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Abstract
We describe how we used a data set of chorale harmonisations composed
by Johann Sebastian Bach to train Hidden Markov Models. Using a prob-
abilistic framework allows us to create a harmonisation system which
learns from examples, and which can compose new harmonisations. We
make a quantitative comparison of our system’s harmonisation perfor-
mance against simpler models, and provide example harmonisations.

1 Introduction

Chorale harmonisation is a traditional part of the theoretical education of Western classical
musicians. Given a melody, the task is to create three further lines of music which will
sound pleasant when played simultaneously with the original melody. A good chorale
harmonisation will show an understanding of the basic ‘rules’ of harmonisation, which
codify the aesthetic preferences of the style. Here we approach chorale harmonisation as
a machine learning task, in a probabilistic framework. We use example harmonisations
to build a model of harmonic processes. This model can then be used to compose novel
harmonisations.

Section 2 below gives an overview of the musical background to chorale harmonisation.
Section 3 explains how we can create a harmonisation system using Hidden Markov Mod-
els. Section 4 examines the system’s performance quantitatively and provides example
harmonisations generated by the system. In section 5 we compare our system to related
work, and in section 6 we suggest some possible enhancements.

2 Musical Background

Since the sixteenth century, the music of the Lutheran church had been centred on the
‘chorale’. Chorales were hymns, poetic words set to music: a famous early example is
Martin Luther’s “Ein’ feste Burg ist unser Gott”. At first chorales had only relatively sim-
ple melodic lines, but soon composers began to arrange more complex music to accompany
the original tunes. In the pieces by Bach which we use here, the chorale tune is taken gen-
erally unchanged in the highest voice, and three other musical parts are created alongside
it, supporting it and each other. By the eighteenth century, a complex system of rules had
developed, dictating what combinations of notes should be played at the same time or fol-
lowing previous notes. The added lines of music should not fit too easily with the melody,
but should not clash with it too much either. Dissonance can improve the music, if it is
resolved into a pleasant consonance.
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Figure 1: Hidden state representations (a) for harmonisation, (b) for ornamentation.

The training and test chorales used here are divided into two sets: one for chorales in
‘major’ keys, and one for chorales in ‘minor’ keys. Major and minor keys are based around
different sets of notes, and musical lines in major and minor keys behave differently.

The representation we use to model harmonisations divides up chorales into discrete time-
steps according to the regular beat underlying their musical rhythm. At each time-step
we represent the notes in the various musical parts by the musical intervals between them.
These intervals are calculated by counting how far apart notes are in terms of all the possible
‘semitone’ notes.

3 Harmonisation Model

3.1 HMM for Harmonisation

We construct a Hidden Markov model in which the visible states are melody notes and the
hidden states are chords. A sequence of observed events makes up a melody line, and a
sequence of hidden events makes up a possible harmonisation for a melody line. We denote
the sequence of melody notes as Y and the harmonic motion as C, with yt representing the
melody at time t, and ct the harmonic state.

Hidden Markov Models are generative models: here we model how a visible melody line is
emitted by a hidden sequence of harmonies. This makes sense in musical terms, since we
can view a chorale as having an underlying harmonic structure, and the individual notes of
the melody line as chosen to be compatible with this harmonic state at each time step. We
will create separate models for chorales in major and minor keys, since these groups have
different harmonic structures.

For our model we divide each chorale into time steps of a single beat, making the assump-
tion that the harmonic state does not change during a beat. (Typically there are three or
four beats in a bar.) We want to create a model which we can use to predict three further
notes at each of these time steps, one for each of the three additional musical lines in the
harmonisation.

