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ABSTRACT

Recent studies have highlighted the dangers of using haplotypes reconstructed

directly from population data for a fine-scale mapping analysis. Family data

may help resolve ambiguity, yet can be costly to obtain. This study is con-

cerned with the following question: How much family data (if any) should be

used to facilitate haplotype reconstruction in a population study? We con-

duct a simulation study to evaluate how changes in family information can

impact the accuracy of haplotype frequency estimates and phase reconstruc-

tion. To reconstruct haplotypes, we introduce an EM-based algorithm that

can efficiently accommodate unrelated individuals, parent-child trios and ar-

bitrarily large half-sib pedigrees. Simulations are conducted for a diverse set

of haplotype frequency distributions, all of which have been previously pub-

lished in empirical studies. A wide variety of important results regarding the

effectiveness of using pedigree data in a population study are presented in

a coherent, unified framework. Insight is provided into the different proper-

ties of the haplotype frequency distribution that can influence experimental

design. We show that a preliminary estimate of the haplotype frequency

distribution can be valuable in large population studies with fixed resources.
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INTRODUCTION

There is currently a strong interest in how best to use Linkage Disequilibrium

(LD) information for fine-scale mapping and association analysis of complex

traits. A growing number of studies demonstrate that haplotype-based ap-

proaches may provide more power and accuracy in locating quantitative trait

loci (QTL) and causative disease variants than single-locus methods (see, e.g.

Zhao et al., 2003; Morris et al., 2002; Fallin et al., 2001). Since haplotypes are

typically not observed in vitro, haplotype-based studies are likely to follow

a two-step procedure: first, haplotypes are inferred from a sample of phase-

unknown genotypes using a computational algorithm, and second, inferred

haplotypes are fed into a multi-locus LD model, where they are treated as

having been directly observed.

There are two principal approaches to inferring haplotypes from population

data, both with potential drawbacks. One approach is to use family data,

which may be able to deterministically resolve phase for genotypes featuring

multiple heterozygous loci. However, ascertaining this information can be

costly. When resources are fixed, it may actually be more efficient to use a

genotype-based mapping model rather than re-allocate resources to ascertain

family data for haplotype reconstruction (Grapes et al., 2004).

A second approach is to infer haplotypes directly from population data. A

variety of statistical algorithms exist for random-mating populations, and

good comparative surveys are available (see, e.g. Stephens and Donnelly,
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2003; Zhao et al., 2003). A problem with reconstructing haplotypes using

these models is that there may be considerable uncertainty associated with

the inferred haplotypes. It was recently demonstrated that failing to account

for this uncertainty can result in unreliable location estimates in a subse-

quent mapping analysis (Morris et al., 2004). These results indicate that,

when possible, haplotype-based analyses should be modified to efficiently ac-

commodate this uncertainty. When the two-stage procedure must be used,

it is important to understand the factors that will limit its effectiveness. One

important factor is likely to be the haplotype frequency distribution. This is

because, under the standard assumption of random-mating, the data can be

regarded as independent samples from this distribution.

In this paper, we illustrate the different ways in which the haplotype fre-

quency distribution can impact the accuracy of both the phase assignments

and haplotype frequency estimates. We also examine the effectiveness of us-

ing family data to improve accuracy for different frequency profiles.

To facilitate our analysis, we begin by introducing an EM-based haplotype

reconstruction model that can accommodate outbred half-sib pedigrees, un-

related individuals and family-child trios. The method is efficient for arbi-

trarily large sibships with missing marker data, and will be of interest to

studies of hierarchical population structures, including those in populations

of many natural and domestic animal species.

The remainder of the paper is devoted to simulating and analyzing results

using a diverse set of published haplotype frequencies. We describe sum-
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mary statistics that can be calculated directly from inferred frequency data,

and which can be used to predict the accuracy of phase assignment and the

usefulness of family data. A wide variety of results that either extend or

complement existing analysis are presented in a coherent, unified framework.

METHODS

Notation and Modelling Assumptions

We are considering a candidate region in the genome characterized by L

tightly linked biallelic loci. Let h = h1 . . . hM denote the M = 2L possible

haplotypes, and let Θ = (θ1, . . . , θM) denote corresponding haplotype fre-

quencies in the target population.

For a large, panmictic population, we can specify the probability of observing

a given phase configuration, z = (hi, hj) as

p(z = hi, hj|Θ) = c θiθj (1)

where c is 1 if the individual is a homozygote (i.e. i = j), or 2 if the individual

is a heterozygote (i.e. i 6= j).

