
Predictive Search Distributions

Edwin V. Bonilla edwin.bonilla@ed.ac.uk

Christopher K. I. Williams ckiw@inf.ed.ac.uk

Felix V. Agakov felixa@inf.ed.ac.uk

John Cavazos jcavazos@inf.ed.ac.uk

John Thomson John.Thomson@ed.ac.uk

Michael F. P. O’Boyle mob@inf.ed.ac.uk

School of Informatics, University of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, UK

Abstract

Estimation of Distribution Algorithms
(EDAs) are a popular approach to learn
a probability distribution over the “good”
solutions to a combinatorial optimization
problem. Here we consider the case where
there is a collection of such optimization
problems with learned distributions, and
where each problem can be characterized
by some vector of features. Now we can
define a machine learning problem to predict
the distribution of good solutions q(s|x) for
a new problem with features x, where s
denotes a solution. This predictive distri-
bution is then used to focus the search. We
demonstrate the utility of our method on a
compiler optimization task where the goal is
to find a sequence of code transformations to
make the code run fastest. Results on a set
of 12 different benchmarks on two distinct
architectures show that our approach consis-
tently leads to significant improvements in
performance.

1. Introduction

In this paper we consider optimization problems and
their solution. As input we are given a description
X of the optimization problem, for example the edge
weights between all vertices of a graph for a minimum
balanced cut (MBC) problem1. For any input X there
is a set S(X) of valid solutions; for MBC this is the

1The minimum cut of a graph can be found in poly-
nomial time using network flow methods. However, this

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

set of bisections that are balanced. We also require an
evaluation function f which takes as input a problem
description X and a valid solution s ∈ S(X), and out-
puts the quality of the solution. For the MBC problem
f is the sum of the edge weights in the cut. Our goal
is then to find the optimal solution s∗(X) such that

s∗(X) = argmins∈S(X)f(X, s). (1)

Another example of an optimization problem, indeed
the one that motivated this work, is in compiler opti-
mization. For a given benchmark X we can apply a
sequence of transformations to the code, so as to pro-
duce the same input-output behaviour but different
runtimes. (Examples of transformations are loop un-
rolling and common subexpression elimination.) Our
goal is to find the sequence of transformations that
makes the code run fastest. See section 4.1 for more
details on this problem.

Imagine now that we have a collection of ex-
amples of the same kind of problem, but with
different descriptions X drawn from a space X .
In this case if we have solved the optimiza-
tion problems we will have a set of solutions
(X1, s

∗(X1)), (X2, s
∗(X2)), . . . , (Xn, s∗(Xn)). (Here

s∗(Xi) could be an approximate solution to the prob-
lem rather than the true global optimum.) One idea to
apply machine learning to this optimization problem is
to learn the mapping between X and s∗(X) based on
examples. However, this may be a very difficult map-
ping to learn; one problem is that small changes to the
input X of a combinatorial optimization problem may
lead to very different solutions.

We will take a rather different approach, mapping from
a problem description X to a probability distribution

algorithm does not guarantee that the two halves are bal-
anced, i.e. that there are equal numbers of nodes in each
half. The MBC problem is NP-hard.



Predictive Search Distributions

q(s|X) over good solutions. Our motivation is that it
may be very hard to predict the optimal solution s∗(X)
for an instance X, but that it may well be easier to de-
fine a search distribution which gives high probability
to s∗(X). An inspiration for this idea is recent work on
estimation of distribution algorithms (EDAs), see e.g.
Larrañaga and Lozano (2001), where for a given prob-
lem X a search over solutions is conducted by repeat-
edly re-estimating a probability distribution over good
solutions (see section 2.1 for more details on EDAs).
However, note that EDAs are concerned with finding
an optimal solution s∗(X) for a given problem X, while
our goal is to make use of what has been learned from
previous problems in predicting the search distribution
for a new instance.

