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Abstract

A wealth of computationally efficient approximation methods for Gaus-
sian process regression have been recently proposed. We give a unifying
overview of sparse approximations, following Quiñonero-Candela and Ras-
mussen (2005), and a brief review of approximate matrix-vector multipli-
cation methods.

1 Introduction

Gaussian processes (GPs) are flexible, simple to implement, fully probabilistic
methods suitable for a wide range of problems in regression and classification. A
recent overview of GP methods is provided by Rasmussen and Williams (2006).
Gaussian processes allow a Bayesian use of kernels for learning, with the follow-
ing two key advantages:

• GPs provide fully probabilistic predictive distributions, including esti-
mates of the uncertainty of the predictions.
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• The evidence framework applied to GPs allows to learn the parameters of
the kernel.

However, a serious problem with GP methods is that the näıve implemen-
tation requires computation which grows as O(n3), where n is the number of
training cases. A host of approximation techniques have recently been pro-
posed to allow application of GPs to large problems in machine learning. These
techniques can broadly be divided into two classes: 1) those based on sparse
methods, which approximate the full posterior by expressions involving matri-
ces of lower rank m < n, and 2) those relying on approximate matrix-vector
multiplication (MVM) conjugate gradient (CG) methods.

The structure of this paper is as follows: In section 2 we provide an overview
of Gaussian process regression. In section 3 we review sparse approximations un-
der the unifying view, recently proposed by Quiñonero-Candela and Rasmussen
(2005), based on inducing inputs and conditionally independent approximations
to the prior. Section 4 describes work on approximate MVM methods for GP
regression. The problem of selecting the inducing inputs is discussed in section
5. We address methods for setting hyperparameters in the kernel in section 6.
The main focus of the chapter is on GP regression, but in section 7 we briefly
describe how these methods can be extended to the classification problem. Con-
clusions are drawn in section 8.

2 Gaussian Process Regression

Probabilistic regression is usually formulated as follows: given a training set
D = {(xi, yi), i = 1, . . . , n} of n pairs of (vectorial) inputs xi and noisy (real,
scalar) outputs yi, compute the predictive distribution of the function values f∗
(or noisy y∗) at test locations x∗. In the simplest case (which we deal with here)
we assume that the noise is additive, independent and Gaussian, such that the
relationship between the (latent) function f(x) and the observed noisy targets
y are given by

yi = f(xi) + εi , where εi ∼ N (0, σ2

noise) , (1)

where σ2
noise

is the variance of the noise, and we use the notation N (a, A) for
the Gaussian distribution with mean a and covariance A.

Definition 1. A Gaussian process (GP) is a collection of random variables,
any finite number of which have consistent1 joint Gaussian distributions.

Gaussian process (GP) regression is a Bayesian approach which assumes a
GP prior2 over functions, i.e. that a priori the function values behave according
to

p(f |x1,x2, . . . ,xn) = N (0, K) , (2)

1The random variables obey the usual rules of marginalization, etc.
2For notational simplicity we exclusively use zero-mean priors.

2



where f = [f1, f2, . . . , fn]⊤ is a vector of latent function values, fi = f(xi) and K
is a covariance matrix, whose entries are given by the covariance function, Kij =
k(xi,xj). Valid covariance functions give rise to positive semidefinite covariance
matrices. In general, positive semidefinite kernels are valid covariance functions.
The covariance function encodes our assumptions about the the function we
wish to learn, by defining a notion of similarity between two function values, as
a function of the corresponding two inputs. A very common covariance function
is the Gaussian, or squared exponential:

Kij = k(xi,xj) = v2 exp
(

−
‖xi − xj‖

2

2λ2

)

, (3)

where v2 controls the prior variance, and λ is an isotropic lengthscale parameter
that controls the rate of decay of the covariance, i.e. determines how far away xi

must be from xj for fi to be unrelated to fj . We term the parameters that define
the covariance functions hyperparameters. Learning of the hyperparameters
based on data is discussed in section 6.

Note that the GP treats the latent function values fi as random variables,
indexed by the corresponding input. In the following, for simplicity we will
always neglect the explicit conditioning on the inputs; the GP model and all
expressions are always conditional on the corresponding inputs. The GP model
is concerned only with the conditional of the outputs given the inputs; we do
not model anything about the distribution of the inputs themselves.

As we will see in later sections, some approximations are strictly equivalent to
GPs, while others are not. That is, the implied prior may still be multivariate
Gaussian, but the covariance function may be different for training and test
cases.

Definition 2. A Gaussian process is called degenerate iff the covariance func-
tion has a finite number of non-zero eigenvalues.

Degenerate GPs (such as e.g. with polynomial covariance function) corre-
spond to finite linear (-in-the-parameters) models, whereas non-degenerate GPs
(such as e.g. the squared exponential or RBF covariance function) do not. The
prior for a finite m-dimensional linear model only considers a universe of at
most m linearly independent functions; this may often be too restrictive when
n ≫ m. Note however, that non-degeneracy on its own doesn’t guarantee the
existence of the “right kind” of flexibility for a given particular modelling task.
For a more detailed background on GP models, see for example Rasmussen and
Williams (2006).

