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Abstract

We consider data which are images containing views of multi-

ple objects. Our task is to learn about each of the objects present

in the images. This task can be approached as a factorial learning

problem, where each image must be explained by instantiating a

model for each of the objects present with the correct instan-

tiation parameters. A major problem with learning a factorial

model is that as the number of objects increases, there is a com-

binatorial explosion of the number of configurations that need to

be considered. We develop a method to extract object models
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sequentially from the data by making use of a robust statistical

method, thus avoiding the combinatorial explosion, and present

results showing successful extraction of objects from real images.

1 Introduction

In this paper we consider data which are images containing views of multiple

objects. Our task is to learn about each of the objects present in the im-

ages. Previous approaches (discussed in more detail below) have approached

this as a factorial learning problem, where each image must be explained by

instantiating a model for each of the objects present with the correct instan-

tiation parameters. By factorial learning we mean a situation where multiple

causes (factors) are needed to explain the data (image)1. A serious concern

with the factorial learning problem is that as the number of objects increases,

there is a combinatorial explosion of the number of configurations that need

to be considered. Suppose there are L possible objects, and that there are J

possible values that the instantiation parameters of any one object can take

on; we will need to consider O(JL) combinations to explain any image. In

contrast, in our approach we find one object at a time, thus avoiding the

combinatorial explosion.

In unsupervised learning we aim to identify regularities in data such as

images. One fairly simple unsupervised learning model is clustering, which

can be viewed as a mixture model where there are a finite number of types

1This is the same terminology as used in the factor analysis model from

statistics, although that model uses linear/Gaussian assumptions.
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of object, and data is produced by choosing one of these objects and then

generating the data conditional on this choice. As a means of discovering

objects in images standard clustering approaches are limited as they do not

take into account the variability that can arise due to translations, rotations

etc (the instantiation parameters) of the object. Suppose that there are m

different instantiation parameters, then a single object will sweep out a m-

dimensional manifold in the image space. Learning about objects taking this

regularity into account has been called transformation-invariant clustering

by Frey and Jojic (1999, 2003). However, this work is still limited to finding

a single object in each image.

A more general model for data is that where the observations are ex-

plained by multiple causes; in our example this will be that in each image

there are L objects. The approach of Frey and Jojic (1999, 2003) can be ex-

tended to this case by explicitly considering the simultaneous instantiation

of all L objects (Jojic and Frey, 2001). However, this gives rise to a large

search problem over the instantiation parameters of all objects simultane-

ously, and approximations such as variational methods are needed to carry

out the inference. In our method, by contrast, we discover the objects one

at a time using a robust statistical method. Sequential object discovery is

possible because multiple objects combine by occluding each other and/or

the background.

The general problem of factorial learning has longer history, see, for ex-

ample, Barlow (1989), Hinton and Zemel (1994), and Ghahramani (1995).

However, Frey and Jojic made the important step for image analysis problems

of using explicit transformations of object models, which allows the incor-
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poration of prior knowledge about these transformations and leads to good

interpretability of the results. A related line of research is that concerned

with discovering part decompositions of objects. Lee and Seung (1999) de-

scribed a non-negative matrix factorization method addressing this problem,

although their work does not deal with parts undergoing transformations.

Other relevant work including that by Shams and von der Malsburg (1999)

on learning parts and work from the computer vision community on layered

representations of images are discussed in section 4.

The structure of the remainder of this paper is as follows. In section

2 we describe the model, first for images containing only a single object

and then for images containing multiple objects. In section 3 we present

experimental results finding objects appearing against static, moving and

random backgrounds. We conclude with a discussion in section 42.

2 Theory

In section 2.1 we describe how to learn about an object when there is only

a single object (plus background) in every image. In section 2.2 we discuss

how this model can be robustified to deal with foreground and background

occlusion caused by other objects being present in the images. Then in

section 2.3 we describe a model that fully explains L objects in the images.

An efficient greedy algorithm for training this model is described in section

2.4.

2This paper is a revised and extended version of Williams and Titsias

(2003) which was presented at NIPS 2002.
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2.1 Learning one object

In this section we consider the problem of learning about one object which

can appear at various locations in an image. The object is in the foreground,

with a background behind it. The problem is set up in terms of a genera-

tive model for the image x given the transformations of the foreground and

background. The background can be one of three cases: (i) a static back-

ground that is fixed for all training images, (ii) a moving background which

occurs for example when a moving camera captures a sequence of frames and

(iii) random backgrounds where each image can have a completely different

background.

The two key issues that we must deal with are the notion of a pixel being

modelled as foreground or background, and the problem of transformations of

the object and the background. We consider first the foreground/background

issue and we assume that the background is static; cases (ii) and (iii) are

discussed later in this section.

Consider an image x of size Px×Py containing P
def
= PxPy pixels, arranged

as a length P vector. Our aim is to learn appearance-based representations

of the foreground f and the static background b. As the object will be

smaller than Px × Py pixels, we will need to specify which pixels belong to

the background and which to the foreground; this is achieved by a vector

of binary latent variables s, one for each pixel. Each binary variable in s is

drawn independently from the corresponding entry in a vector of probabilities

π. For pixel p, if πp ' 0, then the pixel will be ascribed to the background

with high probability, and if πp ' 1, it will be ascribed to the foreground
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with high probability. We sometimes refer to π as a mask.

xp is modelled by a mixture distribution:

xp ∼

 pf (xp; fp) = N(xp; fp, σ
2
f ) if sp = 1,

pb(xp; bp) = N(xp; bp, σ
2
b ) if sp = 0,

(1)

where σ2
f and σ2

b are respectively the foreground and background variances.