Our goal of mapping from X to a predictive distribu-
tion q(s|X) is actually similar to the standard proba-
bilistic machine learning set up where the output is a
predictive distribution, e.g. a Bernoulli probability or
a univariate Gaussian distribution. However, we note
two special aspects of modelling search distributions:

• The distribution q(s|X) is meant to focus our
search. Thus we might well make multiple draws
from it in the hope of finding better solutions.

• The predictive distribution q(s|X) might be com-
plicated (e.g. it might be a graphical model); this
kind of complexity is not commonly used in stan-
dard machine learning situations, although it does
arise, e.g. in conditional random fields.

The structure of the remainder of the paper is as fol-
lows: in section 2 we give some background on EDAs
and describe the theory of predictive search distribu-
tions. In section 3 we relate our approach to previous
work. In section 4 we discuss the set up for experi-
ments on compiler optimization, and in section 5 we
give our results on this task. We conclude with a dis-
cussion in section 6.

2. Theory

This section briefly describes estimation of distribu-
tion algorithms (EDAs) as a method for solving com-
binatorial optimization problems and explains how our
approach makes use of EDAs by presenting the theo-
retical framework of predictive search distributions.

2.1. EDAs

Many combinatorial optimization problems are NP-
hard and for such problems it is common to use heuris-
tic optimization methods, for example those based on

population search. Such methods include genetic al-
gorithms, which explore the search space by evolving
populations of candidate solutions. Estimation of dis-
tribution algorithms (EDAs) may be viewed as a way
of evolving a probabilistic graphical model g(s) ∈ G de-
scribing a distribution of good candidates, rather than
evolving a specific population (Pelikan et al., 1999).
These methods are particularly popular for addressing
combinatorial optimization problems, although they
have also been applied in continuous domains. In the
rest of the paper we will focus specifically on the case
when {s} is space of strings defined over finite alpha-
bets.

The algorithm for a typical EDA is given below. Here
N is the size of the population, assumed to be the same
at each iteration, and U denotes the uniform distribu-
tion.

1. initialization: constrain the family of the EDA
search distributions G; set t = 0, N , etc.

2. generate initial population: S(0) = {si|
N
i=1 ∼ U};

3. evaluation: ∀si ∈ S(t) compute f(si);

4. selection: choose a subset S̃(t) ⊆ S(t) biased to-
wards better-performing solutions; define the em-
pirical distribution p̃(t) on the subset;

5. learning: learn g(t+1) by optimizing a discrepancy
measure D(p̃(t); g ∈ G) (e.g. KL-divergence);

6. sampling: generate S(t+1)def
= {si|

N
i=1 ∼ g(t+1)};

7. iterate steps 3–6 until a termination criterion is
met.

After termination, the optimal solution s∗ is approx-
imated as the arg maxs∈S(T ) f(s), where S(T ) is the
final population. Usually the models g ∈ G are
constrained to lie in tractable parametric families,
and there are a large number of EDAs which are
based on specific parameterizations. For example, the
population-based incremental learning (PBIL) algo-
rithm assumes that G is a family of factorized dis-
tributions; mutual information-maximizing input clus-
tering (MIMIC) methods constrain G to be a family of
Markov chains, etc. See e.g. Pelikan et al. (1999) for
an overview of specific algorithms.

2.2. Predictive Search Distributions

The key issue that we now address is how to make pre-
dictions on a new problem instance X given a training
set of problems and their corresponding search (or em-
pirical) distributions. We assume that for any problem



Predictive Search Distributions

description X ∈ X we can extract a number of features
x that (partially) characterize the problem. We seek
to learn a predictive distribution q(s|x, θ) that outputs
a distribution over s given an input x and parameters
θ. Thus θ can be set by maximizing the conditional
likelihood

Ls|X
def
=

n∑

i=1

∑

s

p̃(T )(s|Xi) log q(s|xi, θ), (2)

where p̃(T )(s|Xi) is the empirical distribution over so-
lutions output at the end of the EDA run on problem
Xi. An alternative objective function would be

n∑

i=1

∑

s

g(T )(s|Xi) log q(s|xi, θ). (3)

This is similar to (2) but uses the output EDA dis-
tribution g(T )(s|Xi) for each problem rather than the
empirical distribution. However, in cases where the
family of distributions G in the EDA has hidden vari-
ables (e.g. a HMM) then (2) should be easy to evaluate
while (3) may not be.

