a zero-mean, spherical Gaussian, and
applied 30 Leapfrog steps.

The models did not have any special boundary units,
and therefore at the boundaries and especially at the
corners (due to diagonal offsets between the tiles) there
were sites which we less constrained than in the cen-
ter of the image. This often caused boundary artifacts
unless care was taken; see supplementary material for
details. As in [10], the covariance filters of the Tm-
PoT were pre-multiplied with a whitening transform
matrix®, and during training their Ly-norm was main-
tained at unity individually by normalization. The
normalization avoids the decay of experts to zero, but
removes scale adaption, the necessity of which is less-
ened by the whitening transform.

We initialized the weights M and C, and also the other
parameters in general to small random values. The
hidden biases were however initialized to —2. We ex-
perimented with various parameter learning rates and
combinations for the different models under different
textures, but these did not matter much for reasonable
ranges of values. For TPoT, we used equal learning
rates of 0.001 for C and . For Tm, we used a learn-
ing rate of 0.001 for M, and 0.1 for b. We used half of
these learning rates for the parameters of the TmPoT
models. The learning rates were held fixed for the fast
parameters, but annealed for the regular parameters.
We also used a small L;-decay on the weights.

2http://www.cs.toronto.edu/ ranzato/
publications/mPoT/mPoT.html
3We used texture-class specific ZCA whitening.

3.3 Unconstrained texture synthesis

Our quantitative analysis of generative performance
first considered the quality of texture samples. To
obtain samples from the models we ran HMC sam-
pling for a large number of iterations, after which their
states were stored for analysis. 128 samples of size
120 x 120 were collected for each model under each tex-
ture class. Texture patches and representative model
samples (with boundary sites discarded) are shown in
Figures 3 and 4(top). Visual inspection shows that
while the samples from the TmPoT and Tm are good,
TPoT clearly fails to provide a faithful model of the
data. Sample filters learned for the different textures
using the Tm are shown in the supplementary material
Fig. I(bottom).

To provide a quantitative evaluation we compute the
Texture Similarity Score (TSS) defined in [4] between
each sample and the testing texture patch. For a sam-
ple s and texture image x the TSS is defined as the
maximum of normalized cross correlation (NCC) be-
tween them:

X(l)TS X(I)TS

Yoy , (4)
s %) lllIsll }

where x(;) denotes a patch within the image matching
the size of s, located at position ¢, and Z denotes the
number of possible patch locations. We used matching
window of size 19 x 19 to compute the score, extracted
from a random location in each sample, which is the
same size as those of the samples used in [4] to compute
their scores. (Note that the results in [4] use the whole
texture for both training and texting; in contrast we
have a training/test split, see sec. 3.1.)

TSS(s, x) = max {

As in [4], the textures considered for quantitative anal-
ysis were D6, D21, D53, and D77 (see top rows of
Figure 3). Figure 2 (left) and Table 1 (top) show a
summary of quantitative analysis results based on the
TSS. The scores for the TmPoT and the Tm are ex-
cellent for all the textures, even for the D77, which
appears the least homogenous of the textures. While
performance of the TmPoT for most textures the high-
est, it is closely matched by the Tm. The scores for
the TPoT are much worse than those of either of the
above models; this is consistent with the inability of
the FoE model (convolutional PoT) considered in [4] to
produce high-quality texture samples. The fact that
TPoT doesn’t distinguish between v and —v is not
the only reason for its poor performance in synthe-
sis: scores obtained using absolute values of NCC are
still significantly lower for TPoT than for other mod-
els (Abs-TSS sample mean+stds: D6: 0.6273+0.0714,
D21: 0.7692 + 0.0911, D53: 0.7765 £+ 0.1039, D77:
0.7055 4 0.0896).