There are many possible hidden state representations from which to choose. Here we rep-
resent a choice of notes by a list of pitch intervals. By using intervals in this way we
represent the relationship between the added notes and the melody at a given time step,
without reference to the absolute pitch of the melody note. These interval sets alone would
be harmonically ambiguous, so we disambiguate them using harmonic labels, which are
included in the training data set. Adding harmonic labels means that our hidden symbols
not only identify a particular chord, but also the harmonic function that the chord is serv-
ing. Figure 1(a) shows the representation used for some example notes. Here (an A major
chord) the alto, tenor and bass notes are respectively 4, 9, and 16 semitones below the



soprano melody. The harmonic label is ‘T’, labelling this as functionally a ‘tonic’ chord.
Our representation of both melody and harmony distinguishes between a note which is
continued from the previous beat and a repeated note.

We make a first-order Markov assumption concerning the transition probabilities between
the hidden states, which represent choices of chord on an individual beat:

P (ct|ct−1, ct−2, . . . , c0) = P (ct|ct−1).

We make a similar assumption concerning emission probabilities to model how the ob-
served event, a melody note, results from the hidden state, a chord:

P (yt|ct, . . . , c0, yt−1, . . . , y0) = P (yt|ct).

In the Hidden Markov Models used here, the ‘hidden’ states of chords and harmonic sym-
bols are in fact visible in the data during training. This means that we can learn transition
and emission probabilities directly from observations in our training data set of harmonisa-
tions. We use additive smoothing (adding 0.01 to each bin) to deal with zero counts in the
training data.

Using a Hidden Markov Model framework allows us to conduct efficient inference over
our harmonisation choices. In this way our harmonisation system will ‘plan’ over an entire
harmonisation rather than simply making immediate choices based on the local context.
This means, for example, that we can hope to compose appropriate ‘cadences’ to bring our
harmonisations to pleasant closes rather than finishing abruptly.

Given a new melody line, we can use the Viterbi algorithm to find the most likely state
sequence, and thus harmonisation, given our model. We can also provide alternative har-
monisations by sampling from the posterior [see 1, p. 156], as explained below.

3.2 Sampling Alternative Harmonisations

Using αt−1(j), the probability of seeing the observed events of a sequence up to time t− 1
and finishing in state j, we can calculate the probability of seeing the first t − 1 events,
finishing in state j, and then transitioning to state k at the next step:

P (y0, y1, . . . , yt−1, ct−1 = j, ct = k) = αt−1(j)P (ct = k|ct−1 = j).

We can use this to calculate ρt(j|k), the probability that we are in state j at time t−1 given
the observed events up to time t − 1, and given that we will be in state k at time t:

ρt(j|k) = P (ct−1 = j|y0, y1, . . . , yt−1, ct = k) =
αt−1(j)P (ct = k|ct−1 = j)

∑
l
αt−1(l)P (ct = k|ct−1 = l)

.

To sample from P (C|Y ) we first choose the final state by sampling from its probability
distribution according to the model:

P (cT = j|y0, y1, . . . , yT ) =
αT (j)

∑
l
αT (l)

.

Once we have chosen a value for the final state cT , we can use the variables ρt(j|k) to
sample backwards through the sequence:

P (ct = j|y0, y1, . . . , yT , ct+1) = ρt+1(j|ct+1).

3.3 HMM for Ornamentation

The chorale harmonisations produced by the Hidden Markov Model described above har-
monise the original melody according to beat-long time steps. Chorale harmonisations are



Table 1: Comparison of predictive power achieved by different models of harmonic se-
quences on training and test data sets (nats).

Training (major) Test (major) Training (minor) Training (minor)

− 1

T
ln P (C|Y ) 2.56 4.90 2.66 5.02

− 1

T

∑
ln P (ct|yt) 3.00 3.22 3.52 4.33

− 1

T

∑
ln P (ct|ct−1) 5.41 7.08 5.50 7.21

− 1

T

∑
ln P (ct) 6.43 7.61 6.57 7.84

not limited to this rhythmic form, so here we add a secondary ornamentation stage which
can add passing notes to decorate these harmonisations. Generating a harmonisation and
adding the ornamentation as a second stage greatly reduces the number of hidden states
in the initial harmonisation model: if we went straight to fully-ornamented hidden states
then the data available to us concerning each state would be extremely limited. Moreover,
since the passing notes do not change the harmonic structure of a piece but only ornament
it, adding these passing notes after first determining the harmonic structure for a chorale is
a plausible compositional process.