Inference in the GP model is simple: we put a joint GP prior on training
and test latent values, f and f∗

3, and combine it with the likelihood p(y|f) using
Bayes’ rule, to obtain the joint posterior

p(f , f∗|y) =
p(f , f∗)p(y|f)

p(y)
, (4)

3We will mostly consider a vector of test cases f∗ (rather than a single f∗) evaluated at a
set of test inputs X∗.
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where y = [y1, . . . , yn] is the vector of training targets. The final step needed to
produce the desired posterior predictive distribution is to marginalize out the
unwanted training set latent variables:

p(f∗|y) =

∫

p(f , f∗|y)df =
1

p(y)

∫

p(y|f) p(f , f∗) df , (5)

or in words: the predictive distribution is the marginal of the renormalized joint
prior times the likelihood. The joint GP prior and the independent likelihood
are both Gaussian

p(f , f∗) = N
(

0,
[

Kf ,f K∗,f

Kf ,∗ K∗,∗

])

, and p(y|f) = N (f , σ2

noiseI) , (6)

where K is subscript by the variables between which the covariance is computed
(and we use the asterisk ∗ as shorthand for f∗) and I is the identity matrix. Since
both factors in the integral are Gaussian, the integral can be evaluated in closed
form to give the Gaussian predictive distribution

p(f∗|y) = N
(

K∗,f (Kf ,f +σ2

noiseI)
−1y, K∗,∗−K∗,f (Kf ,f +σ2

noiseI)
−1Kf ,∗

)

. (7)

The problem with the above expression is that it requires inversion of a matrix
of size n×n which requires O(n3) operations, where n is the number of training
cases. Thus, the simple exact implementation can handle problems with at most
a few thousand training cases on today’s desktop machines.

3 Sparse Approximations Based on Inducing Vari-
ables

To overcome the computational limitations of GP regression, numerous authors
have recently suggested a wealth of sparse approximations. Common to all
these approximation schemes is that only a subset of the latent variables are
treated exactly, and the remaining variables are given some approximate, but
computationally cheaper treatment. However, the published algorithms have
widely different motivations, emphasis and exposition, so it is difficult to get an
overview of how they relate to each other, and which can be expected to give
rise to the best algorithms.

A useful discussion of some of the approximation methods is given in chapter
8 of Rasmussen and Williams (2006). In this Section we go beyond this, and
provide a unifying view of sparse approximations for GP regression, following
Quiñonero-Candela and Rasmussen (2005). For each algorithm we analyze the
posterior, and compute the effective prior which it is using. Thus, we rein-
terpret the algorithms as “exact inference with an approximate prior”, rather
than the existing (ubiquitous) interpretation “approximate inference with the
exact prior”. This approach has the advantage of directly expressing the ap-
proximations in terms of prior assumptions about the function, which makes
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the consequences of the approximations much easier to understand. While this
view of the approximations is not the only one possible (Seeger, 2003, categorizes
sparse GP approximations according to likelihood approximations), it has the
advantage of putting all existing probabilistic sparse approximations under one
umbrella, thus enabling direct comparison and revealing the relation between
them.

We now seek to modify the joint prior p(f∗, f) from (6) in ways which will
reduce the computational requirements from (7). Let us first rewrite that prior
by introducing an additional set of m latent variables u = [u1, . . . , um]⊤, which
we call the inducing variables. These latent variables are values of the Gaussian
process (as also f and f∗), corresponding to a set of input locations Xu, which we
call the inducing inputs. Whereas the additional latent variables u are always
marginalized out in the predictive distribution, the choice of inducing inputs does
leave an imprint on the final solution. The inducing variables will turn out to
be generalizations of variables which other authors have referred to variously as
“support points”, “active set” or “pseudo-inputs”. Particular sparse algorithms
choose the inducing variables in various different ways; some algorithms chose
the inducing inputs to be a subset of the training set, others not, as we will
discuss in Section 5. For now consider any arbitrary inducing variables.

Due to the consistency of Gaussian processes, we know that we can recover
p(f∗, f) by simply integrating (marginalizing) out u from the joint GP prior
p(f∗, f ,u)

p(f∗, f) =

∫

p(f∗, f ,u) du =

∫

p(f∗, f |u) p(u) du,

where p(u) = N (0, Ku,u) .

(8)

This is an exact expression. Now, we introduce the fundamental approximation
which gives rise to almost all sparse approximations. We approximate the joint
prior by assuming that f∗ and f are conditionally independent given u, see Figure
1, such that

p(f∗, f) ≃ q(f∗, f) =

∫

q(f∗|u) q(f |u) p(u) du . (9)

The name inducing variable is motivated by the fact that f and f∗ can only com-
municate though u, and u therefore induces the dependencies between training
and test cases. As we shall detail in the following sections, the different compu-
tationally efficient algorithms proposed in the literature correspond to different
additional assumptions about the two approximate inducing conditionals q(f |u),
q(f∗|u) of the integral in (9). It will be useful for future reference to specify here
the exact expressions for the two conditionals

training conditional: p(f |u) = N (Kf ,uK−1

u,uu, Kf ,f − Qf ,f ) , (10a)

test conditional: p(f∗|u) = N (K∗,uK−1

u,uu, K∗,∗ − Q∗,∗) , (10b)

where we have introduced the shorthand notation4 Qa,b , Ka,uK−1
u,uKu,b. We

4Note, that Qa,b depends on u although this is not explicit in the notation.
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Figure 1: Graphical model of the relation between the inducing variables
u, the training latent functions values f = [f1, . . . , fn]⊤ and the test func-
tion value f∗. The thick horizontal line represents a set of fully connected
nodes. The observations y1, . . . , yn, y∗ (not shown) would dangle individ-
ually from the corresponding latent values, by way of the exact (factored)
likelihood (6). Upper graph: the fully connected graph corresponds to
the case where no approximation is made to the full joint Gaussian pro-
cess distribution between these variables. The inducing variables u are
superfluous in this case, since all latent function values can communicate
with all others. Lower graph: assumption of conditional independence

between training and test function values given u. This gives rise to
the separation between training and test conditionals from (9). Notice
that having cut the communication path between training and test latent
function values, information from f can only be transmitted to f∗ via the
inducing variables u.

can readily identify the expressions in (10) as special (noise free) cases of the
standard predictive equation (7) with u playing the role of (noise free) observa-
tions. Note that the (positive semidefinite) covariance matrices in (10) have the
form K − Q with the following interpretation: the prior covariance K minus a
(non-negative definite) matrix Q quantifying how much information u provides
about the variables in question (f or f∗). We emphasize that all the sparse
methods discussed in this chapter correspond simply to different approxima-
tions to the conditionals in (10), and throughout we use the exact likelihood
and inducing prior

p(y|f) = N (f , σ2

noiseI) , and p(u) = N (0, Ku,u) . (11)

The sparse approximations we present in the following subsections are sys-
tematically sorted by decreasing crudeness of the additional approximations to
the training and test conditionals. We will present the subset of data (SoD),
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subset of regressors (SoR), deterministic training conditional (DTC), and the
partially and fully independent training conditional (PITC, and FITC) approx-
imations.

