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ABSTRACT

Hand-printed digits can be recognized guite well by a feedforward neural network that nses
equality constraints between weights to achieve limited translational invariance. However, the
net has no explicit model of what a digit looks like and this can lead jt to make confident
errors. An alternative approach, which incorporates much more prior knowledge, is to use
explicit deformable models of the digits and to recognize a digit by finding which modet fits
best. We describe a system that uses learned digit models which consist of splines whose shape
is governed by 8 control points. The elastic models are good at capturing shape knowledge,
and the elastic matching process is good at rejecting parts of the image that are best explained
as noise. However, the elastic matching is slow and can get trapped in local optima if the initial

. configuration of the elastic model is far from the actual data. So we are developing a hybrid
system that combines the hest aspects of both approaches. First, the slow elastic matching
method is used to accurately label the training data with all the instantiation parameters of
the correct digit. Then a feedforward network is trained to produce the fully instantiated digit,
rather than just the class of the digit. After training, the neural net is used to initialize the
elastic models, and the elastic matching is used to reject erroneous hypotheses of the neural
network.

1 OVERVIEW

Given good bottom-up segmentation and normalization, a carefully constrained, feedforward
neural network can recognize hand-printed digits in zip codes faisly accurately. (le Cun et al.,
1990). After training, the network ia very fast but it has a number of weaknesses that limit its
final performance and lead it to require Farge sets of training examples:

1. The network must extract almmost all its knowledge from training data because it has no
prior knowledge about the shapes of the digits. 1t does not even know that digits are
composed of one-dimensional strokes. _ . :

-2. Even though each image contains a lot of information, each traiuing example provides
only log; 10 bits of information about the desired input-output relationship. For super-
vised learning, it is the amount of information in the oufput vector that is important
in constraining the weights, not the amount of information in the input vector. -So to
constrain thousands of weights, many thousands of examples are needed. :

3. Very occasionally, images that look nothing like a particular digit are conﬁdéutly
classified as that digit.
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4. During recognition, the network does nol segment the image into parts that constitute
the digit and other paris that are noise. So it cannot be used to pinpoint segmentation
errots. Al it can do is indicate whether a particular segmentation led to confident
recognition of a digit.

5. During recognition, the network does not explicitly decide on the instantiation parameters
of the digit (i.e. its position, size, orientation, shear, elongation efe.). So it is unable to
imake use of consistencies between the instantiation parameters of neighbouring digits.

These weaknesses of feedforward neural network classifiers and the success of model-based
approaches to shape recognition {¢.g Burr, 1981a, 1981b; Lowe, 1991} led us to investigate a
very different recognition method that uses deformable elastic models of the digite (Ilinton,
Willams and Itevow, 1992). Training data can still be used to improve the models, but much
less data js needed because we start with hand-designed models that are approximately correct
and each modet only has a small number of adaptive parameters. "Elastic models of the type we
use seem to be good at capturing all the possible variations of the shape of 2 digit with just a
few parameters. But fitting the models to data takes a long time, especially if we use multiple
different initial configurations of each model to circumvent locat minima in the matching.

‘We believe that all five of the weaknesses we attribute to the standard way of using a neural
network can be overcome by using 2 hybrid, two-stage recognition process. The first stageis a
feedforward, multi-layer neural network that has a very large number of output units divided
into 10 groups, one per digit class. Within éach group we use a distributed pattern of activity
over the output units to represent 2 particular instantiation of 2 digit (see section 6). By fitting
a Gaussian to the activity pattern, we cait explicitly extract the instantiation parameters, and
they are then used to initialize the efastic model of the digit. Only a few iterations of elastic
matching are then required to decide whether any nearby instantiation of the digit model can
explain the image data. v . o

Ll .

2 ELASTIC MODELS

One technique for recognizing a digit is to perform an elastic match with many different exem-
plars of each known digit-class and to pick the class of the nearest neighbour. Unfortunately
this requires a large number of elastic matches, each of which is expensive (though Simard
& Le Cunj pers. comm., 1992, have recently developed a relatively cheap way of finding the
nearest neighbour of an intensity image when no distance cost is incurred for slight affine trans-
formations of the stored templates). By using one elastic model to capture all the varlations
of a given digit we greatly reduce the number of elastic matches required. We describe a type

of elastic model that is based on splines. Each elastic mode! contains parameters that define
an ideal shape aid a deformation energy for departures from this ideal.