Similarly, the probability of observing a given phase unknown genotype, y,

in a panmictic population is:

p(y|Θ) =
∑

z∈z(y)

p(z|Θ), (2)
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where z(y) is the set of all possible phase configurations that can resolve y.

Note that the size of z(y) increases exponentially with the number of het-

erozygous loci.

Haplotype Reconstruction via the EM Algorithm

Let y = y1 . . . yN denote a sample of N phase unknown genotypes. The ob-

jective of the EM-based approach to haplotype reconstruction is to calculate

the maximum likelihood estimate of Θ given y. Haplotype frequency esti-

mates can then be used to reconstruct phase.

An important initial assumption concerns any underlying pedigree structure

of the data. It will be useful to make these assumptions explicit by char-

acterizing the observed data using two parameters: the marker data, y and

a representation of the underlying pedigree structure, F . When individuals

are unrelated, or no additional family information is included, we set F = ∅.

A central challenge of any likelihood-based pedigree model is achieving rea-

sonable computational complexity for a given F , and one of the principal

contributions of our method is that we provide an efficient algorithm for

sparse half-sib pedigrees. It will be useful to first review the EM-based ap-

proach for unrelated individuals.

EM algorithm for Unrelated Individuals: The EM algorithm for unrelated

individuals has been developed and evaluated in many different contexts

(see, e.g. Hill, 1974; Terwilliger and Ott, 1994; Excoffier and Slatkin, 1995;

Hawley and Kidd, 1995; Fallin and Shorck, 2000; Kirk and Cardon, 2002;
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Qin et al., 2002). The general approach entails augmenting the observed

phase-unknown genotypes for each member in the sample by the correspond-

ing phase configurations. We denote these latent phase configurations by

z = z1 . . . zN . Each iteration of the EM algorithm requires calculating the

expected log-likelihood of the augmented data:

Ep(z|yΘ̃) log[p(y, z|Θ)] =
N∑

i=1

M∑
j=1

Ep(zi|yi,Θ̃)nij log θj + Constant, (3)

where Θ̃ denotes the current estimate of Θ and nij refers to the number of

times haplotype j appears in the phase configuration of individual i. Once

(3) has been calculated, the result is maximized with respect to Θ and the

process is repeated until Θ̃ converges at a maximum, Θ̂.

Note that without the expectation, (3) is a straightforward description of

“gene counting”. The added complexity incurred from using the EM algo-

rithm is therefore attributed to calculating p(zi|yi, Θ̃). This quantity is given

by dividing equation (1) by equation (2).

The complexity is dominated by calculating the terms in (2), which increase

linearly with the number of possible phase configurations. However, the num-

ber of possible phase configurations increases exponentially with the number

of heterozygous genotypes, which limits the number of SNPs that can rea-

sonably be evaluated. This constraint will apply to any EM-based approach

that requires estimating the distribution of phase given marker data, includ-

ing the one we are about to describe for outbred half-sib pedigrees. It is
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worth mentioning that one way to accommodate a large number of markers

is to use the partition ligation algorithm introduced by Niu et al. (2002).

While this algorithm was developed as part of a Bayesian model, it has since

been incorporated into the EM framework (Qin et al., 2002).

EM algorithm for Outbred Half-Sib Pedigrees: We now consider the case

where members of y may be related through one of P ≤ N sires. If P < N ,

then the likelihood in (3) is no longer valid since the summation over N only

follows from assuming each animal is unrelated.

One EM-based approach that accommodates nuclear family information is

described by Rohde and Fuerst (2001). The model treats the parents as

independent and augments the marker data by the latent parental phase

configurations. The E-Step entails enumerating phase configurations that

are consistent with parent and progeny marker data, and then evaluating

each configuration. This enumerative approach is sufficient for small sib-

ships, but it is computationally infeasible for a sib structure of moderate

size. For sparse family structures, such as half-sib pedigrees with untyped

parents, it is not a realistic strategy.

The starting point for our model follows a generic approach described by

O’Connell (2000), and entails augmenting the data by the latent phase con-

figurations of the founders. The E-step would then require calculating the

marginal distribution of each founder given the marker data specific to that

founder’s pedigree.