Jyri J. Kivinen, Christopher K. I. Williams

When comparing these results to Figure 3(a) in [4],
note that the filters used there were 7 x 7, and that
9 sets of filters were used, in a fully convolutional
rather than (diagonally) tiled-convolutional fashion.
Although many more parameters need to be learned
for our models, within each 11 x 11 block in the im-
age (except for boundaries) there were only 11 x 32
experts due to the diagonal stride between tiles used
in our experiments; this is clearly less than 11 x 11 x 9
experts of [4]. There are also the training/test split
differences noted above. With these caveats we note
that all mean TSS scores are clearly superior even with
the Tm models over BiFoE, and the difference is par-
ticularly noticable for D6 and D77.

3.4 Constrained texture synthesis

We used an inpainting evaluation protocol very sim-
ilar to [4]: We took patches out of the test texture
images, and created a square hole inside by setting
texture values within the square to zeroes. The in-
painting task was then to produce reasonable values
to the zeroed out pixels. The quality was measured
by the (i) NCC score, (ii) mean structural similarity
index (MSSIM) [14] between the inpainted region and
the ground truth region, and (iii) TSS between the in-
painted region and the test portion of the Brodatz tex-
ture. Instead of using 70 x 70 images, we used 76 x 76
images and used 54 x 54 instead of a 50 x 50 inpainting
square as in [4]. The reference frame border was then
11 x 11, compared to 10 x 10 of [4]. The inpainting was
done for the models by running HMC sampling, dur-
ing which we constrained the reference border. The
number of inpainting frames used in the experiments
was 20 for each texture class, and the inpainting was
done with 5 different random number generator initial
states, producing 100 result images for each model un-
der each texture class. We also compared against the
nonparametric method by Efros & Leung (E&L) [2],
and our implementation of that method used the train-
ing half of the image as the training data. The ‘neigh-
bourhood window’ for infilling from the training data
was 15 x 15, as used in [4].

Inpainting results are summarized quantitatively w.r.t.
NCC in Figure 2 (right) and Table 1 (bottom). Results
for MSSIM and TSS are shown in Section C of the sup-
plementary material. Example inpainting results for
Tm are shown in Figure 4, and for the other models
in the supplementary material (Fig. IV). Our experi-
ments suggest that by providing a reference frame, the
models are able to improve the quality of the samples
as measured by the TSS? over those from texture syn-
thesis®. As in the texture synthesis task, the scores for

4MSSIM cannot be used for assessing both of the tasks.
5The sampling and inpainting scores are not directly

the TmPoT and the Tm model are highest in general,
and comparable to each other. Interestingly, provid-
ing the reference frame provides a performance boost
to the TPoT in relation to the other models: Although
it still scores slightly lower than the other models on
most textures, its performance is even slightly better
than the other models for the D53 texture®. Compar-
ing to the Efros & Leung and BiFoE results (last row
of Table 1), we observe very similar results for D6, D21
and D53, but that our performance is markedly better
for D77.

The following section develops a novel framework for
Boltzmann machines to generate multiple textures,
where we will use Tm as the base-model, since it ob-
tained state-of-the-art results, and it is computation-
ally much less complicated than the TmPoT”.

4 Multi-Texture Boltzmann Machines

Current Boltzmann machine models of textures model
individual textures. Here we describe a framework for
multiple textures. Our model has two sets of parame-
ters ©; Oglobal are shared parameters across the differ-
ent classes, while the parameters {6,,} are specific to
each individual texture class m =1,..., M.

Let V,, denote the visibles of the images in texture
class m. We assume that each of the M probabilities
P(Vin | 0, Ogiobal) are defined by Gaussian RBMs, as
defined in equation 1. The weights M of these mod-
els are set to be global, while the biases b are set
to be texture-specific, so that p(Vy,..., Vi |O) =
H%Zl (Vi | b, M). Switching between the differ-
ent classes is achieved by having a high-level categor-
ical variable y with M states denoting the different
textures. The appropriate biases are switched in by
selecting the state of y, similar to the implicit mixture
construction in [7].