Each digit is modelled by a deformable spline whose shape is determined by the positions
of 8 control points. Every point on the spline is a weighted average of {our control points, with
the weighting coeflicients changing smoothly as we move along the spline. In computing the
weighting coeflicients we use a cubic B-spline and we treat the firat and last control points as
if they were doubled. ‘In generale an ideal example of a digit we put the 8 control points at
their home locations for that model. To deform the digit we move the control points away
from their home locations. Cutrently we assume that, for each model, the conlrol points
have independent, radial Gaussian distributions about their home locations. So the negative
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Figure 1: This shows the locations of the control points and the resulting splines when the 2
model is matched to some instances extracted from zip codes.

log probabitity of 2 deformation (its energy) is proportional to the sum of the squares of the
departures of the control points from their home locations.

Using a spline it is easy to model topological variants of a digit. The loop of a 2, for example,
can smoothly turn into a cusp or an open bend (see figure 1). These variants are produced
by small changes in the relative locations of the relevant control points. This advantage of
gpline models is pointed out by (Edelman, Ullman and Flash, 1990} who use a different kind
of epline that they fit to on-line character data by directly locating candidate control points
in the image.

"The deformation energy function only penalizes shape deformations. Translation, rotation,
dilation, elongation, and shear do not change the shape of an object so we want the deformation
energy to be invariant under these affine transformations.! We achieve this by giving each
model its own “object-based frame” and computing the deformation energy relative to this

frame. When we fit the tnodel to data, we repeatedly recompute the best affine transformation

between the object-based frame and the image (see section 4). The repeated recomputation
of the affine transform during the model fit means that the shape of the digit is influencing
the normalization. Having an explicit representation of the affine transformation of each digit
should prove very helpful for recogitizing multiple digits, since it will allow us to impose a
penalty on differences in the affine transformations of neighbouring digits.

Although we use our digit models for recognizing images, it helps to start by considering
how we would use them for generating images. The generative model is an elaboration of the
probabilistic interpretation of the elastic net given by Durbin, Szeliski & Yuille (1989).

To generale a noisy image of a particutar digit class, run the following procedure:

s Pick a deformation of the model (i.e. move the control points away from their home
locations). 'This defines the spline in object-based coordinates. The probability of picking

1Currently we do not impose any penalty an extremely sheared or clongated alfine teansformations, though
thiz would probably bmprove performance.
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a deformation is proportional to e~Bass,

o Pick an affine transformation from the model’s intrinsic reference frame to the ithage
frame (i.e. pick a size, posilion, oricntation, slant and elongation for the digit).

» Map the spline into image coordinates and space circular Gaussian ink generators (beads)
uniformly along its length. ‘The number of beads on the spline and their variance can
easily be changed without changing the spline itself.

o Repeat many times: . ) .
Either (with probability Tnais} 2dd a randomly positioned noise pixel
Or pick a bead at random and generate 2 pixel from the Gaussian
distribution defined by the bead. .

3 RECOGNIZING ISOLATED DIGITS

We recognize an image by finding which model-class is most likely to have generated it. Each
possible model-class is fitted to the image and the one that has the lowest cost fit is the winner.
The cost of a it is the negative log probability of generating the image given the model-class.

Fiteut = — log- f " PU) P(image | 1) dI )

Jemodel
inslances -

"We can approximate this by just considering the best fitting model instance and ignoring
the fact that the model should not generate ink where there is no ink in the image.?

E= ABEgejorm — E log P(p{zel | best model instance) (2}
inked )
pixels
The probability of an inked pixel is the sum of the probabilities of all the possible ways of
generating it from the mixture of Gaussian beads or the uniform noise field.

o Trod 1 = Xpoi .
P = _%’i + __%5 b):::‘ By(i) (3)
£ -
where N is the total numnber of pixels, B is the number of beads, Zyiye is the mixing proportion
of the uniform noise field, and Fy(i) is the probability of pixel i under Gaussian bead b.

