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Abstract

Time series models such as dynamical systems
are frequently fitted to a cohort of data, ig-
noring variation between individual entities
such as patients. In this paper we show how
these models can be personalised to an indi-
vidual level while retaining statistical power,
via use of multi-task learning (MTL). To our
knowledge this is a novel development of MTL
which applies to time series both with and
without control inputs. The modelling frame-
work is demonstrated on a physiological drug
response problem which results in improved
predictive accuracy and uncertainty estima-
tion over existing state-of-the-art models.

1 INTRODUCTION

In this paper we study the response of a patient’s
physiology under the e↵ect of drug infusion, specif-
ically the e↵ect of the anaesthetic agent Propofol
on vital signs. There is a long history of pharma-
cokinetic/pharmacodynamic (PK/PD) models used to
study such e↵ects (see e.g. Bailey and Haddad, 2005,
and Minto and Schnider, 2008). We are particularly
interested in the personalisation of such models to in-
dividual patients. Our focus here will be the on the
personalisation of the pharmacodynamic (PD) model,
as this issue has already been addressed for the PK
component (see e.g. Eleveld et al., 2018).

We approach this problem as one of multi-task learning

(MTL), where each patient is treated as a task. We
show that the parameters across patients can be well-
modelled as a low-dimensional latent linear subspace.
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Our results indicate that approximately five such latent
variables su�ce to describe the inter-patient variation
in response we observe in a clinical study, and lead to
improved predictive accuracy and uncertainty estima-
tion over existing state-of-the-art models.

The application of MTL to time series models is un-
usual, especially for individuals unrelated in space and
time. In this work we generalise multi-task learning to
tasks described by dynamical systems – an important
class of time series models. Comparison to existing
work is given in Section 4 including the new classes of
models to which we extend the MTL framework.

The structure of the paper is as follows: Section 2
provides an overview of the PK/PD model and its
personalisation. Section 3 introduces our proposed
model; related work is discussed in Section 4. Our
results on clinical data are summarised and discussed
in Section 5, and some concluding remarks are given
in Section 6.

2 PHARMACOKINETIC-
PHARMACODYNAMIC (PK/PD)
MODELS

PK/PD models are the dominant paradigm for mod-
elling the response to a continuously infused drug. We
use the anaesthetic agent Propofol as our running ex-
ample. These models decompose the problem into
two sub-tasks. Of primary interest in the literature is
the pharmacokinetic (PK) process1, which relates the
administration of a drug to its distribution and elim-
ination in the body over time. This provides insight
into the evolution of drug concentrations in regions of
the body including major blood vessels. A pharmaco-

dynamic (PD) process models the relationship between
blood concentration and the e↵ect on observed phys-
iological e↵ects, such as vital signs (e.g. heart rate,

1
The origin of this model can be traced back at least as

far as Jelli↵e (1967).
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blood pressure). Below, we briefly discuss common
approaches to these models.

PK models. The most commonly described PK
model in anaesthesia is the three-compartment model.
This is an Ordinary Di↵erential Equation (ODE) de-
scribing drug concentrations for di↵erently perfused
physiological compartments under a continuous time
infusion. These compartments notionally correspond
to blood, muscle and fat, and can be conceptualised
with the latter two as ‘peripheral’ compartments each
connected only to the central compartment, blood. The
drug in-flow from a Target Controlled Infusion (TCI)
pump, !(t) enters the central compartment and the
concentrations c(t) = (c1(t), c2(t), c3(t))T of all com-
partments evolve as:

dc

dt
= Ac(t) + e1!(t) (1)

for a given matrix A of rate constants (see supplemen-
tary material), and the first ordinate unit vector e1.
There is a large body of literature pertaining to the
PK model and it exhibits strong performance in experi-
mental and clinical settings. Much work has been done
to personalise the rate constants in the matrix A based
on patient covariates (see below). It is notable that the
rate constants have become part of the vocabulary of
practicing anaesthetists.

PD models. The mechanism by which physiological
e↵ects follow from the blood concentration of some drug
is not well understood; PD models propose a direct
relationship to the concentration at some physiological
e↵ect site. The e↵ect site concentration x(t) may not
have reached equilibrium with the central compartment
concentration c1(t) and can introduce a lag to the
observed e↵ect. Denoting the rate constants as k1e for
the in-flow to the e↵ect site and ke0 for the elimination,
the relationship is modelled as:

dx

dt
= k1ec1(t)� ke0x(t). (2)

For multidimensional observations, independent ef-
fect sites xj(t), j = 1, . . . d are usually fitted. For
instance, the observation channels in our dataset con-
sist of systolic and diastolic blood pressure (BPsys
and BPdia respectively), and the Bispectral Index2