Thus, ignoring transformations, we obtain

p(x) =
P∏

p=1

[πppf (xp; fp) + (1− πp)pb(xp; bp)]. (2)

Notice that the fact that each pixel follows a mixture distribution ensures that

the foreground and background appearances strictly combine by occlusion

and thus no transparency between them is allowed.

The second issue that we must deal with is that of transformations of

the foreground object. Below we consider only translations, although the

ideas can be extended to deal with other transformations such as scaling

and rotation (see e.g. Frey and Jojic (2002)). Each possible transformation

(e.g. translations in units of one pixel) is represented by a corresponding

transformation matrix, so that matrix Tjf
corresponds to transformation

jf and Tjf
f is the transformed foreground model. In our implementation

the translations use wrap-around, so that each Tjf
is in fact a permutation

matrix. The semantics of foreground and background mean that the mask
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π must also be transformed, so that we obtain

p(x|jf ) =
P∏

p=1

[(Tjf
π)ppf (xp; (Tjf

f)p) + (1− Tjf
π)ppb(xp; bp)]. (3)

where 1 denotes the P length vector that contains ones. Notice that the

foreground f and mask π are transformed by Tjf
, but the static background

b is not. In order for equation 3 to make sense, each element of Tjf
π must be

a valid probability (lying in [0, 1]). This is certainly true for the case when

Tjf
is a permutation matrix (and can be true more generally). To complete

the model we place a prior probability Pjf
on each transformation jf ; this is

taken to be uniform over all possibilities so that p(x) =
∑Jf

jf=1 Pjf
p(x|jf ).

So far the background b was considered to be static. However in many

cases, as for example when a video camera follows an object, the background

can change from frame to frame. Next we generalize our method to deal with

moving backgrounds.

To model a moving background we assume an underlying static back-

ground which is typically much larger than the input images. We sometimes

refer to this large static background as panorama. When we generate an

image a part of this panorama scene is selected and used as the current back-

ground of the image, similarly to Rowe and Blake (1995). More specifically,

we assume that the background b corresponds to an Mx ×My image, where

in general Mx ≥ Px and My ≥ Py. b is represented as a M -dimensional

vector with M = MxMy. We introduce a transformation variable jb that

explains how from the panorama b the background of a data image is se-

lected. In our implementation we consider as possible backgrounds all the
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Px × Py image blocks (aligned to the axes of the background image) taken

from any possible location within the panorama b3. Clearly, jb takes on

Jb = (Mx − Px + 1)(My − Py + 1) total values and a certain value jb is

represented by a M × P transformation matrix Tjb
, so that Tjb

b selects the

appropriate image Px × Py block from b.

The conditional density of an image given the transformation variables

now becomes:

p(x|jf , jb) =
P∏

p=1

[(Tjf
π)ppf (xp; (Tjf

f)p) + (1− Tjf
π)ppb(xp; (Tjb

b)p)]. (4)

and the likelihood of an image x is p(x) =
∑Jf

jf=1

∑Jb

jb=1 Pjf
Pjb

p(x|jf , jb).

Note also that when the background is static is expressed as a special case

of the above model; by choosing the background b to have the same size as

the data images there is only one possible value for jb, so the background is

static.

For random backgrounds we do not try to model the backgrounds ex-

plicitly, but simply use a large-variance Gaussian at each pixel, which can

account for the large background variability. b is the mean of this Gaussian.

Given a data set {xn}, n = 1, . . . , N we can adapt the parameters θ =

(f , π,b, σ2
f , σ

2
b ) by maximizing the log likelihood L(θ) =

∑N
n=1 log p(xn|θ).

This can be achieved through using the EM algorithm to handle the missing

data which is the transformations jf and jb. However, an exact EM algorithm

requires a search over JfJb possibilities which can be very demanding even

3Of course the above model does not account for rotations or scaling of

the background and it can only approximately model such kind of situations.
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for small images. Our greedy training algorithm deals separately with each

transformation by learning first the background and then the foreground

object. This algorithm is presented for the more general case of L foreground

objects in section 2.4 and also in the Appendix A.

2.2 Learning one object using robust statistics

Suppose that apart from the one foreground object being modelled the images

can additionally contain some other objects. However, we consider these

objects as “outlying” information and thus we do not wish to model their

appearances. Our objective is to learn only the one object of interest and

efficiently “ignore”all the other objects.

A way to learn one object under the above assumptions is to robustify the

model described in section 2.1 so that foreground and background occlusion

can be tolerated. More specifically, for a foreground pixel, some other objects

may be interposed between the camera and our object, thus perturbing the

pixel value. This can be modelled with a mixture distribution as

pf (xp; fp) = αfN(xp; fp, σ
2
f ) + (1− αf )U(xp), (5)

where αf is the fraction of times a foreground pixel is not occluded and

the robustifying component U(xp) is a uniform distribution common for all

image pixels. When a object pixel is occluded this should be explained

by the uniform component. Such robust models have been used for image

matching tasks by a number of authors, notably Black and colleagues (Black

and Jepson, 1996).
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Similarly for the background, a different object from the one being mod-

elled may be interposed between the background and the camera, so that we

again have a mixture model

pb(xp; bp) = αbN(xp; bp, σ
2
b ) + (1− αb)U(xp), (6)

with similar semantics for the parameter αb. Note that for random back-

grounds the above robustification make less sense (since the Gaussian will

have large variance σ2
b ) but it will apply to the static or moving background

cases.