Let the latent phase configurations of the sires and dams be denoted s and d
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respectively. The expectation of the augmented data (omitting the constant

term) is:

P∑
i=1

M∑
j=1

Ep(si|Θ̃,y,F) [nij] log θj +
N∑

i=1

M∑
j=1

Ep(di|Θ̃,y,F) [nij] log θj. (4)

The challenge is therefore how to calculate p(si|Θ̃) and p(di|Θ̃). This can be

done in any number of ways, but many potentially relevant techniques have

been developed in the context of human linkage analysis. In the appendix

we provide a formal derivation of the approach we use for calculating the

marginal distributions of the sire and dams. Briefly, inferring p(si|Θ̃) follows

a straightforward application of the peeling algorithm (Elston and Stewart,

1971). Inferring p(di|Θ̃) can be achieved by adopting general principles used

to simulate pedigree data (Ploughman and Boehnke, 1989). Using these

techniques results in a computational complexity that is cubic in the number

of phase configurations. This is still two orders of magnitude worse than the

complexity for unrelated individuals. In the appendix, we also demonstrate

how to achieve quadratic complexity for both sire and dam. In the context

of haplotype reconstruction, the corresponding reduction in computational

resources can be substantial.

Both the method of Rohde and Fuerst (2001) and O’Connell (2000) assume

nonrecombinant haplotypes, which is realistic for small genomic regions or

over regions lacking recombination hotspots. We make the same assumption

and note that O’Connell (2000) outlines a strategy for dealing with recom-
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binant regions that is similar to the partition-ligation algorithm (Niu et al.,

2002) for accommodating large numbers of loci.

Our algorithm also provides a unified framework to evaluate arbitrarily large

half-sib pedigrees, parent-child trios (a sibship of size one) and unrelated in-

dividuals. When no additional family data is provided, results are the same

as using the standard EM algorithm for unrelated individuals.

SIMULATIONS

We conduct a simulation study based on independent half-sib pedigrees using

empirically derived haplotype data. Our simulation strategy is divided into

the following three steps: (1) specification of a haplotype frequency distribu-

tion for the parental population; (2) simulation of genotypes for independent

half-sib pedigrees; and (3) estimation of haplotype frequencies and phase

configurations using alternate categories family data.

We fix the number of sampled individuals at 100 and consider sib-sizes of

1,2,5,10 and 25. The categories of family information that are used with

each sample when reconstructing haplotypes are given in Table 1. Family

sizes are exact, and therefore results for samples featuring a family of size 1

correspond to unrelated individuals, or, if parental genotypes are provided, to

parent-child trios. One consequence of using this simulation strategy is that

increasing the size of a sibship will reduce the number of independent hap-

lotypes in a given sample. This allows us to evaluate whether the resolving
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power from additional pedigree data compensates for the loss in independent

haplotypes (i.e. whether the improved quality of the data compensates for

the reduced quantity).

Haplotype Frequency Distributions: The most important parameter in

the simulation study is the parental haplotype frequency distribution. Our

analysis is based on three empirically-derived haplotype frequency distribu-

tions. The first two frequency profiles, APOE1 and APOE2, were provided

by Fallin et al. (2001) and correspond to two sets of marker data for a control

group used in an association study for Alzheimer’s Disease. The third data

set, IL8E was presented by Hull et al. (2001) and corresponds to haplotype

frequency estimates of a European sample for six biallelic loci spanning a 7.6

kb region within the IL8 locus.

One of the central results from the simulation study is that the expected ac-

curacy for any EM-based quantity will be different for each of the population

frequency distributions. It will be useful to identify relevant summary statis-

tics that capture the relative performance that can be expected for random

samples from each of the populations.

Qin et al. (2002) demonstrate that the expected information in a random

sample of phase unknown genotypes can be expressed as the sum of two

components: the first component reflects the variance of Θ̂ if phase config-

urations are observed, while the second component reflects the loss of infor-

mation because of unknown phase configurations.

The first component can be approximated by the gene diversity, 1 −
M∑
i=1

θ2
i ,
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which is a measure of the uniformity of the frequency distribution.

To describe the additional uncertainty from the unknown phase configura-

tions, we use the expected error rate using most likely phase configuration.