In practice we can consider a number of parametric
and/or structural constraints on the family of predic-
tive distributions q(s|x, θ). Since in our case the distri-
bution is defined over strings, choices for q(s|x, θ) in-
clude logistic regression and conditional random field
models (Lafferty et al., 2001). Once again we note
that we will be using q(s|x, θ) to focus search for a
new problem X. An alternative approach is to use a k
nearest-neighbours (k-NN) method. For example us-
ing 1-NN, we can set the predictive search distribution
to be the EDA distribution of the problem whose fea-
tures are the closest to the new problem. For k > 1 we
could use a mixture of distributions from the k closest
neighbours. This method may be particularly useful if
the number of training problems n is small.

It is also worth remarking that the predictive search
distribution methodology may not always lead to
speed-ups, and could in principle degrade performance
relative to uniform search. This would be the case if
the features extracted did not provide useful informa-
tion about the search distribution, or if g(s|X) varies
very rapidly with changes in the input X so that a
very large amount of training data would be needed to
characterize the problem class.

3. Related Work

We are not aware of much previous work in this area.
One common way to help speed up search problems
is through memoization, i.e. remembering the answers

to previous problems (or partial problems) so as to
eliminate search if they are encountered again. The
proposed method goes beyond this in that it affords
inductive generalization to new search problems rather
than simply storing earlier results.

There has also been a lot of work on learning search-
control knowledge, see e.g. chapter 10 in Langley
(1996) for an overview. This work focuses on plan-
ning in sequential decision problems (SDPs), i.e. the
task of reaching a goal state from a start state; this
general area is addressed by reinforcement learning.
There has also been work on speeding up search us-
ing explanation-based learning (EBL) using solution
traces and a domain theory. However, the search prob-
lems we are addressing are not SDPs and so this work
does not apply.

One possible alternative approach is to learn a regres-
sion function f̂ that approximates f(X, s) from data
samples over the X ×S input space. However, if space
of solutions S is very large then even if this proxy func-
tion can be learned accurately it would be very time
consuming to find the string s that optimizes f̂(X, s);
thus we prefer an approach that directly outputs a dis-
tribution of “good” solutions.

Over the past few years, there has been a lot of inter-
est in the topic of inductive transfer, see e.g. Thrun
and O’Sullivan (1996) and Caruana (1997) as some
of the earlier references. In these (and later) papers
a common set up is that there are multiple, related
supervised learning problems and that the goal is to
avoid tabula rasa learning for a new problem by ex-
tracting information from the problems seen before.
Thus the learning is at a higher level, e.g. by using the
previously seen problems to define priors on parame-
ters for the new problem. Our suggestion for learning
search distributions is actually more like the standard
probabilistic machine learning set up at the lower level,
where the prediction is a probability distribution.

4. Experiments

This section introduces the problem of compiler opti-
mization and describes the experiments that were car-
ried out with the goal of improving iterative compiler
optimization with predictive search distributions.

4.1. The Problem

Compiler optimization deals with the problem of mak-
ing a compiler produce better code, i.e. code that runs
fast. Numerous program transformations have been
proposed in the literature and implemented in com-
mercial and research compilers for this purpose. A



Predictive Search Distributions

program transformation can be thought of as a pro-
cess that changes the code in order to exploit the re-
sources of a target architecture more efficiently while
maintaining the meaning and correctness of the orig-
inal program. An example of a program transforma-
tion is loop unrolling, which replicates the body of a
loop several times. This transformation can be bene-
ficial as it exposes opportunities for instruction level
parallelism (running multiple instructions at the same
time) and also reduces the overhead due to loop con-
trol. However, loop unrolling can also be detrimental
when the loop body is augmented excessively so that
it cannot be kept in the cache. As with loop unrolling,
there are many other transformations for which it is
difficult to know when or how a compiler should ap-
ply them to a specific program. Additionally, these
transformations interact in an almost mysterious way
making the problem of producing optimal code even
harder.