It is not necessary that the robustifying component be a uniform distri-

bution, for example a broad Gaussian would also work. However, as pixels

do have maximum and minimum values the uniform distribution is a natural

choice, and is also the maximum entropy distribution.

Training this model is completely analogous to the non-robust case. In

practice the above model can be used to learn multiple objects in images. By

random parameter initializations, and on different runs we can find different

objects. We denote such an algorithm as RANDOM STARTS.

2.3 Learning multiple objects

One way to learn multiple objects in images is by applying the RANDOM

STARTS algorithm described in the above section. However, we have found

(Williams and Titsias, 2003) that this is rather inefficient as the basins of

attraction for the different objects may be very different in size given the

initialization. Thus, in this section we describe a model that explicitly as-
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sumes L foreground objects in the images and in section 2.4 we present the

GREEDY algorithm that learns the background and the objects sequen-

tially.

Assume that each image contains L foreground objects. Similarly to

the single object case each object `, with ` = 1, . . . , L is modelled by a

separate foreground appearance f` and mask π`. The background can be

thought as the L+1th object having a mask πb = 1, since the background is

present everywhere. For each foreground object ` we assume a transformation

variable j` representing all possible translations. Below we assume a moving

background where the transformation variable jb is defined in section 2.1,

however all derivations also apply for static or random backgrounds by simply

ignoring the variable jb.

It will be instructive to introduce the model for the case there are only two

foreground objects. Assuming L = 2, an image x is generated by instantiat-

ing the transformation variables j1, j2 and jb and then drawing x according

to

p(x|jb, j1, j2) =
P∏

p=1

{(Tj1π1)ppf1(xp; (Tj1f1)p) + (1− Tj1π1)p[(Tj2π2)ppf2(xp; (Tj2f2)p)

+ (1− Tj2π2)ppb(xp; (Tjb
b)p)]}, (7)

where the pf1 , pf2 and pb pixel densities are Gaussians given as in equation 1.

Note that each image pixel follows a three component mixture distribution,

so that with probability (Tj1π1)p the pixel can belong to the first object, with

probability (1 − Tj1π1)p(Tj2π2)p to the second object and with the rest of

probability to the background. The fact that the probabilities corresponding
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to the second object’s pixels are always multiplied by (1 − Tj1π1)p implies

an occlusion ordering between these two objects, so that the first object can

occlude the second one, but the opposite is not allowed.

In the general case with arbitrary number of objects the model 7 becomes

p(x|jb, j1, . . . , jL) =
P∏

p=1

p(xp|jb, j1, . . . , jL) (8)

where p(x|jb, j1, . . . , jL) is L + 1-component mixture model

p(xp|jb, j1, . . . , jL) =
L∑

`=1

`−1∏
k=1

(1−Tjk
πk)p(Tj`

π`)ppf`
(xp; (Tj`

f`)p)+
L∏

k=1

(1−Tjk
πk)ppb(xp; (Tjb

b)p)

(9)

where if ` = 1 then the term
∏`−1

k=1(1− Tjk
πk)p in 9 is defined to be equal to

1.

The order (from left to right) of the object models in 9 corresponds to the

occlusion allowed between the objects. Particularly, the first object exists

closest to the camera, thus it can never be occluded by any other object,

the second object can only be occluded by the first object and so on. The

background exists in the furthest distance from the camera.

Notice that in the above model there is an asymmetry between the objects

because of the specified occlusion ordering. If the objects can arbitrarily

occlude one another so that the occlusion ordering can change from image

to image, then the above model is no longer appropriate. A principled way

to deal with this situation is to consider all L! possible rearrangements of

the objects (using an additional hidden variable). An alternative way is to

replace the foreground pixel densities pf`
by their robust counterparts given
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by equation 5. This can allow for arbitrary occlusion between the objects

without increasing the model complexity. Of course such a model will not be

able to answer immediately what is the occlusion ordering in a given image,

but that can be done in a post-processing stage.

From now on we will assume that both the foreground pf`
and background

pb pixels densities are robustified as described in section 2.2. This robustifi-

cation is the key for our GREEDY algorithm to find the objects one at a

time. However, bear in mind that robustifying pf`
makes also sense in terms

of allowing arbitrary occlusion between the L foreground objects.

2.4 The GREEDY training algorithm

An exact EM algorithm (Dempster et al., 1977; McLachlan and Krishnan,

1997) for training the above model is highly intractable. This is because a

full search over all transformations of the objects requires to consider JL
f Jb

possibilities, which can be extremely large even for small L. An alternative

is to consider approximations; Ghahramani (1995) suggests mean field and

Gibbs sampling approximations and Jojic and Frey (2001) use approximate

variational inference. Below we describe a different learning algorithm by

finding the background and all the foreground objects sequentially one after

the other.

Each component in the mixture distribution of equation 9 corresponds to

an object model which is either one of the L foreground objects or the back-

ground. The key idea of our learning algorithm is to learn this mixture model

(and thus the relation with the associated transformation variable) sequen-
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tially, by learning the objects one at a time. An intuitive way to introduce

this algorithm is that originally we constrain the mixture distribution so that

the background takes all the probability and the masks of the foreground ob-

jects are zero. Since the background pixel densities are robustified according

to equation 6 we can learn the background by “ignoring” all the foreground

objects. When a pixel of the background is occluded by a foreground object

that should be explained by the outlier component in 6, so that the pixel

will not affect the estimation of the background. At each subsequent stage

the mask of a foreground object is set free to get a non zero value and the

corresponding object model is learned. Below we first describe learning the

background in section 2.4.1, then discuss learning the first object in section

2.4.2 and further objects in section 2.4.3. We summarize the algorithm in

section 2.4.4. Further details are given the Appendix.

