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Abstract. In time-series analysis it is often assumed that observed data
can be modelled as being derived from a number of regimes of dynamics,
as e.g. in a Switching Kalman Filter (SKF) [8, 2]. However, it may not be
possible to model all of the regimes, and in this case it can be useful to
represent explicitly a ‘novel’ regime. We apply this idea to the Factorial
Switching Kalman Filter (FSKF) by introducing an extra factor (the ‘X-
factor’) to account for the unmodelled variation. We apply our method to
physiological monitoring data from premature infants receiving intensive
care, and demonstrate that the model is effective in detecting abnormal
sequences of observations that are not modelled by the known regimes.

1 Introduction

In time-series analysis it is often assumed that observed data can be modelled
as being derived from a number of regimes of dynamics, as e.g. in a Switching
Kalman Filter (SKF) [8, 2]. However, in complex, real-world data (as found e.g.
in medicine, engineering or finance) it may be that there are a very large number
of possible regimes, and that a model may only have knowledge of commonly
occurring ones. In this case it can be useful to represent explicitly a ‘novel’
regime, in order to model observations that do not correspond to any of the
known regimes. The inclusion of this extra regime gives a condition monitoring
system two potential benefits. Firstly, it is useful to know when novel regimes are
being followed, e.g. in order to raise an alarm. Secondly, the new class provides a
measure of confidence for the system. That is, by confidently classifying a regime
as ‘none of the above’ we know that there is some structure in the data which
is missing in the model.

We use the Factorial Switching Kalman Filter (FSKF), an extension of the
SKF, as a general framework for condition monitoring. The FSKF has a num-
ber of factors which affect the dynamics of the observations; conditional on a
particular combination of factor settings, the model is equivalent to a Kalman
filter. In section 2 we extend the model of Williams et al. [9] by adding an extra
factor, referred to here as the ‘X-factor’, representing all variation which is not
normal and not similar to any of the known regimes.

In section 3 we apply our method to physiological monitoring data from
premature infants receiving intensive care. This data typically has a number of
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Fig. 1. (a) Class conditional likelihoods in a static 1D model, for the normal class
(solid) and the X-factor (dashed). (b) Likelihoods of the normal class and X-factor
in conjunction with other known, abnormal regimes (shown dotted). (c) The power
spectral density of a latent AR(5) process with white observation noise (solid), and
that of a corresponding X-factor process (dashed).

common regimes—artifactual and basic physiological patterns—as well as some
uncommon regimes. Examples of the causes of uncommon regimes might be
neurological problems or sepsis, or even the baby’s reaction to a linen change or
the flash of a camera, and include so many possibilities that it would be very
difficult to model them all explicity. The model is shown to be successful in
identifying clinically significant novelty in complex multivariate data.

2 Model description

As a general condition monitoring framework we use the FSKF [9, 3]. In this
model, M discrete factor settings f

(1)
t . . . f

(M)
t affect the hidden continuous state

xt and the observations yt. The system dynamics and observation process are
taken to be dependent on the variable st, an index which is a cross-product of
the factor settings,

xt ∼ N
(
A(st)xt−1,Q(st)

)
, yt ∼ N

(
C(st)xt,R(st)

)
, (1)

so that st effectively ‘switches’ the model in and out of different dynamical
regimes. Conditioned on st, the model is equivalent to a linear Gaussian state-
space (Kalman filter). The factor settings are taken to be a priori independent
and first-order Markovian.

2.1 Novel dynamics

First imagine that we have independent, one-dimensional observations which are
conditionally Gaussian, y|s ∼ N

(
µ(s),Σ(s)

)
. For condition monitoring we are

interested in problems where we assume that the possible settings of s represent
a ‘normal’ mode and a number of known additional modes. We assume here
that the normal regime is indexed by s = 1, and the additional known modes by



s = 2, . . . ,K. In this static case, we can construct a new model for unexpected
data points by inflating the covariance of the normal mode, so that

Σ(∗) = ξΣ(1), µ(∗) = µ(1) . (2)

where normally ξ > 1. This type of construction for unexpected observations is
referred to as an ‘X-factor’1.

The likelihood functions for a normal class and a corresponding X-factor are
shown in Figure 1(a). Clearly, data points that are far away from the normal
range are more likely to be classified as belonging to the X-factor. For condition
monitoring this can be used in conjunction with a number of known classes, as
shown in 1(b). Here, the X-factor has the highest likelihood for regions which
are far away from any known modes, as well as far away from normality.

We can generalise this approach to novelty detection by adding a new fac-
tor to a trained FSKF, with parameters based on those of the learnt normal
dynamics as follows:

Q(∗) = ξQ(1) , (3){
A(∗),C(∗),R(∗)

}
=
{
A(1),C(1),R(1)

}
, (4)

where the switch setting st = 1 again represents normal dynamics, where no
factor is active. To see why (3) and (4) are a dynamic generalisation of (2),
consider the specific case of a hidden scalar AR(p) process,

xt ∼ N

(
p∑

k=1

αkxt−k, σ2
q

)
, yt ∼ N (xt, σ

2
r) . (5)

The power spectral density for the hidden process xt at frequency f is given by

Sx(f) =
σ2

q

|1−
∑p

k=1 αke−2πifk|2
, (6)

where − 1
2 ≤ f ≤ 1

2 , assuming one observed value per unit of time. By inflating
σ2

q (as specified in (3)) we observe that the power is increased at each frequency.
The observed process has the spectrum Sy(f) = Sx(f) + σ2

r . As the scale of
Sy(f) is determined by the magnitudes of the two noise variances, inflating σ2

q

will have the effect of increasing the power at every frequency, as illustrated in
Figure 1(c).