Consider a given phase-unknown genotype, y. The probability that the most

likely phase configuration is the correct one is given by max p(z|y, Θ). A

measure of the uncertainty from not knowing phase for this genotype is

1−max p(z|y, Θ). The expectation of incorrectly assigning phase for a ran-

dom sample is therefore:

E(ε|Θ) =
∑

y

p(y|Θ) [1−max p(z|y, Θ)] . (5)

Appreciating the relevance of equation (5) in the context of accurate EM-

based phase reconstruction cannot be overstated. The expression describes

the number of incorrect phase assignments that is expected in a population

sample when the most likely phase configuration is used and haplotype fre-

quencies are known. It can therefore be considered a lower bound on the

number of errors that are calculated from haplotype frequencies inferred by

the EM algorithm.

These two statistics are presented in Table 2. If the population haplotype

frequency for APOE1 were known with certainty, we would expect to get no

greater than 82% of the sample correct if the most likely phase criterion is

used. By contrast, phase assignment using the most likely phase criterion

would be virtually error free for population samples generated from the IL8E
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distribution, even though the expected number of ambiguous genotypes (i.e.

genotypes with two or more heterozygous loci) is similar to the APOE1. Al-

though there are multiple phase configurations that can, in theory, resolve an

ambiguous genotype sampled from IL8E, the vast majority of these will fea-

ture at least one haplotype that does not actually segregate in the population.

This demonstrates that family data may be unnecessary for accurate phase

reconstruction, even when a sample features many ambiguous genotypes.

RESULTS

We describe the results from our simulation study using two standard sum-

mary statistics based on haplotype frequency estimates and phase accuracy.

For assessing haplotype frequency estimates, we use the Discrepancy metric

(Excoffier and Slatkin, 1995; Kirk and Cardon, 2002), which is defined as:

D(Θ; Θ̂) =
1

2

2L∑
i=1

∣∣∣θi − θ̂i

∣∣∣ . (6)

For the phase configurations, we use the estimated frequencies to assign each

individual their most likely phase configuration and then calculate the per-

centage of individuals that are incorrectly assigned. This metric is appropri-

ate since it is the typical criterion on which haplotypes are assigned for use

in a fine-scale mapping analysis.

Results for these two measures of accuracy are presented in Table 3. The

table is structured to highlight a wide variety of trends, some of which are
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indexed by letters that will be referenced in the text. When referring to an

entry in the table indexed by X, we will use the notation (X). We only in-

clude indices for the APOE1 results since annotating each table would have

obscured trends. It will be contextually clear which distribution(s) are rele-

vant to supporting a given statement. Similarly, we do not include standard

errors. Comparative statements were verified at the 95% significance level

using a paired t-test.

The table also features results from a standard analysis using the EM algo-

rithm for unrelated individuals (shaded column). These will be useful when

discussing the results from treating related individuals as unrelated (boxed

section). Note that using our algorithm gives the same results as the EM

algorithm for unrelated individuals when no family data is provided (A).

Hence either entry can be used to describe accuracy for 100 unrelated indi-

viduals, which is often useful as a base comparison to other scenarios that

use family data.

Broadly, we will be interested in how changes in family data, sample size and

frequency distribution impact each of the two measures of accuracy. We will

also be interested in whether trends observed for one measure of accuracy

apply to the other. Since the number of progeny is fixed at 100, we mea-

sure sample size by the number of independent haplotypes segregating in the

sample.

We begin by focusing exclusively on the accuracy of haplotype frequency

estimation. We then provide a similar analysis for phase reconstruction ac-
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curacy, highlighting how the two metrics differ in sensitivity to family data.

These two sections collectively illustrate the importance of the true haplo-

type frequency distribution in determining the magnitude of reconstruction

error as well as the effectiveness of reallocating resources for family data. In

the last section, we discuss the sensitivity of a popular case-control associa-

tion test to biased frequency estimates that are inferred by treating related

individuals as unrelated.

Impact of Family Data on Haplotype Frequency Estimation

We start by observing that for a given family size, increasing family in-

formation typically results in an improvement in accuracy (i.e. discrepancy

decreases along a given row). However, adding family information does not

always contribute to accuracy, as can been seen in the case of adding the

genotype from a single parent (C). This is because the number of progeny is

sufficient to explain the parental phase and therefore the sire genotype pro-

vides redundant information. By contrast, there is always an improvement

in discrepancy if both parental genotypes are included (D). This is because

the second parental genotype will always provide information regarding an

additional independent haplotype (which follows from our assumption of one

progeny per dam).