2.4.1 Finding the background

The GREEDY algorithm starts by first finding the background. By con-

straining all the masks {π`}L`=1 to be zero, the mixture model 9 has only

one component (corresponding to the background) and thus 8 takes the form

p(x|jb) =
∏P

p=1 pb(xp; (Tjb
b)p). Assuming an uniform prior Pjb

for transfor-

mation jb the log likelihood of the training images is

Lb =
∑N

n=1 log
∑J

jb=1 Pjb
p(xn|jb) which can be maximized with respect to

{b, σ2
b} by the EM algorithm. This algorithm searches over Jb possibilities

and is tractable; details are provided in the Appendix A.1.
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2.4.2 Finding the first object

At the second stage of the algorithm we learn the first foreground object. By

allowing the mask π1 to take on non-zero values equation 8 becomes

p(x|jb, j1) =
P∏

p=1

(Tj1π1)ppf1(xp; (Tj1f1)p) + (1− Tj1π1)ppb(xp; (Tjb
b)p)

=
P∏

p=1

p(xp|jb, j1). (10)

The log likelihood of the training images is L1 =
∑N

n=1 log
∑

j1,jb
Pj1Pjb

p(xn|j1, jb)

and a direct maximization using the EM algorithm can be quite demanding,

since inference involves searching over JfJb possibilities. Our GREEDY al-

gorithm drops the complexity of the search to Jf possibilities by applying

a constrained EM algorithm (Neal and Hinton, 1998) that exploits the fact

that we already know the background. In particular, for each training image

xn we introduce the distribution Qn(j1, jb) = Qn(j1|jb)Q
n(jb) over the trans-

formations and we express a lower bound (based on the Jensen’s inequality)

of the log likelihood L1:

F1 =
N∑

n=1

∑
jb,j1

Qn(j1|jb)Q
n(jb)

{
log

(
Pj1Pjb

P∏
p=1

p(xn
p |jb, j1)

)
− log Qn(j1|jb)Q

n(jb)

}
.

(11)

This lower bound becomes tight by choosing Qn(jb, j1) to be the posterior

P (jb, j1|xn) for every image xn. Since we have learned the background we can

use the posterior probability P (jb|xn) (computed as described in Appendix

A.1) to find the most probable transformation jn
b that best explains image xn
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and then we approximate Qn(jb) so that it gives probability one for jb = jn
b

and zero for the remaining values4. Thus, F1 takes the form

F1 =
N∑

n=1

Jf∑
j1=1

Qn(j1)

{
P∑

p=1

log p(xn
p |jn

b , j1)− log Qn(j1)

}
+ const, (12)

where const depends on the uniform probabilities Pjb
and Pj1 . Also the

dependence of Qn(j1) on jn
b for simplicity has been omitted from our notation.

Maximization of F1 can be carried by the EM algorithm, where in the

E-step we maximize F1 with respect to the Qn distributions (see equation

22) and in the M -step with respect to the object parameters {f1, π1, σ
2
1}.

Thus, the computational complexity for learning the object has been kept to

a minimum since we have only to search over the Jf possible transformations

of the object. Recall that the pixel densities pf1 and pb are robustified which

allows us to deal with occlusion that can be caused by the remaining L− 1

not-yet-discovered objects.

2.4.3 Learning further objects

The algorithm for learning the second and subsequent foreground objects is

a bit more complicated as we subtract out the objects learned so far. We

first describe how we learn the second object and then generalize to the case

of the `th object.

4It would be possible to make a “softer” version of this, where the trans-

formations are weighted by their posterior probabilities, but in practice we

have found that these probabilities are usually 1 for the best-fitting transfor-

mation and 0 otherwise after learning.
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To learn a second foreground object we first allow the mask π2 to take on

non-zero values so that the conditional density of x given the hidden trans-

formations becomes P (x|jb, j1, j2) =
∏P

p=1 p(xp|jb, j1, j2) where p(xp|jb, j1, j2)

is given by equation 9. We learn the second object by maximizing a lower

bound of the log likelihood L2 =
∑N

n=1 log
∑

jb,j1,j2
Pjb

Pj1Pj2p(xn|jb, j1, j2).

Particularly, since we have learned the background and the first object we

use the most probable transformations jn
b and jn

1 that explain image xn to

lower bound the log likelihood L2:

F2 =
N∑

n=1

Jf∑
j2=1

Qn(j2)

{
P∑

p=1

log p(xn
p |jn

b , jn
1 , j2)− log Qn(j2)

}
+ const. (13)

F2 can be tractably optimized over Qn(j2) and over the parameters of the

second object {f2, π2, σ2}. However, we can make the search for the second

object much more efficient (ensuring that we will find a different object) by

further constraining equation 13 so that all the pixels belonging to the first

object are removed from consideration. First of all note that the values of the

transformed mask Tjn
1
π1 will be close to 1 for all pixels of image xn that are

part of the first object. All these pixels should be removed from consideration

unless there are occluded by other not-yet-discovered objects. Thus, we

consider the vector ρn
1 = (Tjn

1
π1) ∗ rjn

1 where y ∗ z denotes the element-

wise product of the vectors y and z and r
jn
1

p =
αf N(xn

p ;(Tjn
1
f1)p,σ2

1)

αf N(xn
p ;(Tjn

1
f1)p,σ2

1)+(1−αf )U(xn
p )

.