3.1 The Subset of Data (SoD) Approximation

Before we get started with the more sophisticated approximations, we mention
as a baseline method the simplest possible sparse approximation (which doesn’t
fall inside our general scheme): use only a subset of the data (SoD). The compu-
tational complexity is reduced to O(m3), where m < n. We would not generally
expect SoD to be a competitive method, since it would seem impossible (even
with fairly redundant data and a good choice of the subset) to get a realistic
picture of the uncertainties when only a part of the training data is even consid-
ered. We include it here mostly as a baseline against which to compare better
sparse approximations.

We will illustrate the various sparse approximations on a toy dataset, as
illustrated in Figure 4. There are n = 100 datapoints in 1-D, but for the sparse
methods we have randomly selected m = 10 of these data points. The target
function is given by sin(x)/x with additive, independent, identically distributed
Gaussian noise of amplitude 0.2. The training inputs lie on a uniform grid in
[−10, 10]. For the predictions we have used a squared exponential (SE) covari-
ance function (equation 3), with slightly too short a lengthscale λ = 1.2, chosen
so as to emphasize the different behaviours, and with amplitude v2 = 0.7. Fig-
ure 4 top left shows the predictive mean and two standard deviation error bars
obtained with the full dataset. The 500 test inputs lie on a uniform grid in
[−14, 14].

In Figure 4 top right, we see how the SoD method produces wide predic-
tive distributions when training on a randomly selected subset of 10 cases. A
fair comparison to other methods would take into account that the computa-
tional complexity is independent of n as opposed to other more advanced meth-
ods. These extra computational resources could be spent in a number of ways,
e.g. larger m, or an active (rather than random) selection of the m points. In
this Chapter we will concentrate on understanding the theoretical foundations
of the various approximations rather than investigating the necessary heuristics
needed to turn the approximation schemes into practical algorithms.

3.2 The Subset of Regressors (SoR)

SoR models are finite linear-in-the-parameters models with a particular prior
on the weights. For any input x∗, the corresponding function value f∗ is given
by:

f∗ =

m
∑

i=1

k(x∗,x
i
u
)wi

u
= K∗,u wu , with p(wu) = N (0, K−1

u,u) , (12)

where there is one weight associated with each inducing input in Xu. Note that
the covariance matrix for the prior on the weights is the inverse of that on u,
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such that we recover the exact GP prior on u, which is Gaussian with zero mean
and covariance

u = Ku,u wu ⇒ 〈uu⊤〉 = Ku,u〈wu w⊤

u 〉Ku,u = Ku,u . (13)

Using the effective prior on u and the fact that wu = K−1
u,u u we can redefine

the SoR model in an equivalent, more intuitive way:

f∗ = K∗,u K−1

u,u u , with u ∼ N (0, Ku,u) . (14)

The Subset of Regressors (SoR) algorithm was proposed in Wahba (1990,
chapter 7), and in Poggio and Girosi (1990, eq. 25) via the regularization
framework. It was adapted by Smola and Bartlett (2001) to propose a sparse
greedy approximation to Gaussian process regression.

We are now ready to integrate the SoR model in our unifying framework.
Given that there is a deterministic relation between any f∗ and u, the approxi-
mate conditional distributions in the integral in (9) are given by:

q
SoR

(f |u) = N (Kf ,u K−1

u,u u, 0) , and q
SoR

(f∗|u) = N (K∗,u K−1

u,u u, 0) ,

(15)

with zero conditional covariance, compare to (10). The effective prior implied
by the SoR approximation is easily obtained from (9), giving

q
SoR

(f , f∗) = N
(

0,
[ Qf ,f Qf ,∗

Q∗,f Q∗,∗

])

, (16)

where we recall Qa,b , Ka,uK−1
u,uKu,b. A more descriptive name for this

method, would be the Deterministic Inducing Conditional (DIC) approximation.
We see that this approximate prior is degenerate. There are only m degrees of
freedom in the model, which implies that only m linearly independent functions
can be drawn from the prior. The m + 1-th one is a linear combination of the
previous ones. For example, in a very low noise regime, the posterior could be
severely constrained by only m training cases.

The degeneracy of the prior can cause unreasonable predictive distributions.
For covariance functions that decay to zero for a pair of faraway inputs, it is
immediate to see that Q∗,∗ will go to zero when the test inputs X∗ are far away
from the inducing inputs Xu. As a result, f∗ will have no prior variance under
the approximate prior (16), and therefore the predictive variances will tend to
zero as well far from the inducing inputs. This is unreasonable, because the
area around the inducing inputs is where we are gathering the most informa-
tion about the training data: we would like to be most uncertain about our
predictions when far away from the inducing inputs. For covariance functions
that do not decay to zero, the approximate prior over functions is still very
restrictive, and given enough data only a very limited family of functions will
be plausible under the posterior, leading to overconfident predictive variances.
This is a general problem of finite linear models with small numbers of weights
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(for more details see Rasmussen and Quiñonero-Candela, 2005). Figure 4, mid-
dle left panel, illustrates the unreasonable predictive uncertainties of the SoR
approximation on a toy dataset.5