This example demonstrates how increasing the number of independent hap-

lotypes or the amount of family information improves accuracy. The ques-

tion of whether resources intended for population data should be reallocated

for family data is concerned with whether one should be increased at the
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expense of the other. This question was addressed for the case of nuclear

families v. unrelated individuals in several studies, which showed that the

optimal allocation decision will be frequency-dependent (Becker and Knapp,

2002; Schaid, 2002). Our results illustrate that these frequency-dependent

trade-offs between the quality and quantity of population data can be found

for many pedigree configurations. Specifically, we compare the accuracy of

200 independent haplotypes from a sample of unrelated individuals to 140

independent haplotypes segregating in 20 half-sib pedigrees of size 5 with

a typed sire (F). For the APOE1 distribution, better accuracy is achieved

from using more family data and fewer independent haplotypes, while for the

APOE2 and IL8E distributions more independent data is preferable to fam-

ily data. As discussed in the previous section, a random sample generated

from the APOE1 distribution will have the most uncertainty associated with

phase assignments and therefore will benefit most from family data.

We also observe that when family data is ignored (i.e. related individuals

are treated as unrelated) discrepancy increases with family size (G). This

follows since increasing family size (i.e. increasing the number of conditional

dependencies in the data) implies further deviation from the assumption

of unrelated (independent) individuals. We will be evaluating these results

squarely in the context of association analysis at the end of this section.

Impact of Family Data on Phase Reconstruction Accuracy

The most striking result is the uniformly perfect phase reconstruction given

by IL8E, which provides an example of a distribution where family data is
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redundant despite over 50% of a sample containing ambiguous genotypes.

These results are consistent with the frequency-known error rate given in

Table 2. We note that for all three distributions, the observed error rate

(A’) is fairly close to the frequency-known error rate, which is the best-case

average error rate that can be achieved when using the EM algorithm. In

this context, it is reasonable to claim that EM-based phase assignments are

accurate.

For the APOE1 and APOE2 distributions, increasing sib size and adding

parental marker data always improves phase reconstruction accuracy. Specif-

ically, as we move down a given column or across a row for either distribution,

we observe a gradual decrease in phase reconstruction error rate. It should

be noted that when resources are fixed, increasing family size decreases the

number of independent haplotypes used in the subsequent study, and there-

fore this gain in phase reconstruction accuracy may not be justified.

While phase reconstruction error decreases with family information, it is not

eliminated. Even for very large sib sizes, there is a small, but significant

error when both parental genotypes are provided. Note also that for both

distributions, there is also a discernable increase in the error rate when only

the genotype for the common parent is provided. However, results for the

APOE1 distribution are consistently worse than for the APOE2 distribution.

These observations highlight the importance that both the frequency distri-

bution and the pedigree structure have in determining whether resources

should be allocated to ascertain family data.
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Although increasing sib-size and parental marker information will both im-

prove phase reconstruction accuracy, obtaining parental marker data is more

efficient than adding more half-sibs. For both distributions, introducing geno-

type data for an untyped parent is more efficient than introducing as many

as five additional half-sibs (H,I). This complements the results that show

two full-sibs with untyped parents can be very inefficient in the context of

optimal frequency estimation (Schaid, 2002).

It is important to recognize that reconstruction accuracy for progeny does not

extend to parents. This means that parental phase may still be incorrectly

reconstructed even when reconstruction is accurate for progeny. Adding half-

sibs will help reconstruct phase for an untyped common parent, yet our re-

sults show that the total number of half-sibs needed to make this parental

genotype redundant can be quite large. For each of the three distributions,

we see that a typed sire still provides a small, but significant, improvement in

discrepancy when as many as 10 progeny are available (E). Introducing sibs

without genotyping parents can actually be worse than reconstruction from

population data if this information is to be used in a subsequent LD model

that relies on haplotype accuracy of both parents and progeny (Meuwissen

et al., 2002; Lee and van der Werf, 2004).

Note that the frequency-dependent trade-off between independent haplotypes

and family size that was observed for optimal haplotype frequency estimation

(F) is not applicable to optimal phase reconstruction accuracy (F’). Although

increasing family information tends to improve both haplotype reconstruc-
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tion accuracy and phase reconstruction accuracy the impact of family data

differs. For example, the gain achieved when introducing the genotype for

one parent than for both is larger when the first parent’s genotype is provided

in the context of haplotype frequency estimation (B), yet each parent makes

roughly equal contribution to accuracy in the context of phase reconstruction

accuracy (B’).