4 FITTING A MODEL TO AN IMAGE

Every Gaussian bead in 2 model has the same variance. When fitting data, we start with 2
big variance and gradually reduce it 23 in the elastic net algorithm of Durbin and Willshaw
(1987). This can be viewed as a continuation method in which the solution at one variance
is used to initialize the search for a solution at a lower variance (Blake and Zisserman, 1987).
Each iteration of the elastic matching algorithm involves three steps: ’

2f the inked pixels are rare, poor models sin mainly by not inking tllmse pixels that should be inked rather
than by inking those pixels that should not be inked.
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Figure 2: The sequence (a) to (d) shows some stages of fitting a madel 3 to some data. The
grey eircles represent the gaussian beads, with the radius representing the standard deviation,
(a) shows the initial configuration, with eight beads equally spaced along the spline. In (k)
and {c) the variance is progressively decreased and the number of beads is increased. The
final fit using 60 beads is shown in {d). We use about three iterations at each of five variances
on our “annealing schedule”. In this example, we used Tnoige = 0.3 which makes it cheaper to
explain the extraneous noise pixels and the flourishes on the ends of the 3 as noise rather than
deforming the model to bring Gaussian beads close to these pixels.

“» Given the current locations of the Gaussians, compute the responsibility that each Gaus-
sian has for each inked pixel. This is just the probability of generating the pixel from
that Gaussian, normalized by the tatal probability of generating the pixel.

Assuming that the responsibilities remain fixed, as in the EM algorithm of Dempster,
Laird and Rubin (1977), we invert a 16 X 16 matrix to find the hmage locations for the B
control points at which the forces pulling the control points towards their home locations
are balanced by the forces exerted on the control points by the inked pixels. These forces
come via the forces that the Inked pixels exert on the Gaussian beads.

Given the new image locations of the contrel points, we recompute the alline transforma-

tion from the object-based frame to the image frame, We choose the afline transformation
. that minjmizes the sum of the squared distances between the control points and their

home locations. The residual squared differences determine the deformation energy. -

Some stages in the fitting of a model to data are shown in figure 2. The search tech-
niyue usnally avoids local minima when fitting models to isolated digits. Dut, if we detect an
uneatisfactory fit, we try alternative starting configurations for the models.

5 THE PERFORMANCE OF ELASTIC MODELS

- We describe some preliminary results on the performance of our elastic modeis in Williams,
Revow and Hinton {1992). The home locations of the control points in each elastic model are
initially set by hand, but they are then revised by using discriminative of maximum likelihood
leatning. We have not yet performed a systematic comparison of this technique with other
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techniques on a standard database, but it appears that the shape knowledge in the models is
adequate: The correct model almost always fits better than the incorsect ones, provided the
search finds the best fit of the model. Also, the correct elastic model can reliably reject as
noise those patts of the image that do uot depict the basic shape of the digit (see figure 2).

A major weakness of the elastic model approach is the slowness of the search and the fact
that it cceasionally fails to find the global optimum, even if restarted from several different
configurations. If we could be sure that the elastic matching started from a nearly correct
configuration, we would onty need to run ‘a few iterations at low variance, and we would be
very unlikely to get trapped by local optima. This suggests a hybrid method that uses neural
nets to get close to a solution and elastic matching to confirm the fit.

6 REPRESENTING INSTANTIATED DIGITS WITH RBFs

Usi'ng our elastic. models, the instantiated digits of a particular class lie in a 22-dimensional
space. Six of these dimensions jointly represent the position, size, orientation, shear and
elongation of the digit instance, and the 16 remaining dimensions represent the deformation
of the digit. L
The obvious way to extract the 22 instantiation parameters is to use a separate, real-
valued output unit for each parameter. This method should be tried, but we anticipate that
it will be diflicult for a network to explicitly extract the parameters in this way because, in
the presence of noise, the image data does fot provide separate evidence for each parameter.
, Instead, combinations of nearby pixels provide evidence for guite high-order combinations of
underlying parameter values. So we have decided to use an output representation’ in which
each instantiated digit is represented by the centre of gravity of a pattern of activity over many
class-specific output units. Each output unit is a radial basis function that knows where it
is centered in the 22-dimensional instantiation space. Notice that in determining the desired
activity of an output unit, we treat it as an RBF in instantiation space, but in determining its
actual activity we can treat it as a standard sigmotd unit that combines evidence coming from
other units,