The predictive distribution is obtained by using the SoR approximate prior
(16) instead of the true prior in (5). For each algorithm we give two forms of
the predictive distribution, one which is easy to interpret, and the other which
is economical to compute with:

q
SoR

(f∗|y) = N
(

Q∗,f (Qf ,f + σ2

noiseI)
−1y,

Q∗,∗ − Q∗,f (Qf ,f + σ2

noiseI)
−1Qf ,∗

)

, (17a)

= N
(

σ−2K∗,uΣKu,f y, K∗,uΣKu,∗

)

, (17b)

where we have defined Σ = (σ−2Ku,fKf ,u + Ku,u)−1. Equation (17a) is readily
recognized as the regular prediction equation (7), except that the covariance
K has everywhere been replaced by Q, which was already suggested by (16).
This corresponds to replacing the covariance function k with k

SoR
(xi,xj) =

k(xi,u)K−1
u,uk(u,xj). The new covariance function has rank (at most) m. Thus

we have the following

Remark 3. The SoR approximation is equivalent to exact inference in the de-
generate Gaussian process with covariance function k

SoR
(xi,xj) = k(xi,u)K−1

u,uk(u,xj).

The equivalent (17b) is computationally cheaper, and with (12) in mind,
Σ is the covariance of the posterior on the weights wu. Note that as opposed
to the subset of data method, all training cases are taken into account. The
computational complexity is O(nm2) initially, and O(m) and O(m2) per test
case for the predictive mean and variance respectively.

3.3 The Deterministic Training Conditional (DTC) Ap-
proximation

Taking up ideas contained in the work of Csató and Opper (2002), Seeger et al.
(2003) recently proposed another sparse approximation to Gaussian process
regression, which does not suffer from the nonsensical predictive uncertainties
of the SoR approximation, but that interestingly leads to exactly the same
predictive mean. Seeger et al. (2003), who called the method Projected Latent
Variables (PLV), presented the method as relying on a likelihood approximation,
based on the projection f = Kf ,u K−1

u,u u:

p(y|f) ≃ q(y|u) = N (Kf ,u K−1

u,u u, σ2

noiseI) . (18)

The method has also been called the Projected Process Approximation (PPA) by
Rasmussen and Williams (2006, Chapter 8). One way of obtaining an equivalent

5Wary of this fact, Smola and Bartlett (2001) propose using the predictive variances of
the SoD method, or a more accurate but computationally costly alternative (more details are
given in Quiñonero-Candela, 2004, Chapter 3).
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model is to retain the usual likelihood, but to impose a deterministic training
conditional and the exact test conditional from (10b)

q
DTC

(f |u) = N (Kf ,u K−1

u,u u,0), and q
DTC

(f∗|u) = p(f∗|u) . (19)

This reformulation has the advantage of allowing us to stick to our view of
exact inference (with exact likelihood) with approximate priors. Indeed, under
this model the conditional distribution of f given u is identical to that of the
SoR, given in the left of (15). In this framework a systematic name for this
approximation is the Deterministic Training Conditional (DTC).

The fundamental difference with SoR is that DTC uses the exact test condi-
tional (10b) instead of the deterministic relation between f∗ and u of SoR. The
joint prior implied by DTC is given by:

q
DTC

(f , f∗) = N
(

0,
[

Qf ,f Qf ,∗

Q∗,f K∗,∗

])

, (20)

which is surprisingly similar to the effective prior implied by the SoR approxi-
mation (16). The difference is that under the DTC approximation f∗ has a prior
variance of its own, given by K∗,∗. This prior variance reverses the behaviour
of the predictive uncertainties, and turns them into sensible ones, see Figure 4,
middle right, for an illustration.

The predictive distribution is now given by:

q
DTC

(f∗|y) = N
(

Q∗,f (Qf ,f + σ2

noiseI)
−1y,

K∗,∗ − Q∗,f (Qf ,f + σ2

noiseI)
−1Qf ,∗

)

, (21a)

= N
(

σ−2K∗,uΣKu,f y, K∗,∗ − Q∗,∗ + K∗,uΣK⊤

∗,u

)

, (21b)

where again we have defined Σ = (σ−2Ku,fKf ,u + Ku,u)−1 as in (17). The
predictive mean for the DTC is identical to that of the SoR approximation
(17), but the predictive variance replaces the Q∗,∗ from SoR with K∗,∗ (which
is larger, since K∗,∗ − Q∗,∗ is positive semidefinite). This added term is the
predictive variance of the posterior of f∗ conditioned on u. It grows to the prior
variance K∗,∗ as x∗ moves far from the inducing inputs in Xu.

Remark 4. The only difference between the predictive distribution of DTC and
SoR is the variance. The predictive variance of DTC is never smaller than that
of SoR.

Note, that since the covariances for training cases and test cases are com-
puted differently, see (20), it follows that

Remark 5. The DTC approximation does not correspond exactly to a Gaussian
process,

as the covariance between latent values depends on whether they are considered
training or test cases, violating consistency, see Definition 1. The computational
complexity has the same order as for SoR.
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3.4 Partially Independent Training Conditional Approxi-
mations

The sparse approximations we have seen so far, SoR and DTC, both impose a
deterministic relation between the training and inducing latent variables, result-
ing in inducing training conditionals where the covariance matrix has been set
to zero, (15) and (19). A less crude approximation to the training conditional
is to preserve a block-diagonal of the true covariance matrix, given by (10a),
and set the remaining entries to zero. The corresponding graphical model is
shown in Figure 2; notice that the variables in f are divided into k groups.
Each group corresponds to a block in the block-diagonal matrix. This structure
is equivalent to assuming conditional independence only for part of the training
function values (those with covariance set to zero). We call this the partially
independent training conditional (PITC) approximation:

q
PITC

(f |u) = N
(

Kf ,u K−1

u,u u, blockdiag[Kf ,f − Qf ,f ]
)