There is an actual contradiction in trends between frequency estimation and

phase assignment when related individuals are treated as unrelated. Specif-

ically, we see that phase accuracy improves as the number of related in-

dividuals that are treated as unrelated increases (G’). This paradox can

be explained by noting that for more closely related individuals, there is

a higher probability that two haplotypes are IBD (i.e. more homozygosity)

in the genotype data. Fallin and Shorck (2000) made a similar observation

when investigating the robustness of the EM algorithm to departures from

Hardy-Weinberg Equilibrium by imposing homozygosity on the haplotype

data. When individuals are related, however, the appropriate comparison

is not the “benefit” in phase reconstruction accuracy relative to unrelated

individuals, but the loss by not properly accounting for the conditional de-

pendencies in the data. This loss can be quite large as seen in the case of

APOE1 where over 10 haplotypes are incorrectly assigned by not accounting

for underlying pedigree structure (J).

An Application to Association Analysis

We now evaluate the discrepancy that arises from treating related individ-
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uals as unrelated, (G), in the context of an association analysis. This is

relevant for many natural and domestic populations, where, in the absence

of pedigree information, a sample may be treated as unrelated even through

the sampled members can be closely related. A popular test that utilizes

haplotype frequencies directly is a chi-square test, which is used to detect

association in a case-control study (Zhao et al., 2000). While variants of

the test have been proposed (Fallin et al., 2001), the underlying principle

remains that if a causative variant is linked to marker haplotype, then case

haplotype frequencies should differ from those of the control frequencies. A

Type I error occurs when the reconstructed frequencies for case and control

data are considered significantly different, yet the markers are actually un-

linked with a causative variant. Treating related individuals as unrelated

might be expected to increase the probability of committing a Type I error,

since variability that naturally arises between two groups sampled from the

same neutral region will be accentuated when the data are dependent. To

investigate the impact of using these reconstructed frequencies on a Type I

error, we simulate neutral marker data for hypothetical cases and controls

from two repetitions of the simulation process described above. We esti-

mate frequencies under the assumption that individuals are unrelated and

then calculated the chi-square statistic based on the reconstructed frequen-

cies. The results are presented in the right column of Table 4. They reveal

that an inflated Type I error is likely to be realized for a family size of 5

for each of the distributions. Even though the actual discrepancy statistic
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is uniformly greatest for the APOE1 and least for IL8E, the rate at which

significance increases with family size is fairly consistent for each of the three

distributions: the principal difference lies in the standard deviation. We also

ran a standard single locus Hardy-Weinberg test for each of the loci and

present the results on the left of Table 4. This reveals that data sets that are

sufficiently related to exhibit a Type I error in case-control association anal-

ysis will not be detected using the standard single locus Hardy-Weinberg test.

DISCUSSION

The results of this study have significant implications for an experimental

design using two-stage haplotype analysis. The effectiveness of a two-stage

haplotype analysis will be contingent on two factors: 1) the magnitude of

the estimation error, which we have shown depends on the the haplotype fre-

quency distribution and 2) the sensitivity of the subsequent haplotype-based

analysis to this estimation error, which can be determined from simulation

studies.

EM-based haplotype frequency estimates are often considered accurate for

sample sizes consisting of approximately 100 individuals (Fallin and Shorck,

2000; Qin et al., 2002). For smaller samples sizes, or for samples featur-

ing large amounts of missing genotype data, a Bayesian approach may be

more appropriate (Stephens et al., 2001; Niu et al., 2002). The EM algo-
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rithm is also considered to provide accurate results under departures from

the random-mating assumption (Fallin and Shorck, 2000). However, our re-

sults demonstrate that failing to account for related individuals in a sample

(by treating each member in the sample as independent) can lead to an

appreciable increase in Type I error in a study where two populations are

contrasted using EM-based haplotype frequencies. In natural populations

featuring sibships, it is important to ascertain pedigree information, e.g. by

sibship reconstruction methods described by Thomas and Hill (2002), before

using this test.

The results of Morris et al. (2004) clearly demonstrate that phase assign-

ments based on the most likely phase criterion should not be blindly used in

a subsequent haplotype-based analysis. We show that while reconstruction

errors may be unavoidable (i.e. independent of sample size), this error rate

can be calculated directly from the frequency distribution. We also provide

an example where the most likely phase criterion will yield perfectly accu-

rate results, even for a sample containing a large proportion of ambiguous

genotypes.