The desired representation of a particular digit instance corresponds to activating each
output uait by a Gaussian function® of its distance, in instantiation space, from the location
of that instance. H this desired activity can be achieved, there will be a Gaussian blob of
activity over the 22-dimensional space, with the centre of the blob representing the instantiation
patameters, and the area nnder the blob representing the probability that the digit is present.
We can locate the centre of gravity of the blob by fitting a mixture of a Qaussian and a
uniform distribution in instantiation space. The mean of this Gaussian makes explicit the
neural network’s estimale of the 22 instantiation parameters. The second stage of the hybrid
system then uses this information to initialise the elastic models of probable digits and matches
these models to Lhe image dala. ’

Whenr using a coarse-coded representation of this type, there are several important issues
“which we ouly have space Lo mention briefly. The first issue concerns the accurecy with which
the centre of gravily of the Gaussian blob of activity encodes the instantiation parameters. A
good impression of the accuracy can be obtained by encoding a particular digit instance as the
desired pattern of aclivity on the output units and then reconstructing the digit instance from
the ceutre of gravity of the activity pattern (see figure 3).

31t might be better Lo use non-Caussian, non-radial locat basis functions {Ballard, 1987).
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Figute 3: After fitting the 2 model to an inmage, we encode the 22 instantiation parameters as
a pattern of activity over 200 Gaussian ILBF units. Then we take the center of gravity of this
pattern and reconstruct the splice. The figure shows this reconstructed spline superimposed
on the inked pixels in the image.

One way to avoid needing more RBF's as the dimensionality increases is to make the
width of each RBF proportional to the square root of the dimensionality. However, increasing
the width of the RBF’s maintains accaracy at the cost of decreasing the resolution of the
representation (see below). For any given dimensionality, we can also reduce the linear error
in the centre of gravity by a factor of VN by increasing the number of RBF’s by a factor of
N. This does not affect the resolution.

"The resolution of the representation (i.e. its ability to discriminate between simultaneously
presented instantiations) is a much more complicated issue, which iz relevant even if only one
digit instance i3 present in the image. The ontput representation needs to act like a Hough
space which non-linearly combines evidence from feature detectors in the previous layer of
units. When several different feature detectors all suggest the same digit instance we want that
instance to be represented, but when different detectors all suggest different instances, we would
like the output representation to remain inactive, So we require sullicient resolution to detect
agreement between the outputs of feature detectors. If this resolution can be achieved, the use
of multipie layers of RBF spaces Is a very natural alternative implementation of the TRAFFI1C
system described by Zemel, Mozer and Hinton (1990). In TRAFFIC, weight matrices store
the fixed linear coordinate translorms from parts to wholes, and the non-linearities of units are
used to decide if multiple parts agree sufficiently well for a new whole to be instantiated. So
the lincar past of a standard neuron does coordinate transforims, and the subsequent non-linear
stage does model-based segmentation.

The idea of using multiple output units to allow a neural net to represent allernative
instantiations of a phoneme or digit is not new (Lang, Waibel, and Itinton, 1990; Keeler,
Rumelhart and Leow, 1091). But previous sysiems have attempted to train the net by back-
propagating class information through a final inlcgrator that simply adds np the activities
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of the instantiation-tuned units. This makes the learning much harder than it is if each
instantiation-tuned unit is explicitly given a desired activity level. We are able to provide this
richer desived output by fitting our elastic models (slowly) to get the instantiation pirameters.

We hope to achieve fast, accurate recognition by using an elegant but slow generative
model to train and filter the outputs of a neural network, but we do not yet know whether this
approach will actually work.
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