Thus, ρn
1 will roughly give values close to 1 only for the non-occluded object

pixels of image xn, and these are the pixels that we wish to remove from

consideration. Now considering (ρn
1 )p as the probability according to which

the pixel p of image xn is part of the first object we once again lower bound F2
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using the inequality log
∑

i yi = log(
∑

i
yi

pi
pi) ≥

∑
i pi log yi

pi
(obtained from

Jensen’s inequality) to obtain

F2 =
N∑

n=1

Jf∑
j2=1

Qn(j2)
{ P∑

p=1

(ρn
1 )p log{(Tjn

1
π1)ppf1(x

n
p ; (Tjn

1
f1)p)}+(ρn

1 )p log{(1−Tjn
1
π1)p×

[(Tj2π2)ppf2(x
n
p ; (Tj2f2)p)+(1−Tj2π2)ppb(x

n
p ; (T n

jb
b)p)]}−log Qn(j2)

}
+const,

(14)

where ρn
1 = 1 − ρn

1 and the const is a constant term containing the en-

tropic term −
∑N

n=1

∑P
p=1 {(ρn

1 )p log(ρn
1 )p + (ρn

1 )p log(ρn
1 )p} plus terms in-

volving the uniform probabilities {Pjb
, Pj1 , Pj2}. Since the parameters of

the first object are fixed, the above quantity is further written as

F2 =
N∑

n=1

Jf∑
j2=1

Qn(j2)
{ P∑

p=1

(ρn
1 )p log[(Tj2π2)ppf2(x

n
p ; (Tj2f2)p)+

(1− Tj2π2)ppb(x
n
p ; (Tjn

b
b)p)]− log Qn(j2)

}
+ const. (15)

Note that when for a pixel p of image xn (ρn
1 )p ' 0, this pixel is removed

from consideration (in a probabilistic fashion) according to equation 15.

Further objects are learned similarly to the two-objects case except that

the pixels of all previously learned foreground objects should be removed

from consideration. This is achieved by setting zn
0 = 1 for all n = 1, . . . , N

and using the recursion zn
` = zn

`−1 ∗ ρn
` . Note that zn

1 = ρn
1 . For object ` the

objective function F` given in equation 16 is optimized to yield {f`, π` and

σ2
`}.

Note that the GREEDY algorithm treats the background and the rest
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L objects differently, since pixels ascribed to the non-occluded background

are not removed from consideration as is the case for the foreground objects.

We implemented an alternative greedy algorithm that treats the background

similarly to the remaining objects (removing non-occluded background pix-

els from consideration). However, this algorithm did not work so well in

practice as some pixels can wrongly be removed from consideration because

their values happen to agree with pixels of the occluding object. For the

background the number of such pixels can be large since the background is

always occluded by all of the L objects. We observed experimentally that

this can result in noisy estimates for some of the L foreground objects since

many of their pixels are accidentally removed from consideration after the

background is learned. On the other hand in the case of the foreground ob-

jects is not problematic since occlusion occurs only in some images and is

typically partial.

2.4.4 Summary of the GREEDY algorithm

1. Learn the background and infer the most probable transformation jn
b

for each image xn.

2. Initialize the vectors zn
0 = 1 for n = 1, . . . , N .

3. For ` = 1 to L

• Learn the `th object parameters {f`, π`, σ
2
`} by maximizing F` us-
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ing EM algorithm, where

F` =
N∑

n=1

Jf∑
j`=1

Qn(j`)
{ P∑

p=1

(zn
`−1)p log[(Tj`

π`)ppf`
(xp; (Tj`

f`)p)+

(1− Tj`
π`)ppb(xp; (Tjn

b
b)p)]− log Qn(j`)

}
. (16)

• Infer the most probable transformation {jn
` } and update the weights

zn
` = zn

`−1 ∗ ρn
` where ρn

` is computed as described in the text.

The update equations used at any stage of the above algorithm are given in

appendix A.

3 Experiments

We describe five experiments extracting movable objects from images using

static, moving and random backgrounds. In these experiments the uniform

distribution U(xp) is based on the maximum and minimum pixel values of all

training image pixels. In all the experiments reported below except experi-

ment 5 the parameters αf and αb were chosen5 to be 0.9; in experiment 5 αb

was set to 1. Also we assume that the total number of objects L that appear

in the images is known, thus the GREEDY algorithm terminates when we

discover the Lth object.

To apply the GREEDY algorithm we have to initialize the model pa-

rameters at each stage. We first describe how we initialize the background

5These parameters could be learned with some additional care but in our

current implementation we do not do so.
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parameters as the background is learned at the first stage of the algorithm.

The background appearance b corresponds to an image that is larger than

the input image size. We initialize the centred Px×Py block of b to be equal

with the mean of the training images. The rest pixels of b are initialized

by repeating the border-lines of pixels in the centered block of b and then

adding a Gaussian noise to these pixels. The variance σ2
b is initialized to

a large value (much larger value than the overall variance of all image pix-

els6). The parameters of an object learned at each subsequent stage of the

GREEDY algorithm are always initialized in the same way. Each element of

the mask π is initialised to 0.5, and the variance σ2
` to a large value equal to

the σ2
b initial value. To initialize the foreground appearance f` we compute

the pixelwise mean of the training images and add independent Gaussian

noise with equal variances at each pixel, where the variance is set to be large

enough so that the range of pixel values found in the training images can be

explored.

In all of the experiments described below the above initialization scheme

proved to be effective and we obtained good results by performing one or two

runs of the GREEDY algorithm. At each stage of the algorithm typically

100 iterations were sufficient to reach convergence.