An interesting scenario in compiler optimization is it-

erative compilation, where one can afford several pro-
gram executions in order to determine a set of pro-
gram transformations that significantly increase per-
formance. This task can be formulated as a combi-
natorial optimization problem where a set of transfor-
mations can be combined into sequences of arbitrary
length. This approach of searching the space of trans-
formation sequences has been shown to provide ex-
cellent performance at the cost of a large number of
evaluations of a program (Franke et al., 2005).

Considering that similar programs may have similar
behaviour under the application of several code trans-
formations we propose Predictive Search Distributions
for improving iterative optimization. Making explicit
the notation used throughout this paper, x is a set of
features extracted from a program and the predictive
distribution q(s|x) is a distribution over good trans-
formation sequences. Thus, our goal is to learn q(s|x)
and use this distribution to guide search on a new pro-
gram that has not been seen before.

4.2. Technical Details

Twelve different benchmarks from the UTDSP (Lee,
1997) suite have been used for the experiments. This
set of C programs contains small kernels as well as
larger applications. These are regarded as compute-
intensive programs by the DSP community, and con-
tinuously used in stream-processing applications.

We have considered source-to-source transforma-

tions applicable to C programs by using the restruc-
turing compiler framework SUIF 1 (Hall et al., 1996).
Using these transformations, we have investigated two

different spaces: a small space composed by 14 trans-
formations (selected by compiler experts) combined
into sequences of length 5 and a large space with 90
code transformations forming sequences of length 20.
The former represents a space of 145 sequences which
we have exhaustively enumerated. The latter repre-
sents a space of 9020 sequences, which we have sampled
by using a PBIL-like algorithm (Franke et al., 2005),
obtaining around 2000 samples per program. Collect-
ing the data for this task is a time-consuming activity
as every sample corresponds to a compilation and an
execution of a program. It takes around 3 days to run
one benchmark over all 145 sequences.

The experiments were executed on two distinct plat-

forms to show that our approach does not depend on a
specific architecture or compiler. The first platform is
a Texas Instruments C6713 board, a high end floating
point DSP running at 225MHz with 256kB of inter-
nal memory. The programs were compiled using the
Texas Instruments’ Code Composer Studio Tools Ver-
sion 2.21 with the highest -O3 optimization level. We
will refer to this platform henceforth as the TI board.
The second architecture used is an AMD Alchemy
Au1500 processor running at 500MHz with 16KB in-
struction cache and 16kB data cache. The programs
were compiled using GCC 3.2.1 with -O3 flag, which
according to the manufacturer provided the best per-
formance. This platform will be called henceforth the
AMD architecture.

4.3. Speed-ups Obtained

In order to evaluate the quality of a transformation
sequence we use the speed-up (u) as a measure of
performance: u = f(X, ∅)/f(X, s), where f(X, ∅) is
the execution time of program X when no transfor-
mations are applied (the baseline) and f(X, s) is the
execution time of the same program when a transfor-
mation sequence s is applied. Note that this measure
of performance ranges in the interval (0,∞), where
a number between zero and one means that a trans-
formation sequence slows down the execution of the
program and a speed-up greater than one indicates an
improvement in performance. In practice, however, we
can consider speed-ups greater than 1.05 as significant
improvements and speed-ups close to 2 as excellent im-
provements as this means that the execution time has
been reduced to half of the original program’s.

Table 1 shows the best speed-ups obtained for the
small and large spaces in both architectures: the TI
and the AMD. We see that significant speed-ups have
been obtained on average for both platforms and that
most benchmarks could be improved with the exper-



Predictive Search Distributions

Table 1. Best speed-ups obtained in the experiments.