,

and q
PITC

(f∗|u) = p(f∗|u) .
(22)

where blockdiag[A] is a block-diagonal matrix (where the blocking structure
is not explicitly stated). For now, we consider one single test input given by
the exact test conditional (10b). As we discuss later in this section, the joint
test conditional can also be approximated in various ways. The effective prior
implied by the PITC approximation is given by

q
PITC

(f , f∗) = N
(

0,
[

Qf ,f − blockdiag[Qf ,f − Kf ,f ] Qf ,∗

Q∗,f K∗,∗

])

, (23)

Note, that the sole difference between the DTC and PITC is that in the top
left corner of the implied prior covariance, PITC replaces the approximate co-
variances of DTC by the exact ones on the block-diagonal. The predictive
distribution is

q
FITC

(f∗|y) = N
(

Q∗,f (Qf ,f + Λ)−1y, K∗,∗ − Q∗,f (Qf ,f + Λ)−1Qf ,∗

)

(24a)

= N
(

K∗,uΣKu,fΛ
−1y, K∗,∗ − Q∗,∗ + K∗,uΣKu,∗

)

, (24b)

where we have defined Σ = (Ku,u + Ku,fΛ
−1Kf ,u)−1 and Λ = blockdiag[Kf ,f −

Qf ,f + σ2
noise

I ]. An identical expression was obtained by Schwaighofer and
Tresp (2003, Sect. 3), developed from the original Bayesian Committee Machine
(BCM) of Tresp (2000). The BCM was originally proposed as a transductive
learner (i.e. where the test inputs have to be known before training), and the
inducing inputs Xu were chosen to be the test inputs.

However, it is important to realize that the BCM proposes two orthogonal
ideas: first, the block-diagonal structure of the partially independent training
conditional, and second setting the inducing inputs to be the test inputs. These
two ideas can be used independently and in Section 5 we propose using the first
without the second.
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Figure 2: Graphical representation of the PITC approximation. The set
of latent function values fIi

indexed by the the set of indices Ii is fully
connected. The PITC is more general than the FITC, (see graph in Fig. 3)
in that conditional independence is between k groups of training latent
function values. This corresponds to the block-diagonal approximation to
the true training conditional given in (22).

The computational complexity of the PITC approximation depends on the
blocking structure imposed in (22). A reasonable choice, also recommended by
Tresp (2000) may be to choose k = n/m blocks, each of size m × m. The com-
putational complexity is thus O(nm2). Since in the PITC model, the covariance
is computed differently for training and test cases we have

Remark 6. The PITC approximation does not correspond exactly to a Gaussian
process.

This is because computing covariances requires knowing whether points are
from the training- or test-set, (23). To obtain a Gaussian process from the
PITC, one would need to extend the partial conditional independence assump-
tion to the joint conditional p(f , f∗|u), which would require abandoning our pri-
mal assumption that the training and the test function values are conditionally
independent, given the inducing variables.

Fully Independent Training Conditional Recently Snelson and Ghahra-
mani (2006) proposed another likelihood approximation to speed up Gaussian
process regression, which they called Sparse Pseudo-input Gaussian processes
(SPGP). While the DTC is based on the likelihood approximation given by (18),
the SPGP proposes a more sophisticated likelihood approximation with a richer
covariance

p(y|f) ≃ q(y|u) = N (Kf ,u K−1

u,u u, diag[Kf ,f − Qf ,f ] + σ2

noiseI) , (25)

where diag[A] is a diagonal matrix whose elements match the diagonal of A. As
was pointed out by Csató (2005), the SPGP is an extreme case of the PITC
approximation, where the training conditional is taken to be fully independent.
We call it the Fully Independent Training Conditional (FITC) approximation.
The corresponding graphical model is given in Figure 3. The effective prior
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Figure 3: Graphical model for the FITC approximation. Compared
to those in Figure 1, all edges between latent function values have been
removed: the latent function values are conditionally fully independent
given the inducing variables u. Although strictly speaking the SoR and
DTC approximations could also be represented by this graph, note that
both further assume a deterministic relation between f and u. The FITC
is an extreme case of PITC, with k = n unitary groups (blocks), see
Figure 2

implied by the FITC is given by

q
FITC

(f , f∗) = N
(

0,
[ Qf ,f − diag[Qf ,f − Kf ,f ] Qf ,∗

Q∗,f K∗,∗

])

, (26)

and we see that in contrast to PITC, FITC only replaces the approximate
covariances of DTC by the exact ones on the diagonal, i.e. the approximate
prior variances are replaced by the true prior variances.

The predictive distribution of the FITC is identical to that of PITC (24),
except for the alternative definition of Λ = diag[Kf ,f − Qf ,f + σ2

noise
I ]. The

computational complexity is identical to that of SoR and DTC.
The question poses itself again for FITC, of how to treat the test conditional.

For predictions at a single test input, this is obvious. For joint predictions, there
are two options, either 1) use the exact full test conditional from (10b), or 2)
extend the additional factorizing assumption to the test conditional. Although
Snelson and Ghahramani (2006) don’t explicitly discuss joint predictions, it
would seem that they probably intend the second option. Whereas the addi-
tional independence assumption for the test cases is not really necessary for
computational reasons, it does affect the nature of the approximation. Under
option 1) the training and test covariance are computed differently, and thus
this does not correspond to our strict definition of a GP model, but

Remark 7. Iff the assumption of full independence is extended to the test con-
ditional, the FITC approximation is equivalent to exact inference in a non-
degenerate Gaussian process with covariance function k

FIC
(xi,xj) = k

SoR
(xi,xj)+

δi,j [k(xi,xj) − k
SoR

(xi,xj)],

where δi,j is Kronecker’s delta. A logical name for the method where the
conditionals (training and test) are always forced to be fully independent would

13



be the Fully Independent Conditional (FIC) approximation. The effective prior
implied by FIC is:

q
FIC

(f , f∗) = N
(

0,
[ Qf ,f − diag[Qf ,f − Kf ,f ] Qf ,∗

Q∗,f Q∗,∗ − diag[Q∗,∗ − K∗,∗]

])

.