We conduct ornamentation by means of a second Hidden Markov Model. The notes added
in this ornamentation stage generally smooth out the movement between notes in a line of
music, so we set up the visible states in terms of how much the three harmonising musical
lines rise or fall from one time-step to the next. The hidden states describe ornamentation
of this motion in terms of the movement made by each part during the time step, relative
to its starting pitch. This relative motion is described at a time resolution four times as fine
as the harmonic movement. On the first of the four quarter-beats we always leave notes
as they were, so we have to make predictions only for the final three quarter-beats. Figure
1(b) shows an example of the representation used. In this example, the alto and tenor lines
remain at the same pitch for the second quarter-beat as they were for the first, and rise by
two semitones for the third and fourth quarter-beats, so are both represented as ‘0,0,2,2’,
while the bass line does not change pitch at all, so is represented as ‘0,0,0,0’.

4 Results

Our training and test data are derived from chorale harmonisations by Johann Sebastian
Bach.1 These provide a relatively large set of harmonisations by a single composer, and are
long established as a standard reference among music theorists. There are 202 chorales in
major keys of which 121 were used for training and 81 used for testing; and 180 chorales
in minor keys (split 108/72).

Using a probabilistic framework allows us to give quantitative answers to questions about
the performance of the harmonisation system. There are many quantities we could com-
pute, but here we will look at how high a probability the model assigns to Bach’s own
harmonisations given the respective melody lines. We calculate average negative log prob-
abilities per symbol, which describe how predictable the symbols are under the model.
These quantities provide sample estimates of cross-entropy. Whereas verbal descriptions
of harmonisation performance are unavoidably vague and hard to compare, these figures
allow our model’s performance to be directly compared with that of any future probabilistic
harmonisation system.

1We used a computer-readable edition of Bach’s chorales downloaded from ftp://i11ftp.
ira.uka.de/pub/neuro/dominik/midifiles/bach.zip



1� � �� � �� � � � �� ����� � �� ���� � � �� ��� � �� � ���� � �� ���� � � �� ���� � �� ���� � �� ���� � �� ���� � �� ���� � �� ������������� � �� ���� � � �� ���� � �� ���� � �� � � � � �� �� ����
� �� � ��5 	 ��
��

				 ��
��
			

� �� � �� �� � �� � �� ��� � �� � �� � �� � ��� � �� ���� �� � �� �� � �� � �� ���� � �� � �� ����� � �� ���� � �� ��������� � �� ��� � � �� � �� ���� � �� ����� � � �� ���� � �� � �� ���� � �� � �� ���� � �� ���5 � � � �� � � � � �� ����
Figure 2: Most likely harmonisation under our model of chorale K4, BWV 48
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Figure 3: Most likely harmonisation under our model of chorale K389, BWV 438

Table 1 shows the average negative log probability per symbol of Bach’s chord symbol
sequences given their respective melodic symbol sequences, − 1

T
ln P (C|Y ), on training

and test data sets of chorales in major and minor keys. As a comparison we give analo-
gous negative log probabilities for a model predicting chord states from their respective
melody notes, − 1

T

∑
ln P (ct|yt), for a simple Markov chain between the chord states,

− 1

T

∑
ln P (ct|ct−1), and for a model which assumes that the chord states are indepen-

dently drawn, − 1

T

∑
ln P (ct). The Hidden Markov Model here has 5046 hidden chord

states and 58 visible melody states.