Speed-up TI Speed-up AMD

Program Small Large Small Large
fft 1.04 1.84 1.05 1.08

fir 1.84 1.86 1.36 1.61

iir 1.19 1.19 1.42 1.42

latnrm 1.00 1.02 1.37 1.54

lmsfir 1.00 1.00 1.43 1.43

mult 1.00 1.06 1.81 2.00

adpcm 1.32 1.33 1.01 1.01

compress 1.64 1.65 1.79 1.89

edge 1.30 1.52 1.45 1.39

histogram 1.00 1.01 1.33 1.41

lpc 1.12 1.16 1.06 1.07

spectral 1.08 1.19 1.09 1.36

Average 1.21 1.32 1.35 1.43

iments. These results are important as they show
that good improvements can be obtained with itera-
tive compilation and that the data generated presents
opportunities for learning. Additionally, the speed-ups
obtained for the AMD are greater than those obtained
for the TI, showing that the compiler in the former
(GCC) is easier to improve than the commercial com-
piler in the latter. However, the speed-ups obtained on
the TI board are more than encouraging in the com-
piler community, as the compiler used on this board is
believed to produce high quality code for these types of
applications. Finally, these results show that searching
a large space such as the one considered in our exper-
iments yields further improvements. Thus, it makes
sense to use techniques such as Predictive Search Dis-
tributions in order to focus search over good subspaces
of transformation sequences.

4.4. Experimental Setup

We have fitted two classes of distributions to the set of
good transformation sequences for each program. For
our results, we have (arbitrarily) defined a good trans-
formation sequence as a sequence that has an improve-
ment in performance at least 95% of the maximum
improvement achieved.

The first distribution class we have used is an iid dis-
tribution, where the transformations within a sequence
are considered independent, so that g(s1, s2, . . . , sL) =∏L

i=1 g(si) where L is the length of the sequence con-
sidered. This iid model neglects the effect of inter-
actions among transformations, which can be very
restrictive as some transformations enable the ap-
plicability of others, and there are transformations
that yield good performance only when others have

been previously applied. Bearing in mind that more
complex models can involve a much greater number
of parameters, we have used a stationary Markov

chain as our second model to focus search. In this
model, the probability of a transformation being ap-
plied in a specific position of a sequence depends on
the one that has been previously applied, so that
g(s1, s2, . . . , sL) = g(s1)

∏L

i=2 g(si|si−1). Note that
searching with this Markov distribution differs from
the MIMIC algorithm (de Bonet et al., 1997), which
uses a non-stationary Markov chain. We have fitted
these distributions by maximum likelihood estimation
and using pseudocounts of 0.001.

As in any other machine learning task a significant
difficulty for this problem is to extract relevant fea-

tures for learning. For this purpose, we have re-
lied on the knowledge of compiler experts who have
identified thirty-four program features believed to de-
scribe the characteristics of a program well and to
be relevant for our specific task. The number of in-
structions in loops and the number of array refer-
ences in loops are examples of such features. A com-
plete list of the features and compiler transforma-
tions used is available at http://www.anc.ed.ac.uk/
machine-learning/colo/psd_list.html.

Given the high-dimensional search space and the lim-
ited amount of training data (only twelve bench-
marks), it seems rather difficult to learn search dis-
tributions for our set of programs. Therefore, we have
reduced the dimensionality of the input to five fea-
tures by using PCA and tested our approach with
1-nearest neighbour predictor in a Leave-One-Out
Cross-Validation (LOOCV) procedure. Thus, we have
predicted the search distribution for a program by sim-
ply using the distribution of its nearest neighbour.

5. Results

This section analyzes the results of applying our ap-
proach to the problem of iterative compiler optimiza-
tion.