As in the previous experiments, we use tiled-
convolutional weight sharing with the model in the fol-
lowing experiments. We denote this model the multi-
Tm. To further motivate the multi-Tm, imagine that
we start with a single-Tm model for a specific texture,
and then add the filters from all the other texture mod-
els to the energy, but setting the biases for the filters
from all of the models to large negative values. This
will have the effect of “turning off” the filters from
the other models, leaving in effect the original single-

comparable because the patch sizes for scoring were dif-
ferent, and typically the smaller the patch the larger the
score.

5The slightly worse performance of the TmPoT is likely
to be related to local optima and boundary issues (which
for that model were most problematic).

"Boundaries were typically also easier to deal with it.

Multiple Texture Boltzmann Machines

e

a¥
i
. u;

vi

e
L P

ot oo

Figure 1: Texture results obtained by using different
bias settings for letters and the background.

Tm model. Thus this model can be made to mimic
each of the original single-Tm models by adjustment
of the biases. However, the real multi-Tm can be more
powerful by sharing filters across textures.

4.1 Learning

We learned the parameters of the models by approx-
imate maximum likelihood, using stochastic gradient
ascent based on Fast Persistent chains Contrastive Di-
vergence (FPCD), as in above. We assigned sets of 64
negative particles to each of the texture classes, which
were updated with HMC sampling, so that for tex-
ture class m samples at an epoch were drawn from
the model specified by current parameters b,, and
weights M, using similar techniques as described be-
fore. Our implementation loops over texture classes
updating their negative particles which are then used
to compute the gradients and parameter updates for
their class-specific biases, and accumulates gradients
w.r.t weights which are used to update the weights
once all classes have been sweeped/statistics collected.

4.2 Experiments

We have trained models for 8 Brodatz texture cate-
gories (D6, D21, D53, D77, D4, D16, D68, and D103)
with 96, 128, and 256 features for each tile set, shared
over all of the textures; the models for individual tex-
tures (single-Tms) each have 32 specific features, to-
talling 32 x 8 = 256 features. Examples of the filters
learned and analysis of their specificity to various tex-
tures are discussed in the supplementary material.

We have evaluated the sampling and inpainting per-
formance of the models using the setup of previous
section. Representative samples from the model with
128 features per site are shown in Figure 3 (bottom
row), and Figure 4 (bottom rows in the top (synthesis)
and bottom (inpainting) blocks). Visual inspection
of the figures shows that they are comparable to those
of the individually trained Tm-models, and that the
models can capture the statistics of a wide variety of

textures effectively. Numerically the performances are
also similar, as can be seen from Figure 2 and Table 1,
with the exception of higher synthesis performance for
multi-Tm models on D53, and higher NCC inpainting
performance for the individually trained D77. Table 1
shows that the performance of the multi-Tm in general
improves as the number of features is increased.

We have also experimented with varying the biases in
a spatial fashion. In Fig. 1 bias settings corresponding
to two different textures have been used for letters and
the background; the model transitions nicely between
the two textures.

5 Summary and Discussion

We have analyzed the generative power of mPoT and
its subcomponents for the task of single texture mod-
elling. Our results show that it is essential to not re-
strict the conditional mean of visible units to be zero,
consistent with previous findings in [4]. The results on
the texture synthesis and inpainting tasks are gener-
ally as good as and sometimes better than the start-
of-the-art results in [4]. Our results show that for this
task it is the mean hidden units that are much more
important, especially in unconstrained sampling. In
future work we would like to investigate some further
ideas for dealing with boundary effects, e.g. specific
boundary feature sets; see also discussion in [5].

We have also developed Boltzmann machines capable
of modelling multiple textures, and applied it to the
tiled-convolutional Gaussian RBM. By considering a
shared set of weights but texture-specific hidden unit
biases, we have shown comparable performance to the
individually-trained texture models which already pro-
vide state-of-the-art results. The feature sharing by
multi-texture models is expected to yield savings in
terms of the number of features needed to model sev-
eral categories, and provides a natural route for exten-
sion to a more comprehensive natural image model.
In this paper we focused on images containing single
textures. We are currently working on extending the
model to be able to switch between generating differ-
ently textured regions, and developing an image seg-
mentation model. In the deep belief network frame-
work this can be done by letting the biases b in Fgrpwm
depend on a higher layer of hidden units.