(27)

In Figure 4, bottom, we show the behaviour of the predictive distribution of
FITC, and PITC (with 10 uniform blocks).

Summary of sparse approximations In the table below we give a summary
of the way approximations are built. All these methods have been detailed in the
previous subsections. The initial cost and that of the mean and variance per test
case are respectively n3, n and n2 for the exact GP, and nm2, m and m2 for all
other listed methods. The “GP?” column indicates whether the approximation
is equivalent to a GP. For FITC see Remark 7. Recall that we have defined
Qa,b , Ka,uK−1

u,uKu,b.

Method q(f∗|u) q(f |u) joint prior covariance GP?

GP exact exact

[

Kf ,f Kf ,∗

K∗,f K∗,∗

] √

SoR determ. determ.

[

Qf ,f Qf ,∗

Q∗,f Q∗,∗

] √

DTC exact determ.

[

Qf ,f Qf ,∗

Q∗,f K∗,∗

]

FITC (exact) fully indep.

[

Qf ,f − diag[Qf ,f − Kf ,f ] Qf ,∗

Q∗,f K∗,∗

]

(
√

)

PITC exact partially indep.

[

Qf ,f − blokdiag[Qf ,f − Kf ,f ] Qf ,∗

Q∗,f K∗,∗

]

14
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Figure 4: Toy data. All methods use the squared exponential covariance
function, and a slightly too short lengthscale, chosen on purpose to em-
phasize the different behaviour of the predictive uncertainties. The dots
are the training points, the crosses are the targets corresponding to the
inducing inputs, randomly selected from the training set. The solid line
is the mean of the predictive distribution, and the dotted lines show the
95% confidence interval of the predictions. We include a full GP (top left)
for reference.
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4 Fast Matrix Vector Multiplication (MVM) Ap-
proximations

One straightforward method to speed up GP regression is to note that linear
system (Kf ,f +σ2

noise
I)α = y can be solved by an iterative method, for example

conjugate gradients (CG). (See Golub and Van Loan (1989, sec. 10.2) for further
details on the CG method.) Each iteration of the CG method requires a matrix-
vector multiplication (MVM) which takes O(n2) time. Conjugate gradients
gives the exact solution (ignoring round-off errors) if run for n iterations, but
it will give an approximate solution if terminated earlier, say after k iterations,
with time complexity O(kn2). The CG method has been suggested by Wahba
et al. (1995) (in the context of numerical weather prediction) and by Gibbs and
MacKay (1997) (in the context of general GP regression).

However, the scaling of the CG method (at least O(n2)) is too slow to really
be useful for large problems. Recently a number of researchers have noted
that if the MVM step can be approximated efficiently then the CG method
can be speeded up. Each CG iteration involves an MVM of the form a =
(Kf ,f + σ2

noise
I)v, which requires n inner products ai =

∑n

j=1
k(xi,xj)vj . Each

ai is a weighted sum of kernels between source points {xj} and target point
xi. Such sums can be approximated using multi-resolution space-partitioning
data structures. For example Shen et al. (2006) suggest a simple approximation
using a k-d tree, and while Gray (2004) and Freitas et al. (2006) make use of
dual trees. The Improved Fast Gauss Transform (IFGT) (Yang et al., 2005)
is another method for approximating the weighted sums. It is specific to the
Gaussian kernel and uses a more sophisticated approximation based on Taylor
expansions. Generally experimental results show that these fast MVM methods
are most effective when the input space is low dimensional.

Notice that these methods for accelerating the weighted sum of kernel func-
tions can also be used at test time, and may be particularly helpful when n is
large.

5 Selecting the Inducing Variables

We have until now assumed that the inducing inputs Xu were given. Tra-
ditionally, sparse models have very often been built upon a carefully chosen
subset of the training inputs. This concept is probably best exemplified in the
popular support vector machine (SVM) (Cortes and Vapnik, 1995). The re-
cent work by Keerthi et al. (2006) seeks to further sparsify the SVM. In sparse
Gaussian processes, it has also been suggested to select the inducing inputs Xu

from among the training inputs. Since this involves a prohibitive combinato-
rial optimization, greedy optimization approaches have been suggested using
various selection criteria like online learning (Csató and Opper, 2002), greedy
posterior maximization (Smola and Bartlett, 2001), maximum information gain
(Lawrence et al., 2003; Seeger et al., 2003), matching pursuit (Keerthi and Chu,
2006), and others. As discussed in Section 3.4, selecting the inducing inputs
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from among the test inputs has also been considered in transductive settings
by Tresp (2000). Recently, Snelson and Ghahramani (2006) have proposed to
relax the constraint that the inducing variables must be a subset of training/test
cases, turning the discrete selection problem into one of continuous optimiza-
tion. One may hope that finding a good solution is easier in the continuous
than the discrete case, although finding the global optimum is intractable in
both cases. And it is possible that the less restrictive choice can lead to better
performance in very sparse models.