6In our experiments the input image pixels are normalized to lie in [0, 1]

and the background variance σ2
b as well as the any foreground object variance

σ2
` is initialized to 2.
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Experiment 1. Figure 1 illustrates the detection of two objects against

a static background7. Some examples of the 44 118 × 248 training images

(excluding the black border) are shown in Figure 1(a) and results are shown

for the GREEDY algorithm in Figure 1(b). For both objects we show both

the learned mask and the elementwise product of the learned foreground and

mask. In most runs the person with the striped shirt (Frey) is discovered

first. It is interesting to comment on how the GREEDY algorithm operates

in case the person with the lighter shirt (Jojic) is found first. As explained

in section 2.4, once an object is discovered by the GREEDY algorithm,

roughly speaking its non-occluded pixels are removed from consideration.

Figure 2 illustrates this point for two frames of the video sequence; one

without occlusion and one with occlusion. Figure 2(a) shows the two video

frames and Figure 2(b) the pixels (displayed in white) that are masked out

from the next run. Note that when Frey occludes Jojic the white stripes

of Frey’s shirt are accounted for by the Jojic model. This is because the

white colour of these stripes agrees with the learned white colour of Jojic’s

shirt. This does not cause problems for learning the second object (Frey)

as there are many frames where the occlusion does not take place. In other

experiments with two people wearing different coloured clothes no such effect

takes place. Video sequences of the raw data and the extracted objects can

be viewed at http://www.dai.ed.ac.uk/homes/s0129556/lmo.html.

7These data are used in Jojic and Frey (2001). We thank

N. Jojic and B. Frey for making available these data via

http://www.psi.toronto.edu/layers.html.
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(a)

(b)

Figure 1: Learning two objects against a static background. Panel (a) dis-

plays some frames of the training images, and (b) shows the two objects and

background found by the GREEDY algorithm. The plots in the upper row

of (b) show the masks π1 and π2. The first two plots in the lower row of

(b) display the element-wise products π1 ∗ f1 and π2 ∗ f2 while the third plot

displays the background b.

23



(a) (b)

Figure 2: What the GREEDY algorithm removes from consideration once

Jojic is found. Panel (a) displays two frames of the training images, and (b)

plots the corresponding ρ1 vectors (see section 2.4), that indicate the pixels

which are masked out from the second iteration.

Experiment 2. We also conducted an interesting variant on the above

experiment. Rather than walking independently, two people now move to-

gether, keeping the same distance apart. This led to the extraction of a mask

containing both people. Note that this is expected, since the pixels of the

two people can be explained by the same transformation, so are considered

as one object. Of course, it is open to debate whether we would wish to think

of what is learned as one or two objects. In our opinion the ability to extract

such regularities is very sensible, and quite widespread, e.g. in finding pairs

of eyes. If it was desired, it would be a simple matter to run a connected

components algorithm on the thresholded mask to pick out the two objects.

Experiment 3. In the data shown in Figure 3 two objects move against

a moving background. Figure 3(a) shows some of the 36 70× 140 images of
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the video sequence. Note that the background changes from frame to frame

because of the camera’s movement. Notice also that there is motion blur in

some of the frames and that one person is occluded by the other in many

frames as they walk in the same direction. Figure 3(b) shows the results of

the GREEDY algorithm where at the first stage we find the background

and at the next two stages the moving objects are found.

Experiment 4. In Figure 4 five objects are learned against a static back-

ground, using a dataset of 80 images of size 66×88. Notice the large amount

of occlusion in some of the training images shown in Figure 4(a). Results are

shown in Figure 4(b) for the GREEDY algorithm.

Experiment 5. In Figure 5 we consider learning objects against random

backgrounds. Actually three different backgrounds were used, as can be seen

in the example images shown in Figure 5(a). Note that in this case we set

αb = 1 since robustifying a random background does not make sense. There

were 67 66× 88 images in the training set. The results with the GREEDY

algorithm are shown in Figure 5(b).

In some other experiments using a few random backgrounds our algorithm

has not worked well. In these cases it seems that the foreground models tend

to model structure that appears in some backgrounds rather than the fore-

ground objects. These problems might be overcome by using more random

backgrounds, as this would fit the random background assumptions better.
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(a)

(b)

Figure 3: Learning two objects against a moving background. Panel (a) dis-

plays some frames of the training images, and (b) the panorama-background

and the masks and rendered objects found by the GREEDY algorithm. (To

show the rendered objects we reverse our usual convention and show the ob-

jects against a light background as the objects themselves are mainly dark.)
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(a)

(b)

Figure 4: Learning five objects against a static background. Panel (a) dis-

plays some of the training images and (b) shows the masks and objects

(displayed as described in the caption of Figure 1) learned by the GREEDY

algorithm.
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(a)

(b)

Figure 5: Two objects are learned from a set of images with three differ-

ent backgrounds. Panel (a) displays some examples of the training images,

and (b) shows the masks and objects found by the GREEDY algorithm,

displayed as described in the caption of Figure 1.
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4 Discussion

The starting point for this work is a full factorial model for the data instan-

tiating multiple objects in their correct positions. However, as we have seen,

a direct search over all O(JbJ
L
f ) values of the hidden variables is not feasible.

Rather than use approximate simultaneous inference of the hidden variables

we have developed a sequential method which extracts the background and

foreground objects one-at-a-time from the input images. This is achieved by

robustifying the generative model so that occlusions of either foreground or

background can be tolerated. The results above show that this GREEDY

algorithm is very effective at finding the background and foreground objects

in the data.