The Hidden Markov Model finds a better fit to the training data than the simpler models:
to choose a good chord for a particular beat we need to take into account both the melody
note on that beat and the surrounding chords. Even the simplest model of the data, which
assumes that each chord is drawn independently, performs worse on the test data than the
training data, showing that we are suffering from sparse data. There are many chords, chord
to melody note emissions, and especially chord to chord transitions, that are seen in the test
data but never occur in the training data. The models’ performance with unseen data could
be improved by using a more sophisticated smoothing method, for example taking into
account the overall relative frequencies of harmonic symbols when assigning probabilities
to unseen chord transitions. However, this lower performance with unseen test data is not
a problem for the task we approach here, of generating new harmonisations, as long as we
can learn a large enough vocabulary of events from the training data to be able to find good



harmonisations for new chorale melodies.

Figures 2 and 3 show the most likely harmonisations under our model for two short
chorales. The system has generated reasonable harmonisations. We can see, for example,
passages of parallel and contrary motion between the different parts. There is an appropri-
ate harmonic movement through the harmonisations, and they come to plausible cadences.

The generated harmonisations suffer somewhat from not taking into account the flow of
the individual musical lines which we add. There are large jumps, especially in the bass
line, more often than is desirable – the bass line suffers most since has the greatest variance
with respect to the soprano melody. This excessive jumping also feeds through to reduce
the performance of the ornamentation stage, creating visible states which are unseen in the
training data. The model structure means that the most likely harmonisation leaves these
states unornamented. Nevertheless, where ornamentation has been added it fits with its
context and enhances the harmonisations.

The authors will publish further example harmonisations, including MIDI files, online at
http://www.tardis.ed.ac.uk/˜moray/harmony/.

5 Relationship to previous work

Even while Bach was still composing chorales, music theorists were catching up with mu-
sical practice by writing treatises to explain and to teach harmonisation. Two famous ex-
amples, Rameau’s Treatise on Harmony [2] and the Gradus ad Parnassum by Fux [3],
show how musical style was systematised and formalised into sets of rules. The traditional
formulation of harmonisation technique in terms of rules suggests that we might create an
automatic harmonisation system by finding as many rules as we can and encoding them as
a consistent set of constraints. Pachet and Roy [4] provide a good overview of constraint-
based harmonisation systems. For example, one early system [5] takes rules from Fux and
assigns penalties according to the seriousness of each rule being broken. This system then
conducts a modified best-first search to produce harmonisations. Using standard constraint-
satisfaction techniques for harmonisation is problematic, since the space and time needs of
the solver tend to rise extremely quickly with the length of the piece.

Several systems have applied genetic programming techniques to harmonisation, for ex-
ample McIntyre [6]. These are similar to the constraint-based systems described above,
but instead of using hard constraints they encode their rules as a fitness function, and try
to optimise that function by evolutionary techniques. Phon-Amnuaisuk and Wiggins [7]
are reserved in their assessment of genetic programming for harmonisation. They make a
direct comparison with an ordinary constraint-based system, and conclude that the perfor-
mance of each system is related to the amount of knowledge encoded in it rather than the
particular technique it uses. In their comparison the ordinary constraint-based system actu-
ally performs much better, and they argue that this is because it possesses implicit control
knowledge which the system based on the genetic algorithm lacks.

Even if they can be made more efficient, these rule-based systems do not perform the full
task of our harmonisation system. They take a large set of rules written by a human and
attempt to find a valid solution, whereas our system learns its rules from examples.

Hild et al. [8] use neural networks to harmonise chorales. Like the Hidden Markov Models
in our system, these neural networks are trained using example harmonisations. However,
while two of their three subtasks use only neural networks trained on example harmonisa-
tions, their second subtask, where chords are chosen to instantiate more general harmonies,
includes constraint satisfaction. Rules written by a human penalise undesirable combi-
nations of notes, so that they will be filtered out when the best chord is chosen from all
those compatible with the harmony already decided. In contrast, our model learns all its



harmonic ‘rules’ from its training data.