Which criterion should be used to set the inducing inputs? Departing from
a fully Bayesian treatment which would involve defining priors on Xu, one could
maximize the marginal likelihood (also called the evidence) with respect to Xu,
an approach also followed by Snelson and Ghahramani (2006). Each of the
approximate methods proposed involves a different effective prior, and hence its
own particular effective marginal likelihood conditioned on the inducing inputs

q(y|Xu) =

∫∫

p(y|f) q(f |u) p(u|Xu)dudf =

∫

p(y|f) q(f |Xu)df , (28)

which of course is independent of the test conditional. We have in the above
equation explicitly conditioned on the inducing inputs Xu. Using Gaussian
identities, the effective marginal likelihood is very easily obtained by adding a
ridge σ2

noise
I (from the likelihood) to the covariance of effective prior on f . Using

the appropriate definitions of Λ, the log marginal likelihood becomes

log q(y|Xu) = − 1

2
log |Qf ,f + Λ| − 1

2
y⊤(Qf ,f + Λ)−1y − n

2
log(2π) , (29)

where ΛSoR = ΛDTC = σ2
noise

I, ΛFITC = diag[Kf ,f − Qf ,f ] + σ2
noise

I, and
ΛPITC = blockdiag[Kf ,f−Qf ,f ]+σ2

noise
I. The computational cost of the marginal

likelihood is O(nm2) for all methods, that of its gradient with respect to one
element of Xu is O(nm). This of course implies that the complexity of comput-
ing the gradient wrt. to the whole of Xu is O(dnm2), where d is the dimension
of the input space.

It has been proposed to maximize the effective posterior instead of the effec-
tive marginal likelihood (Smola and Bartlett, 2001). However, this is potentially
dangerous and can lead to overfitting. Maximizing the whole evidence instead
is sound and comes at an identical computational cost (for a deeper analysis,
see Quiñonero-Candela, 2004, Sect. 3.3.5 and Fig. 3.2).

The marginal likelihood has traditionally been used to learn the hyperpa-
rameters of GPs, in the non fully Bayesian treatment (see for example Williams
and Rasmussen, 1996). For the sparse approximations presented here, once you
are learning Xu it is straightforward to allow for learning hyperparameters (of
the covariance function) during the same optimization. For methods that select
Xu from the training data, one typically interleaves optimization of the hyper-
parameters with with selection of Xu, as proposed for example by Seeger et al.
(2003).
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Augmentation Since in the previous sections, we haven’t assumed anything
about u, for each test input x∗ in turn, we can simply augment the set of in-
ducing variables by f∗, so that we have one additional inducing variable equal
to the current test latent. Let us first investigate the consequences for the test
conditional from (10b). Note that the interpretation of the covariance matrix
K∗,∗ − Q∗,∗ was “the prior covariance minus the information which u provides
about f∗”. It is clear that the augmented u (with f∗) provides all possible
information about f∗, and consequently Q∗,∗ = K∗,∗. An equivalent view on
augmentation is that the assumption of conditional independence between f∗
and f is dropped. This is seen trivially, by adding edges between f∗ and the
fi. Because f∗ enjoys a full, original prior variance under the test conditional,
augmentation helps reverse the misbehaviour of the predictive variances of de-
generate GP priors, see (Quiñonero-Candela and Rasmussen, 2005, Section 8.1)
for the details. Augmented SoR and augmented DTC are identical models (see
Quiñonero-Candela and Rasmussen, 2005, Remark 12).

Augmentation was originally proposed by Rasmussen (2002), and applied in
detail to the SoR with RBF covariance by Quiñonero-Candela (2004). Later,
Rasmussen and Quiñonero-Candela (2005) proposed to use augmentation to
“heal” the relevance vector machine (RVM) (Tipping, 2000), which is also equiv-
alent to a degenerate GP with nonsensical predictive variances that shrink to
zero far away from the training inputs (Tipping, 2001, Appendix D). Although
augmentation was initially proposed for a narrow set of circumstances, it is eas-
ily applied to any of the approximations discussed. Of course, augmentation
doesn’t make any sense for an exact, non-degenerate Gaussian process model (a
GP with a covariance function that has a feature-space which is infinite dimen-
sional, i.e. with basis functions everywhere).

Prediction with an augmented sparse model comes at a higher computational
cost, since now f∗ interacts directly with all of f , and not just with u. For each
new test point O(nm) operations are required, as opposed to O(m) for the mean,
and O(m2) for the predictive distribution of all the non-augmented methods
we have discussed. Whether augmentation is of practical interest (i.e. increases
performance at a fixed computational budget) is unclear, since the extra compu-
tational effort needed for augmentation could be invested by the non-augmented
methods, for example to use more inducing variables.

6 Approximate Evidence and Hyperparameter
Learning

Hyperparameter learning is an issue that is sometimes completely ignored in
the literature on approximations to GPs. However, learning good values of the
hyperparameters is crucial, and it might come at a high computational cost that
cannot be ignored. For clarity, let us distinguish between three phases in GP
modelling:

hyperparameter learning: the hyperparameters are learned, by for example
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maximizing the log marginal likelihood.

pre-computation: all possible pre-computations not involving test inputs are
performed (such as inverting the covariance matrix of the training function
values, and multiplying it by the vector of targets).

testing: only the computations involving the test inputs are made, which could
not have been made previously.

If approximations to GP regression are to provide a computational speedup,
then one must, in principle, take into account all three phases of GP modelling.

Let us for a moment group hyperparameter learning and pre-computations
into a wider training phase. In practice, there will be situations where one
of the two times, training or testing, is more important than the other. Let
us distinguish between two extreme scenarios. One the one hand, there are
applications for which training time is unimportant, the crucial point being that
the time required to make predictions, once the system has been trained, is really
small. An example could be applications embedded in a portable device, with
limited CPU power. At the other extreme are applications where the system
needs to be re-trained often and quickly, and where prediction time matters
much less than the quality of the predictions. An example could be a case where
we know already that we will only need to make very few predictions, hence
training time automatically becomes predominant. A particular application
might lie somewhere between these two extremes.