It is interesting to compare our work with that of Shams and von der

Malsburg (1999). They obtained candidate parts by matching images in a

pairwise fashion, trying to identify corresponding regions in the two images.

These candidate image patches were then clustered to compensate for the

effect of occlusions. We make four observations: (i) instead of directly learn-

ing the models, they match each image against all others (with complexity

O(N2)), as compared to the linear scaling with N in our method; (ii) in their

method the background must be removed otherwise it would give rise to large

match regions; (iii) they do not define a probabilistic model for the images

(with all its attendant benefits); (iv) their data (although based on realis-

tic CAD-type models) is synthetic, and designed to focus learning on shape

related features by eliminating complicating factors such as background, sur-

face markings etc.
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If video sequence data is available then it is possible to compute optical

flow information, and this can be used as a cue to discover objects by clus-

tering flow vectors into “layers”. Some early work on this topic is by Wang

and Adelson (1994), and an example of more recent work is that of Tao et al.

(2000). Note that our method does not require a video sequence and can be

applied to unordered collections of images, as illustrated in Experiments 4

and 5. Also, problems can arise for optical-flow based methods in regions of

low texture where flow information can be sparse.

In our work the model for each pixel is a mixture of Gaussians. There

is some previous work on pixelwise mixtures of Gaussians (see, e.g. Rowe

and Blake 1995) which can, for example, be used to achieve background

subtraction and highlight moving objects against a static background. Our

work extends beyond this by gathering the foreground pixels into objects,

and also allows us to learn objects in the more difficult non-static background

case.

The GREEDYmethod has an analogue in neural network methods for

Principal Components Analysis (PCA). To carry out PCA we can extract

the principal component using Hebbian learning. If we then subtract of the

projection of the input onto the principal direction, we can again use Hebbian

learning to extract the second principal component, and so on (Sanger, 1989).

This process parallels the successive discovery of objects in our method. How-

ever, we note that this sequential algorithm cannot be used if a full factor

analysis model (with different noise variances on different visible dimensions)

is to be learned.

The GREEDY algorithm has shown itself to be an effective factorial
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learning algorithm for image data. We are currently investigating issues such

as dealing with richer classes of transformations, detecting L automatically,

and allowing objects not to appear in all images. Furthermore, although we

have described this work in relation to image modelling, it can be applied

to other domains. For example, one can apply the GREEDY approach to

fitting mixture models, as we will describe in a forthcoming paper. Also,

one can make a model for sequence data by having Hidden Markov mod-

els (HMMs) for a “foreground” pattern and the “background”. Faced with

sequences containing multiple foreground patterns, one could extract these

patterns sequentially using a similar algorithm to that described above. It is

true that for sequence data it would be possible to train a compound HMM

consisting of L+1 HMM components simultaneously, but there may be severe

local minima problems in the search space so that the sequential approach

might be preferable.
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A Details of the GREEDY algorithm

We introduce first some notation. If y and z are two vectors of the same

size, then y ∗ z defines the element-wise product between these vectors and

y ∗ y is written as y2 for compactness. Similarly the element-wise division

between two vectors is denoted by y./z. A vector containing ones is denoted

by 1. Also summations of the form
∑P

p=1 ypzp are written in vector notation

yTz, e.g. yT1 denotes the sum of elements of y.

In our implementation the transformation matrices of the foreground

objects Tj`
are permutation matrices. However, our derivations below re-

garding these matrices only require two constraints: (1) that the value of
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each element of Tj`
π` is a valid probability (i.e. lies in [0, 1]) and (2) that

log(Tj`
π`) = Tj`

log π` and log(1− Tj`
π`) = Tj`

log(1− π`), where log v de-

notes the element-wise logarithm of a vector v. These constraints certainly

hold for matrices which have one 1 (and the other entries 0) in each row.

A.1 Learning the background

Here we derive the EM algorithm for learning a static or moving background.

Learning the background consists of the first stage of the GREEDY algo-

rithm and is carried out by maximizing the following log likelihood:

Lb =
N∑

n=1

log

Jb∑
jb=1

Pjb

P∏
p=1

{αN(xn
p ; (Tjb

b)p, σ
2
b ) + (1− α)U(xn

p )}. (17)

Clearly this log likelihood corresponds to a mixture model (with Jb com-

ponents) where the component densities are factorized over the pixels and

each pixel density is a two-component mixture. Application of the EM is

straightforward and we can easily show that the expected complete data log

likelihood in the EM framework is:

Qb =
N∑

n=1

Jb∑
jb=1

P (jb|xn){(rn
jb
)T [− 1

2σ2
b

(xn − Tjb
b)2 − 1

2
log σ2

b1]}+ const, (18)

where P (jb|xn) = p(xn|jb)∑Jb
i=1 p(xn|i)

is the posterior probability of the transfor-

mation hidden variable jb given the image xn and rn
jb

is a P length vec-

tor with the pth element storing the probability according to which the pth

pixel of image xn is part of the non-occluded background given jb: (rn
jb
)p =

αbN(xn
p ;(Tjb

b)p,σ2
b )

αbN(xn
p ;(Tjb

b)p,σ2
b )+(1−αb)U(xn

p )
.
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In the E-step of the algorithm P (jb|xn) and rn
jb

are obtained using the

current parameter values. In the M -step the Q function is maximized with

respect to the parameters {b, σ2
b} giving the following update equations:

b←
N∑

n=1

Jb∑
jb=1

P (jb|xn)[T T
jb

(rn
jb
∗ xn)]./

N∑
n=1

Jb∑
jb=1

P (jb|xn)[T T
jb
rn

jb
], (19)