Practically, we can calculate the error rate from an estimated frequency dis-

tribution that is based on a preliminary sampling of the population. This

estimated error rate can then be compared against a predetermined thresh-

old denoting the minimum level of phase accuracy. If the predicted phase

reconstruction error exceeds this threshold, then either pedigree data is re-

quired or an alternative to the two stage approach must be used.
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The effectiveness of pedigree data will also depend on the haplotype frequency

distribution, as well as the type of pedigree information provided. We con-

sidered two kinds of information: increasing the family size and introducing

parental marker data. For half-sibs, introducing parental genotypes is more

efficient than increasing family size and leaving parents untyped. In general,

assessing the effectiveness of pedigree structure and frequency distribution

on haplotype inference can be done through a simulation study based on the

inferred frequencies.

In conclusion, we have confirmed that the biased haplotype frequency esti-

mates that result from treating related individuals as unrelated can impact

association analysis, and we have provided the appropriate statistical meth-

ods to efficiently accommodate some important population structures. We

have also demonstrated how to forecast the accuracy of phase reconstruc-

tion based on the most likely phase criterion, which will determine whether

pedigree data is warranted. We find that the impact of pedigree data de-

pends upon the actual haplotype structure in the population. Since this

structure will vary throughout the genome, there is unlikely to be a single

optimal strategy for accurate haplotype reconstruction from markers used in

genome-wide scans. Rather, the impact of various pedigree data on partic-

ular subsets of markers can be assessed through a simulation study based

upon initial frequency estimates.
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Table 1 - Categories of family data that can be included with a sample of

phase unknown genotypes in simulation study.

Table 2 - Summary statistics for haplotype frequency estimates used in data

analysis.

Table 3 - Impact of family size, family information and parental haplotype

distribution on estimated haplotype frequencies, as measured by the discrep-

ancy statistic (Left) and on phase reconstruction error (Right). Each entry

for a given metric corresponds to the average value for 100 replicates. Shaded

areas denote estimates that were obtained using the standard EM algorithm

for unrelated individuals, boxed areas denote estimates obtained by treating

related individuals as unrelated. Letters are referenced in the text.

Table 4 - Impact of treating half-sibs as unrelated on two nonparametric

tests: single-locus tests for Hardy-Weinberg Disequilibrium (left) and non-

homogeneity of haplotype frequency profiles for case control data in a neutral

genomic region (right).
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Table 1:

Category Description
UN No Information - All Animals Assumed Unrelated
P Pedigree Structure Only (Parents Untyped)
PS Pedigree Structure + Sire Genotype
PSD Pedigree Structure + Sire and Dam Genotypes 
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Table 2:

APOE1 APOE2 IL8E
Number of Loci 4 4 6
Number of Haplotypes 13 10 9
Ambiguous Genotypes1 0.52 0.41 0.53
Gene Diversity 0.86 0.8 0.56
Frequency-Known Error Rate2 0.18 0.12 0.0003
1 The expected proportion of a population sample that is heterozygous for at least two loci.
2 The expected proportion of phase configurations that will be incorrectly resolved in a population 
sample when the most likely phase criterion is used and haplotype frequencies are known.
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Table 4:

Family Single Locus Analysis Association Test using 
Size for Hardy-Weinberg Disequilibrium1 Haplotype Frequency Estimates

χ2 (1) sdev χ2  (8) sdev

1 1.69 2.23 9.32 4.05
5 1.71 1.87 14.53 * 6.57

10 1.67 1.74 18.78 ** 9.22
25 2.17 2.42 26.17 *** 16.37
50 3.55 * 4.27 -- --

χ2 (1) sdev χ2  (9) sdev

1 2.47 2.05 9.37 4.12
5 2.29 1.99 14.76 * 7.09

10 2.24 1.87 21.35 ** 9.69
25 2.79 2.61 35.73 *** 17.91
50 4.50 ** 4.42 -- --

χ2 (1) sdev χ2  (12) sdev

1 2.43 2.11 12.51 4.66
5 2.43 1.99 21.41 * 7.47

10 2.36 2.00 27.66 *** 12.24
25 2.99 2.77 47.68 *** 19.77
50 5.58 ** 4.95 -- --

1 For each replicate, the test statistic for the locus  exhibiting the highest
disequilbirum was used.
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APPENDIX

AN EFFICIENT ALGORITHM FOR EVALUATING HALF-SIB

PEDIGREES

Our objective is efficient computation of the posterior distributions for sire

and dam phase configurations, which are required to calculated the complete-

data log-likelihood given in (4). We begin by describing a straightforward

peeling approach to obtain the posterior for the sire. We then demonstrate

how the results obtained during the peeling process can be used for efficient

calculation of the dam distribution. Both of these approaches achieve cu-

bic complexity in the number of possible phase configurations. We conclude

by demonstrating how complexity can be reduced to quadratic, which as

described in the text, can result in substantial savings in computational re-

sources.