5.1. Evaluation on Small Space

Before presenting the results for the predictive search
distributions we want to evaluate the potential of our
method by using the actual distribution that has been
fitted to each program. Let us call these distributions
the IID-oracle and the Markov-oracle. They are ora-
cles in the sense that they provide an upper bound on
our expectations of speeding-up search by our learned
models. Therefore, our first experiment aims to show
that these oracles do improve search. Clearly, if this



Predictive Search Distributions

0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

V
(u

)=
1−

F(
u)

Uniform
Markov−Oracle

Figure 1. Survival function of uniform and Markov-oracle
adpcm (TI) for the small space of 145 sequences.

is not the case, it is not worth expending effort trying
to learn these distributions.

Figure 1 shows an example of a survival function
V (u) = 1−F (u), where F (u) is the cumulative distri-
bution function for the speed-ups u achieved by uni-
form search, and search guided by the Markov-oracle
distribution. This has been obtained for the bench-
mark adpcm on the TI board. By definition, V (u) is
the probability of a speed-up being greater than u, i.e.
P (U > u). Therefore, greater values of V (u) for near-
optimal speed-ups translate into higher probabilities
of finding good transformation sequences. Indeed, the
ideal case would occur if all the density mass was con-
centrated on the maximum speed-up u∗ = maxu∈U (u)
so V (u) would be one for all u < u∗ but zero for
u = u∗. We can see that the Markov-oracle V (u) out-
performs the uniform V (u) for all speed-ups greater
than one. This means that if we use the Markov-oracle
distribution to guide search we will have a greater
chance of obtaining a good transformation sequence,
and that the number of samples needed to achieve good
performance will be reduced (this behaviour was con-
sistent for all the benchmarks using both oracle distri-
butions in both architectures).

One can compute the expected number of samples E[n]
needed to reach a good data-point (first success) when
assuming random sampling. If we define a good data-
point in the performance space as the one for which the
speed-up is greater than certain value u+, the expected
number of samples needed to achieve this performance
is 1/V (u+). In order to evaluate the benefits of using a
distribution for guiding search let us define the Search
Improvement Factor SIF = Eu[n]/Es[n], where Eu[n]
is the expected number of samples needed to achieve

Table 2. Expected number of samples for uniform distribu-
tion and search improvement factors for oracle distribu-
tions to obtain 95% of maximum performance.

TI AMD

SIF SIF

Pr. Eu[n] I M Eu[n] I M
fft 11.3 2.7 5.4 1.4 1.1 1.2

fir 20.6 12.2 14.2 8.8 3.6 5.1

iir 1.8 1.1 1.2 17.7 7.2 10.6

lat - - - 21.8 7.1 11.7

lms - - - 15.2 6.9 9.5

mul - - - 82.6 17.5 39.8

adp 66.3 3.6 13.8 - - -

com 13.8 7.2 9.2 55.9 12.0 25.9

edg 96.4 18.1 45.4 29760 457 26720

his - - - 9.5 6.3 7.0

lpc 83.6 15.7 36.7 13.6 3.6 6.2

spe 2.6 1.5 1.8 14.3 3.3 5.2

Av. 37.0 5.0 8.8 2727 8.1 17.4

good performance when using the uniform distribution
and Es[n] is the expected number of samples required
when using a specific search distribution (such as the
IID-oracle). Thus, we will prefer SIF values greater
than one as they indicate that a distribution speeds
up search.

Table 2 shows the expected number of samples Eu[n]
needed to achieve good performance for uniform search
and the search improvement factor SIF for the ora-
cle distributions, where a good solution has been de-
fined to be at least 95% of the maximum performance
achieved for each benchmark. The first column cor-
responds to the benchmarks used and the columns I

and M correspond to iid and Markov distributions re-
spectively. Note that those benchmarks for which no
speed-up was obtained during the exhaustive experi-
ments are marked with ‘-’ indicating that their spaces
are not worth searching. It can be seen that both ora-
cle distributions consistently improved search in both
architectures. Furthermore, although in some easy-to-
search spaces such as iir and spectral for the TI or fft

for the AMD only marginal benefits are obtained, in
difficult spaces such as adpcm, edge and lpc for the TI
or mult, compress and edge for the AMD, the oracles
speeded up search by an order of magnitude or more2.
It is also possible to conclude that modelling interac-
tions by using a Markov chain does lead to greater
improvements compared to an iid distribution. On
average3, the iid distribution and the Markov model

2The benchmark edge is a needle-in-a-haystack problem
and the oracle distributions dramatically improved search.