Acknowledgements: We thank Nicolas Heess for
helpful discussions, and the anonymous referees who
helped improve the paper. This work is supported in
part by the IST Programme of the EC under the PAS-
CAL2 Network of Excellence, IST-2007-216886. This
publication only reflects the authors’ views.

77

D

53

D!

1

2

inpainting

D:

lams

6

Di

Christopher K. I. Will

D77

ivinen,

. K

D53

Jyri

synthesis

D21

D6

T2
T
Of
g 80
:
! = o 183 = m\m
S T B o WL Mﬂb
= s 2573
(I3 10d1 =85
M(S
-1 Lodw] m. o o g
i 783 < 2.8
’ wL-HNN) & 1m w
= wy Mm g Q
i 1LodL maym.m 9
{1 Lodw] eMt@
n
Lt 183 B =3 g
2]
: [m\/H &%
< o L ©
[~ H b wy n = 2 m
[T 10dL n_nwWo n ©
= ®
, 1odw] °o— .3
b Eo g =
[RLE] T o= .-
) . o) o [as]
w-HnN R R
,E:: wy CLmU. Ud
O »w T
o= 1 1odL Z 2 bc
EoHI _ Loduil 08 mt
3 3 & 3 B g 8 g 8 3 %2 n T 2 o
(=} o (=] (=} o (=] T m -
T w0
g —~g 2
T T O <
HiH -+ - Wl = 9 bc
P ell\et
CIs wy 17} I
a..m 2%
e | R e e LT < = = -
g L g
i Loduil T EE 8
T ™®]
: 7 Wiy S £ Lo
[3-—— wy m cEE
o)
[HiH o < lodl uhl.v m m hS
: 0
| Jodwy Mrm ® 5
oo 95
- wi-nnw ..m m. oIz
<
I } wy n_m.vabAB =
A
L) b Lod) 228y
em.m =}
BN W LoguiL ma .8
= Qo =
i + 4 wr-mn 5 © AR
RS wn
wy = M O =
o] gmﬁ
" IR 1 Lodl Quy.m%vm
Loduip ..Mcﬁcc
[) ~ © Lv < N 060
o o IS o o o o) mu....ON
SEs
o0 = @B A
=0 fa]
~ o 9B

Figure 3: Example data patches (top row), and model samples (other rows), with each case scaled independently

to cover the full intensity range. The Multi-Tm model has 128 features per site.

Multiple Texture Boltzmann Machines

Synthesis

D6

D21

D53

D77

TmPoT

0.9329 +£ 0.0356

0.8961 + 0.0696

0.8527 + 0.0559

0.8699 + 0.0080

TPoT

0.5641 £ 0.0916

0.7388 £ 0.1055

0.7583 £ 0.1082

0.6870 £ 0.0973

Tm

0.9301 £ 0.0207

0.8901 + 0.0792

0.8485 + 0.0606

0.8663 £ 0.0084

Multi-Tm (96)

0.8038 £ 0.1344

0.8800 £ 0.0533

0.8610 £ 0.0586

0.8175 + 0.0394

Multi-Tm (128)

0.8890 £ 0.0821

0.9067 + 0.0319

0.8881 £ 0.0462

0.8326 + 0.0235

Multi-Tm (256)

0.9304 £ 0.0280

0.9346 + 0.0205

0.9231 + 0.0103

0.8610 £+ 0.0096

Bi-FoE

0.7573 £ 0.0594

0.8710 £+ 0.0317

0.8266 + 0.0869

0.6464 £+ 0.0215

Inpainting

D6

D21

D53

D77

TmPoT

0.9106 £ 0.0138

0.9127 £ 0.0128

0.8782 + 0.0166

0.7735 £ 0.0273

TPoT

0.8711 £ 0.0130

0.8764 + 0.0176

0.9028 + 0.0125

0.6859 £+ 0.0290

Tm

0.9029 £ 0.0135

0.9039 £+ 0.0179

0.8679 £+ 0.0162

0.7709 £ 0.0245

Multi-Tm (96)