To minimize notational clutter we drop explicit references to Θ̃ and F , and

it should be understood that this information is given. Furthermore, since

we will be talking about the distribution for a specific sire or dam, we can

drop any index that refers to an order in the sample. Hence,

p(si|Θ̃,y,F)
.
= p(s|y) (7)
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.

Finally, we will need to reference other members in a given sibship. For a

sibship of size K, we assign an arbitrary ordering to all progeny and dam

pairs, and use (yi, di) i = 1 . . . K to refer to the ith pair.

Calculating the Distribution of the Sire Phase: We begin by writing the

objective as

p(s|y) =

∑
d

p(s,d,y)

p(y)
. (8)

Using the key insight of Elston and Stewart (1971), the joint distribution is

expressed as a telescopic sum:

p(y, s) = p(s)
K∏

k=1

{∑
dk

p(yk|s, dk)p(dk)

}
, (9)

where

p(yk|s, dk) =
∑

z∈z(yi)

p(zi|s, di)p(yi|zi). (10)

Peeling the jth family first entails calculating

p(s,yj) =
∑
dj

p(s,yj−1)p(yj|s, dj)p(dj) (11)
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where yj−1 = y0, y1 . . . yj−1 and y0 = ∅. The likelihood is then updated to

p(y) = p(s,yj)
K∏

k=j+1

{∑
dk

p(yk|s, dk)p(dk)

}
.

Each family is iteratively peeled and, after the final family has been peeled,

the resulting expression, p(y, s), can be used to calculate p(s|y). p(y) can

then be obtained by summing out s.

Calculating the Posterior for the Dam: First, we can rewrite our objective

as

p(dj|y) =
∑

s

p(s, dj|y)

=
1

p(y)

∑
s

p(s, dj,y)

=
1

p(y)

∑
s

p(s,y−j)p(yj|dj, s)p(dj), (12)

where efficient calculation of p(y) is given above and the definition of p(s,y−j)

is given by:

p(s,y−j) = p(s, y0, y1 . . . yj−1, yj+1, . . . yK).

To calculate p(s,y−j), we must store each of the K expressions given by

equation (11), i.e.

p(s,yj) j = 0 . . . K. (13)
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These are sufficient to calculate p(s,y−j) since:

[
p(s,y)

p(s,yj)

]
p(s,yj−1) =

K∏
i=1

p(yi|s)

j∏
i=1

p(yi|s)
p(s,yj−1)

=
K∏

i=j+1

p(yi|s)p(s,yj−1)

= p(yj+1 . . . yK |s)p(s,yj−1)

= p(s,y−j). (14)

Further Reduction in Complexity: From equations (10) and (14), we see that

the complexity of the phase distribution for both sire and dam is dominated

by the expression p(y|s, d), which is cubic in the number of phase config-

urations. To achieve quadratic complexity, we show how to calculate this

expression by evaluating p(y|s) and p(y|d) directly.

Consider first evaluating the relevant expression for the sire where the geno-

type of the dam is unknown. Rather than summing over all the dam config-

urations, as suggested by (9), we attempt to directly evaluate

p(y, s) = p(s)
K∏

k=1

p(yk|s). (15)

A given set of phase configurations, z ∈ z(yk), can be expressed as

p(z = hi, hj|s = hk, hl). (16)
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Let t1(s) denote the event that the sire transmitted hk and let t2(s) denote

the event that the sire transmitted hl. Then (16) can be written as:

p(z = hi, hj|s = hk, hl) = p(z, t1(s)) + p(z, t2(s)) (17)

= p(z|t1(s))p(t1(s)) + p(z, t2(s))p(t2(s)) (18)

where p(t1(s)) = p(t2(s)) = 1/2. Importantly, p(z|t1(s)) and p(z|t2(s)) can

be calculated directly from Θ̃, for example:

p(z|t1(s)) =


θ̃j k = i

θ̃i k = j

0 otherwise.

(19)

When the genotype of the dam is known, the probabilities in (19) can be

calculated from the distribution p(d|Θ̃). Evaluating
∑

s p(y|s, d) follows an

analogous procedure.
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