Under an AR(p) model driven by Gaussian noise, any sequence of x’s (and
also the y’s) are jointly Gaussian. The eigenfunctions are sinusoids and the eigen-
values are given by the power spectrum. Hence inflating the system noise has
created a dynamical analogue of the static construction given above.

Preliminary experiments with the data described below showed that ξ = 2
was a suitable setting. It is possible to learn ξ using EM, see [6].
1 The notation ξ is chosen by association with the word ξενoς, or xenos, meaning

‘strange’.
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Fig. 2. Inferred durations for known factors and the X-factor. Panel (a) shows systolic
and diastolic blood pressure readings containing a blood sample (BS) artifact between
times 300 and 500, and physiological disturbance between times 800 and 1100. The X
model picks up both these periods, while adding the known factors causes the artifact
to be correctly reclassified. In panel (b), the X-factor picks up another significant and
unusual period of variation. The minor variation around time 300 was not judged to
be clinically significant, and was not picked up by the X-factor.

3 Experiments

24 hour periods of monitoring data were collected from 13 premature babies re-
ceiving intensive care in the neonatal unit at the Royal Infirmary of Edinburgh.
Each period comprised of readings taken once per second: heart rate, blood pres-
sures, core and peripheral temperatures, oxygen saturation and environmental
temperature and humidity. This data was annotated by clinical experts with
the times during which four common physiological and artifactual patterns oc-
curred: bradycardia, a slowing of the heart; changes related to handling the
baby; core temperature probe disconnection; blood sample artifacts; also the
times in which other clinically significant patterns were apparent which were did
not match any of the previous categories. FSKF models were set up with linear
Gaussian state-space dynamics representing each of these patterns (for details
see [6]). The thirteen data periods were split into four training cases and nine
test cases. Normal dynamics were trained separately for each baby, and for this
a 30 minute period for each baby was annotated as ‘normal’. Approximate infer-
ence was performed in this model using the Gaussian sum method [1], to find the
filtered estimates of the factor settings and hidden continuous state p(st,xt|y1:t).
In all the following experiments, the setting ξ = 2 was used.

We consider three models with three different sets of factors. Model K con-
tains factors representing known patterns (blood sample, bradycardia etc) only.
Model KX contains the known factors and the X-factor. Model X contains one
factor that switches between normality and the X-factor. Examples of the op-



Model X-factor Bradycardia Core temp. Blood sample Handling

auc - 0.96 0.90 0.93 0.75
K

eer - 0.06 0.20 0.18 0.32

auc 0.81 0.97 0.92 0.95 0.74
KX

eer 0.22 0.06 0.19 0.16 0.33

Table 1. Summary statistics of performance. AUC denotes area under ROC curve and
EER denotes the equal error rate.

eration of these models are shown in Figure 2. In panel (a), a period of blood
pressure measurements contains a known artifactual pattern, caused by taking
a blood sample, and a novel pattern of physiological disturbance. In model X,
both patterns are picked up by the X-factor. Adding the known patterns causes
the artifactual period to be correctly claimed by the appropriate factor. In panel
(b), another period of physiological instability is picked up by the X-factor.

Quantitative results for the K and KX models are given in Table 1. Recall
that the test data has annotations for each of the five factors (the four specific
ones and the X-factor). We compare the inferred filtered probability of each
factor to the relevant gold standard binary annotation. For each factor a ROC
curve is plotted, and summary statistics of the area under curve (AUC) and
equal error rate2 (EER) are computed. Note that because of the periods of
novel dynamics, model K has an incomplete factor set. The table shows that
adding the X-factor allows these periods of novel dynamics to be classified while
maintaining the accuracy of the known patterns. For the X model, any non-
normal episode was annotated as belonging to the X-factor. An AUC of 0.73
and EER of 0.29 was obtained in this case.

3.1 Relation to previous work

There is a large body of work on statistical approaches to novelty detection,
reviewed in [5]. In general the goal is to learn the density of training data and to
raise an alarm for new data points which fall in low density areas. In a time-series
context this involves modelling the next observation p(yt+1|y1:t) based on the
earlier observations, and detecting observations that have low probability. This
method is used, for example, by Ma and Perkins [4]. Such approaches define a
model of normality, and look for deviations from it, e.g. by setting a threshold.

A somewhat different take is to define a broad ‘outlier’ distribution as well as
normality, and carry out probabilistic inference to assign patterns to the normal
or outlier components. For time-series data this approach was followed by Smyth
[7], who considered the use of an unknown state when using a HMM for condition
monitoring. This uses a similar idea to ours but in a simpler context, as in his
work there is no factorial state structure and no explicit temporal model.

2 We give error rates, so smaller numbers are better. Often 1 - error rate is given in
EER tables.
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