A common choice of objective function for setting the hyperparameters is the
marginal likelihood p(y|X). For GP regression, this can be computed exactly
(by integrating out f analytically) to obtain

log p(y|X) = − 1

2
log |Kf ,f +σ2

noiseI|−
1

2
y⊤(Kf ,f +σ2

noiseI)
−1y− n

2
log(2π) . (30)

Also, the derivative of the marginal likelihood with respect to a hyperparameter
θj is given by

∂

∂θj

log p(y|X) = − 1

2
y⊤R−1

∂R

∂θj

R−1y − 1

2
tr

(

R−1
∂R

∂θj

)

, (31)

where R = (Kf ,f + σ2
noise

I), and tr(A) denotes the trace of matrix A. These
derivatives can then be fed to a gradient-based optimization routine. The
marginal likelihood is not the only criterion that can be used for hyperparam-
eter optimization. For example one can use a cross-validation objective; see
Rasmussen and Williams (2006, chapter 5) for further details.

The approximate log marginal likelihood for the SoR, DTC, FITC and PITC
approximations is given in equation (29), taking time O(nm2). For the SoD
approximation one simply ignores all training datapoints not in the inducing
set, giving

log q
SoD

(y|Xu) = − 1

2
log |Ku,u + σ2

noise I| − 1

2
y⊤

u
(Ku,u + σ2

noise I)−1yu

− m
2

log(2π) ,
(32)
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where the inducing inputs Xu are a subset of the training inputs, and yu are the
corresponding training targets. The computational cost here is O(m3), instead
of the O(n3) operations needed to compute the evidence of the full GP model.
For all of these approximations one can also calculate derivatives with respect
to the hyperparameters analytically, for use in a gradient-based optimizer.

In general we believe that for a given sparse approximation it makes most
sense to both optimize the hyperparameters and make predictions under the
same approximation (Quiñonero-Candela, 2004, Chapter 3). The hyperparam-
eters that are optimal for the full GP model, if we were able to obtain them,
may also well be very different from those optimal for a specific sparse approx-
imation. For example, for the squared exponential covariance function, see (3),
the lengthscale optimal for the full GP might be too short for a very sparse ap-
proximation. Certain sparse approximations lead to marginal likelihoods that
are better behaved than others. Snelson and Ghahramani (2006) report that
the marginal likelihood of FITC suffers much less from local maxima than the
marginal likelihood common to SoR and DTC.

Gibbs and MacKay (1997) discussed how the marginal likelihood and its
derivatives can be approximated using CG iterative methods, building on ideas
in Skilling (1993). It should be possible to speed up such computations using
the fast MVM methods outlined in section 4.

7 Classification

Compared with the regression case, the approximation methods for GP classifi-
cation need to deal with an additional difficulty: the likelihood is non-Gaussian,
which implies that neither the predictive distribution (5), nor the marginal like-
lihood can be computed analytically. With the approximate prior at hand, the
most common approach is to further approximate the resulting posterior, p(f |y),
by a Gaussian. It can be shown that if p(y|f) is log-concave then the posterior
will be unimodal; this is the case for the common logistic and probit response
functions. (For a review of likelihood functions for GP classification, see Ras-
mussen and Williams (2006, Chapter 3).) An evaluation of different, common
ways of determining the approximating Gaussian has been made by Kuss and
Rasmussen (2005).

For the subset of regressors (SoR) method we have f∗ =
∑m

i=1
k(x∗,x

i
u)wi

u

with wu ∼ N (0, K−1
u,u) from (12). For log-concave likelihoods, the optimization

problem to find the maximum a posteriori (MAP) value of wu is convex. Using
the MAP value of the weights together with the Hessian at this point, we obtain
an approximate Gaussian predictive distribution of f∗, which can be fed through
the sigmoid function to yield probabilistic predictions. The question of how to
choose the inducing inputs still arises; Lin et al. (2000) select these using a
clustering method, while Zhu and Hastie (2002) propose a forward selection
strategy.

The subset of data (SoD) method for GP classification was proposed by
Lawrence et al. (2003), using an expectation-propagation (EP) approximation
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to the posterior (Minka, 2001), and an information gain criterion for greedily
selecting the inducing inputs from the training set.

The deterministic training conditional (DTC) approximation has also been
used for classification. Csató and Opper (2002) present and “online” method,
where the examples are processed sequentially, while Csató et al. (2003) give an
EP type algorithm where multiple sweeps across the data are permitted.

The partially independent training conditional (PITC) approximation has
also been applied to GP classification. Tresp (2000) generalized the use of the
Bayesian committee machine (BCM) to non-Gaussian likelihoods, by applying
a Laplace approximation to each of the partially independent blocks.

8 Conclusions

In this chapter we have reviewed a number of methods for dealing with the
O(n3) scaling of a näıve implementation of Gaussian process regression methods.
These can be divided into two classes, those based on sparse methods, and
those based on fast MVM methods. We have also discussed the selection of
inducing variables, hyperparameter learning, and approximation methods for
the marginal likelihood.

Probably the question that is most on the mind of the practitioner is “what
method should I use on my problem?” Unfortunately this is not an easy ques-
tion to answer, as it will depend on various aspects of the problem such as the
complexity of the underlying target function, the dimensionality of the inputs,
the amount of noise on the targets, etc. There has been some empirical work
on the comparison of approximate methods, for example in Schwaighofer and
Tresp (2003) and Rasmussen and Williams (2006, chapter 8) but more needs
to be done. Empirical evaluation is not easy, as there exist very many criteria
of comparison, under which different methods might perform best. There is
a large choice of the measures of performance: mean squared error, negative
log predictive probability, etc., and an abundance of possible measures of speed
for the approximations: hyperparameter learning time, pre-computation time,
testing time, number of inducing variables, number of CG iterations, etc. One
possible approach for empirical evaluation of computationally efficient approx-
imations to GPs is to fix a “computational budget” of available time, and see
which approximation achieves the best performance (under some loss) within
that time. Empirical comparisons should always include approximations that
at first sight might seem to simple or näıve, such as subset of data (SoD), but
that might end up performing as well as more elaborate methods.
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