3We have used the arithmetic mean for computing the



Predictive Search Distributions

Table 3. Expected number of samples for uniform distribu-
tion and search improvement factors for predictive distri-
butions to obtain 95% of maximum performance.

TI AMD

SIF SIF

Pr. Eu[n] I M Eu[n] I M
fft 11.3 0.8 0.8 1.4 1.1 1.1

fir 20.6 6.5 7.8 8.8 1.4 1.5

iir 1.8 1.0 1.0 17.7 6.3 6.9

lat - - - 21.8 6.3 6.8

lms - - - 15.2 3.3 4.4

mul - - - 82.6 12.7 24.2

adp 66.3 1.4 1.4 - - -

com 13.8 6.8 7.9 55.9 13.4 27.4

edg 96.4 2.2 2.3 29760 6.8 0.2

his - - - 9.5 6.3 7.0

lpc 83.6 2.2 2.3 13.6 3.3 4.7

spe 2.6 0.9 0.9 14.3 3.3 4.8

Av. 37.0 2.0 2.1 2727 4.5 4.1

improved search by factors of 5.0 and 8.8 for the TI
and 8.1 and 17.4 for the AMD respectively.

Having shown that using oracle distributions leads to
an improvement in the search, the next step is to eval-
uate the predictive distributions when using 1-nearest
neighbour. These results are shown in Table 3, where
we have abbreviated the names of the programs and
distributions as before, and the benchmarks marked
with ‘-’ indicate that their spaces are uninteresting to
search. Not surprisingly, the search improvement fac-
tors of the predictive distributions are upper-bounded
by the search improvement factors of the oracle distri-
butions (with the exception of compress on the AMD).
However, for most benchmarks the predictive distri-
butions did improve search by focusing on regions of
the space where good performance was obtained. In-
deed, only for two benchmarks on the TI board (fft

and spectral) and one benchmark on the AMD (edge
when using the Markov distribution) did the predictive
distributions harm performance. This latter case sug-
gests overfitting, as the iid model speeded up search
and has fewer parameters than the Markov model. It
also confirms that transfer of knowledge to a needle-
in-a-haystack problem can be very difficult, especially
when having a small number of training points. How-
ever, one can alleviate this effect by mixing the fit-
ted distributions with the uniform distribution using
weight factors of α and (1 − α) respectively4.

average of Eu[n] and the geometric mean for averaging
SIF s.

4Using α = 0.8 the SIF for edge on the AMD with the
Markov model increased to 0.7 while the average SIF for

1 5 10 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Sp
ee

du
p−

1

Uniform
IID−learned
Markov−learned

Figure 2. Performance curves for mult on AMD.

5.2. Evaluation on Large Space

In contrast with the small space, we do not have ex-
haustive data for the large space and thus we cannot
compute Eu[n] in order to evaluate the benefits of our
approach. Therefore, we have considered a different
measure of comparison: the area under the perfor-
mance curve (AUC ) computed on empirical results av-
eraged over 10 repetitions. Figure 2 shows an example
of performance curves for the benchmark mult in the
AMD architecture. A performance curve describes the
best speed-up achieved so far by a search algorithm as
a function of the number of iterations. Note that we
have used speed-up minus one on the y-axis (so that
no speed-up corresponds to zero) and a log-scale for
the x-axis. It is clear that the AUC will reward those
methods that reach better performance and those that
achieve good speed-ups in fewer iterations. The AUCs
for the TI and AMD are shown in Figure 3, where
the computations have been done using performance
curves for each benchmark like the one illustrated in
Figure 2 after fifty iterations. Note that the results
are shown only for those benchmarks for which an im-
provement was obtained with these experiments. On
the TI board, the iid distribution provides the best
performance for most benchmarks, with a dramatic
improvement achieved for fft. The Markov distribu-
tion improves performance over uniform in some cases
but decreases it in others. On the AMD, both predic-
tive distributions improve performance on most bench-
marks; of the 10, the best AUC performance is given
by iid on 5, and by Markov on the other 5.