σ2
b ←

∑N
n=1

∑Jb

jb=1 P (jb|xn)[(rn
jb
)T (xn − Tjb

b)2]∑N
n=1

∑Jb

jb=1 P (jb|xn)[(rn
jb
)T1]

. (20)

The above equations provide an exact M -step. The update for the back-

ground appearance b is very intuitive. For example consider the case when

P (jb|xn) = 1 for jb = j∗ and 0 otherwise. For pixels which are ascribed to

non-occluded background (i.e. (rn
jb
)p ' 1) the values of xn are transformed

by T T
j∗ which maps the Px×Py image xn into a larger image of size Mx×My

so that xn is located in the position specified by jb and the rest of image

pixels are filled with zero values. Thus, the non-occluded pixels found in

each training image are located properly into the big panorama image and

averaged to produce b.

Note also that in the special case where the background is static the

effect of transformation jb is removed from all update equations and the

parameters b and σ2
b are updated according to b←

∑N
n=1(r

n ∗xn)./
∑N

n=1 rn

and σ2
b ←

∑N
n=1(rn)T (xn−b)2∑N

n=1(rn)T 1
, respectively.

For random backgrounds, the above EM algorithm is not needed. In this

case we simply set b to the mean of all training images and σ2
b to the mean

variance of all different pixel variances. These background parameters are

kept fixed for later stages.
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A.2 Learning the foreground objects

Assume that we have already found the background as described previously.

At each next stage the GREEDY algorithm searches for a foreground object.

Below we describe how the `th foreground object is found, where ` = 1, . . . , L.

When we search for the `th object, the background as well as the ` − 1

foreground objects have been found in previous stages8. As explained in

section 2.4.3 we learn the `th object by maximizing the objective function

F` =
N∑

n=1

Jf∑
j`=1

Qn(j`)
{ P∑

p=1

(zn
`−1)p log[(Tj`

π`)ppf`
(xn

p ; (Tj`
f`)p)+

(1− Tj`
π`)ppb(x

n
p ; (Tjn

b
b)p)]− log Qn(j`)

}
. (21)

The above maximization can be done by a variational EM algorithm. In the

E-step we maximize F` with respect to the Qn(j`) which gives

Qn(j`) ∝ exp

{
P∑

p=1

(zn
`−1)p log[(Tj`

π`)ppf`
(xn

p ; (Tj`
f`)p) + (1− Tj`

π`)ppb(x
n
p ; (Tjn

b
b)p)]

}
(22)

with Qn(j`) normalized to sum to one. In the M -step we maximize F` with

respect to the object parameters {f`, π`, σ
2
`}. For this maximization we need

again the EM algorithm. The EM algorithm operates in the following Q

8Of course when we search for the first object there will be no previously

learned foreground objects.
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function

Q` =
N∑

n=1

Jf∑
j`=1

Qn(j`)(z
n
`−1)

T [sn
j`
∗ log Tj`

π` + (1− sn
j`
) ∗ log(1− Tj`

π`)

+ sn
j`
∗ rn

j`
∗ (− 1

2σ2
`

(xn − Tj`
f`)

2 − 1

2
log σ2

`1)] + const, (23)

where each element of the vector sn
j`

stores the value

(Tj`
π`)ppf`

(xn
p ;(Tj`

f`)p)

(Tj`
π`)ppf`

(xn
p ;(Tj`

f`)p)+(1−(Tj`
π`)p)pb(xn

p ;(Tjn
b
b)p)

expressing the probability the pixel

to be part of the object. Each element of rn
j`

stores the probability the pixel

to be non-occluded: (rn
j`
)p =

αf N(xn
p ;(Tj`

f`)p,σ2
` )

αf N(xn
p ;(Tj`

f`)p,σ2
` )+(1−αf )U(xn

p )
.

The algorithm in the E-step computes the quantities, Qn(j`), sn
j`

and rn
j`

as described above and in the M -step we update the parameters as follows:

π` ←
N∑

n=1

Jf∑
j`=1

Qn(j`)T
T
j`

[zn
`−1 ∗ sn

j`
]./

N∑
n=1

Jf∑
j`=1

Qn(j`)T
T
j`
zn

`−1, (24)

f` ←
N∑

n=1

Jf∑
j`=1

Qn(j`)T
T
j`

[zn
`−1 ∗ sn

j`
∗ rn

j`
∗ xn]./

N∑
n=1

Jf∑
j`=1

Qn(j`)T
T
j`

[zn
`−1 ∗ sn

j`
∗ rn

j`
],

(25)

σ2
` ←

∑N
n=1

∑Jf

j`=1 Qn(j`)(z
n
`−1)

T [sn
j`
∗ rn

j`
∗ (xn − Tj`

f`)
2]∑N

n=1

∑Jf

j`=1 Qn(j`)(zn
`−1)

T [sn
j`
∗ rn

j`
]

. (26)

As with the updates for b and σ2
b these updates make intuitive sense.

Consider, for example, the `th appearance model f` when Qn(j`) = 1 for j` =

j∗ and 0 otherwise. For pixels which are ascribed to the `th foreground and

are not occluded (i.e. (zn
`−1 ∗ sn

j∗ ∗rn
j∗)p ' 1), the values in xn are transformed

by T T
j∗ (which is T−1

j∗ as the transformations are permutation matrices). This

removes the effect of the transformation and thus allows the foreground pixels
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found in each training image to be averaged to produce f`.
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