Ponsford et al. [9] use n-gram Markov models to generate harmonic structures. Unlike in
chorale harmonisation, there is no predetermined tune with which the harmonies need to fit.
The data set they use is a selection of 84 saraband dances, by 15 different seventeen-century
French composers. An automatically annotated corpus is used to train Markov models
using contexts of different lengths, and the weighted sum of the probabilities assigned by
these models used to predict harmonic movement. Ponsford et al. create new pieces first by
random generation from their models, and secondly by selecting those randomly-generated
pieces which match a given template. Using templates gives better results, but the great
majority of randomly-generated pieces will not match the template and so will have to be
discarded. Using a Hidden Markov Model rather than simple n-grams allows this kind of
template to be included in the model as the visible state of the system: the chorale tunes
in our system can be thought of as complex templates for harmonisations. Ponsford et
al. note that even with their longest context length, the cadences are poor. In our system
the ‘planning’ ability of Hidden Markov Models, using the combination of chords and
harmonic labels encoded in the hidden states, produces cadences which bring the chorale
tunes to harmonic closure.

This paper stems from work described in the first author’s MSc thesis [10] carried out in
2002. We have recently become aware that similar work has been carried out independently
in Japan by a team led by Prof S. Sagayama [11, 12]. To our knowledge this work has
been published only in Japanese2. The basic frameworks are similar, but there are several
differences. First, their system only describes the harmonisation in terms of the harmonic
label (e.g. T for tonic) and does not fully specify the voicing of the three harmony lines or
ornamentation. Secondly, they do not give a quantitative evaluation of the harmonisations
produced as in our Table 1. Thirdly, in [12] a Markov model on blocks of chord sequences
rather than on individual chords is explored.

6 Discussion

Using the framework of probabilistic influence allows us to perform efficient inference to
generate new chorale harmonisations, avoiding the computational scaling problems suf-
fered by constraint-based harmonisation systems. We described above neural network
and genetic algorithm techniques which were less compute-intensive than straightforward
constraint satisfaction, but the harmonisation systems using these techniques retain a pre-
programmed knowledge base, whereas our model is able to learn its harmonisation con-
straints from training data.

Different forms of graphical model would allow us to take into account more of the de-
pendencies in harmonisation. For example, we could use a higher-order Markov structure,
although this by itself would be likely to greatly increase the problems already seen here
with sparse data. An alternative might be to use an Autoregressive Hidden Markov Model
[13], which models the transitions between visible states as well as the hidden state transi-
tions modelled by an ordinary Hidden Markov Model.

Not all of Bach’s chorale harmonisations are in the same style. Some of his harmonisations
are intentionally complex, and others intentionally simple. We could improve our harmon-
isations by modelling this stylistic variation, either manually annotating training chorales
according to their style or by training a mixture of HMMs.

As we only wish to model the hidden harmonic state given the melody, rather than construct
a full generative model of the data, Conditional Random Fields (CRFs) [14] provide a
related but alternative framework. However, note that training such models (e.g. using

2We thank Yoshinori Shiga for explaining this work to us.



iterative scaling methods) is more difficult than the simple counting methods that can be
applied to the HMM case. On the other hand the use of the CRF framework would have
some advantages, in that additional features could be incorporated. For example, we might
be able to make better predictions by taking into account the current time step’s position
within its musical bar. Music theory recognises a hierarchy of stressed beats within a bar,
and harmonic movement should correlated with these stresses. The ornamentation process
especially might benefit from a feature-based approach.

Our system described above only considers chords as sets of intervals, and thus does not
have a notion of the key of a piece (other than major or minor). However, voices have a
preferred range and thus the notes that should be used do depend on the key, so the key
signature could also be used as a feature in a CRF. Taking into account the natural range of
each voice would prevent the bass line from descending too low and keep the three parts
closer together. In general more interesting harmonies result when musical lines are closer
together and their movements are more constrained. Another dimension that could be
explored with CRFs would be to take into account the words of the chorales, since Bach’s
own harmonisations are affected by the properties of the texts as well as of the melodies.
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