With these empirical results we conclude that hav-
ing a predictive distribution generally improved search

all the other benchmarks decreased from 5.7 to 4.9.



Predictive Search Distributions

FFT FIR IIR ADP COM EDG LPC SPE
0

0.5

1

1.5

2

2.5

3

3.5
A

U
C

Uniform
IID−learned
Markov−learned

FFT COM LAT LMS MUL EDG FIR IIR SPE HIS
0

0.5

1

1.5

2

2.5

3

3.5

A
U

C

Uniform
IID−learned
Markov−learned

Figure 3. AUC for TI (left) and AMD (right) on the large space. The error bars denote one standard deviation of the
mean. The × symbol for fft and spectral on AMD means that uniform search did not provide any improvement in
performance for the number of iterations considered.

on the large space. A detailed analysis of the results
shows that the improvements achieved by the predic-
tive distribution after five iterations are at least as
good as the ones obtained by uniform search after fifty
iterations, which translates into an speed-up of itera-
tive optimization of an order of magnitude. For the
small space the Markov distribution provided the best
performance for most benchmarks. On the large space
the choice between iid and Markov was less clear cut,
but both predictive distributions give improvements
over uniform search.

6. Discussion

Above we have outlined the theory for learning predic-
tive search distributions and have demonstrated that
it can lead to significant improvements on the com-
piler optimization problems studied. We are currently
collecting more data in order to be able to compare
parameterized predictive distributions with nearest-
neighbour methods.

Other examples of domains where there are families
of optimization problems include finding the ground
state of a spin glass, or the minimum balanced cut
graph partitioning problem (Pelikan et al., 1999). Here
families are induced by varying the edge weights in the
input graph.

Acknowledgements

This work is supported under EPSRC grant
GR/S71118/01 Compilers that Learn to Optimize and
in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence,
IST-2002-506778. This publication only reflects the
authors’ views.

References

Caruana, R. (1997). Multitask Learning. Machine Learn-
ing, 28(1), 41–75.

de Bonet, J., Isbell, C., & Viola, P. (1997). MIMIC: Find-
ing Optima by Estimating Probability Densities. Ad-
vances in Neural Information Processing Systems (p.
424). The MIT Press.

Franke, B., O’Boyle, M., Thomson, J., & Fursin, G. (2005).
Probabilistic source-level optimisation of embedded pro-
grams. Proc. LCTES’05 (pp. 78–86).

Hall, M. W., Anderson, J.-A. M., Amarasinghe, S. P., Mur-
phy, B. R., Liao, S.-W., Bugnion, E., & Lam, M. S.
(1996). Maximizing multiprocessor performance with
the SUIF compiler. IEEE Computer, 29, 84–89.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. Proc. 18th International
Conference on Machine Learning (pp. 282–289). Morgan
Kaufmann, San Francisco, CA.

Langley, P. (1996). Elements of Machine Learning. San
Francisco, USA: Morgan Kaufmann.

Larrañaga, P., & Lozano, J. A. (2001). Estimation of distri-
bution algorithms: A new tool for evolutionary computa-
tion. Norwell, MA, USA: Kluwer Academic Publishers.

Lee, C. (1997). UTDSP benchmark suite.
http://www.eecg.toronto.edu/~corinna/.

Pelikan, M., Goldberg, D. E., & Lobo, F. (1999). A survey
of optimization by building and using probabilistic mod-
els (Technical Report IlliGAL-99018). Illinois Genetic
Algorithms Laboratory.

Thrun, S., & O’Sullivan, J. (1996). Discovering structure
in multiple learning tasks: The TC algorithm. Proc.
13th International Conference on Machine Learning (pp.
489–497). Morgan Kaufmann.