0.8773 £ 0.0202

0.8879 + 0.0090

0.8537 £ 0.0172

0.7097 £ 0.0402

Multi-Tm (128)

0.8891 £ 0.0203

0.8948 + 0.0101

0.8701 + 0.0195

0.7124 + 0.0488

Multi-Tm (256)

0.8997 £ 0.0246

0.9068 £+ 0.0095

0.8826 + 0.0208

0.7032 £ 0.0725

Efros&Leung

0.8746 £ 0.0239

0.8724 + 0.0262

0.8732 + 0.0412

0.6211 + 0.0582

Bi-FoE [4]

| 0.8769 £ 0.0163 | 0.8653 + 0.0244 | 0.9145 + 0.0125 | 0.6567 &+ 0.0205

Table 1: Sample means and standard deviations of the texture synthesis (top) TSS- and inpainting (bottom)
NCC-scores. We thank Nicolas Heess for providing the Bi-FoE results for the synthesis task. The inpainting
results for Bi-FoE [4] are shown for rough comparison/indicative purposes, as they were obtained using a slightly
different experimental setup. See supplementary material for the inpainting results w.r.t MSSIM and TSS.

D16

Figure 4: Synthesis (top block) and inpainting (bottom block) results. Example data patches/inpainting frames
(top row), and representative results for Tm-models (middle row) and a 128-feature multi-Tm (bottom row).

Jyri J. Kivinen, Christopher K. I. Williams

References

[1]
2]

[10]

[11]

[12]

[14]

C. M. Bishop. Pattern Recognition and Machine
Learning. Springer-Verlag, 2006.

A. A. Efros and T. K. Leung. Texture synthe-
sis by non-parametric sampling. In Proc Inter-
national Conference on Computer Vision (ICCV
1999), pages 1033-1038. 1999.

N. Heess. Learning generative models of mid-level
structure in natural images. PhD thesis, School
of Informatics, University of Edinburgh, 2011.

N. Heess, C.K.I. Williams, and G.E. Hinton.
Learning generative texture models with ex-
tended Fields-of-Experts. In BMVC, 2009.

A. Krizhevsky. Convolutional deep belief net-
works on CIFAR-10. Technical report, Dept of
Computer Science, University of Toronto, 2010.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng.
Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representa-
tions. In ICML. 20009.

V. Nair and G. E. Hinton. Implicit mixtures
of restricted Boltzmann machines. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, edi-
tors, Advances in Neural Information Processing
Systems 21, pages 1145-1152. 2009.

Neal, R. M. Bayesian Learning for Neural Net-
works. Springer, New York, 1996. Lecture Notes
in Statistics 118.

S. Osindero, M. Welling, and G. E. Hinton. Topo-
graphic product models applied to natural scene
statistics. Neural Computation, 18(2):381-414,
2006.

M. Ranzato, V. Mnih, and G. E. Hinton. Gen-
erating more realistic images using gated MRF’s.
In NIPS 25. 2010.

M. Ranzato, J. Susskind, V. Mnih, and G. E. Hin-
ton. On deep generative models with applications
to recognition. In CVPR. 2011.

S. Roth and M. J Black. Fields of Experts: A
framework for learning image priors. In CVPR,
pages II: 860-867, 2005.

T. Tieleman and G.E. Hinton. Using fast weights
to improve Persistent Contrastive Divergence. In
Proceedings of the 26th International Conference
on Machine learning, pages 1033-1040. ACM New
York, NY, USA, 2009.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli. Image quality assessment: From error
visibility to structural similarity. IFEE Transac-
tions on Image Processing, 13(4):600-612, 2004.

[15] S-C. Zhu, Y. Wu, and D. Mumford. Filters, ran-

dom fields and maximum entropy (FRAME): To-
wards a unified theory for texture modeling. Int.
J. Comput. Vision, 27(2):107-126, 1998.