(BIS). The relationship of the e↵ect site to observations
yj(t), j = 1, . . . d are then modelled by some nonlinear
transformation plus white noise, i.e. for a given time
t, yj(t) = N (g✓(xj(t)), ⌧�1). Common choices of g✓(·)

2
The Bispectral Index of Myles et al. (2004) is a propri-

etary scalar-valued transformation of EEG signals which

attempts to quantify the level of consciousness.

are the Hill function (Hill, 1910) or generalised logistic
sigmoid (see e.g. Georgatzis et al. 2016):

g✓(x) = ✓1 +
✓2 � ✓1

(1 + exp{�✓3x})1/✓4
. (3)

Personalisation. A number of attempts have been
made to personalise PK models using patient attributes
such as age, gender, height or weight (see e.g. Marsh
et al. 1991; Schnider et al. 1998; White et al. 2008
and Eleveld et al., 2018 for a combined study). Var-
ious studies (see e.g. Glen and Servin, 2009; Masui
et al., 2010; Glen and White, 2014) have compared the
predictive performance of several propofol PK models
currently used for target controlled infusion (TCI) in
clinical practice. These studies have confirmed a degree
of bias and inaccuracy of the models but overall their
performance is considered by most clinicians to be ade-
quate for clinical use (at least within the populations
in which they were developed).

In most commercially available implementations of the
Marsh and Schnider models, fixed k1e, ke0 are used, as
well as constant parameters in the emission function
g✓(·). This means that there is no adjustment of the
PD component of the model based on patient covari-
ates. It is widely accepted by practicing anaesthetists
that there is a significant amount of inter-individual
variability in PD response to Propofol. As it is the
clinical e↵ect, rather than drug concentration, that is
most important in clinical practice, we therefore focus
on improving the PD component of the model. Other
work has investigated re-fitting the model end-to-end
(Georgatzis et al., 2016) but given the quantities of
data available, we believe better results are available
by leaving the PK model unaltered, as well as retaining
better interpretability.

3 PROPOSED MODEL

Our proposed model is a discrete time model closely fol-
lowing the existing framework for PD models in Section
3.1. This model can be fitted individually to patients
(a ‘single-task’ approach), but many observations are
required before useful predictions can be made. Sec-
tion 3.2 then introduces a multi-task variant which
meets our criterion of personalisation while reducing
the sample complexity. Implementation is discussed in
the final section.

3.1 Parameterisation of PD model

Denote the central compartment solution, c1(t), to
the PK model in eq. (1) over a uniform time grid as
{ut}Tt=1 which we use as the input for our PD model.
The observations, {yt}Tt=1 with yt 2 Rd are modelled
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with independent e↵ect sites for each each observation
channel. We denote the concentration at each e↵ect
site j by {xtj}Tt=1, and for this time grid, the e↵ect site
relationship (2) may be written:

xtj = �j1ut�1 + �j2xt�1,j (4)

with no loss of generality if c1(t) is piecewise constant.

In this case application of the convolution theorem
gives �1 = k1e

ke0
(1 � e

�ke0) and �2 = e
�ke0 (omitting

channel index j for clarity, see supplementary material).
Since both rate constants are positive, this implies for
all j, �j1 > 0 and �j2 2 (0, 1), with the latter enforcing
stability and non-oscillation of the AR process in (4).

For the nonlinear emission, we require a parametric
function g✓(·) for which previous choices (as in Sec-
tion 2) have proved to be numerically unstable or in-
su�ciently expressive. We instead use a basis of L
logistic sigmoid functions, �(x) = 1

1+exp{�x} , and ex-

press g✓(x) =
PL

r=1 ✓r �( ar(x� br)) with slopes {ar}
and o↵sets {br}. With appropriate optimisation of the
{ar, br}, we found that L = 8 basis functions su�ced
to well approximate the generalised sigmoid as used
in Georgatzis et al. (2016). The constraints ar < 0
and ✓r � 0 for all r ensures the monotonic property
that as concentration increases, the observations are
non-increasing.

The full PD model can now be written for each patient
i 2 1, . . . N (denoted by a superscript) as:

(dynamics) x
i
tj = �

i
j1u

i
t + �

i
j2x

i
t�1,j (5a)

(pre-activation) h
i
tj = (xi

tj1+ �
i
j31� b) � a (5b)

(emission) y
i
tj = �(hi

tj)
T✓i

j + ↵
i
j + ✏

i
tj (5c)

for ✏
i
tj ⇠ N (0, ⌧�1), j 2 1, . . . di and t 2 1, . . . Ti.

Element-wise multiplication is denoted by �, and �(·)
is overloaded to act elementwise on multivariate in-
puts. In order to permit greater modelling flexibility
we also introduce parameters �3 and ↵ which provide
a personalised o↵set to the values of the e↵ect site
dynamics and the emission respectively. The learnable
parameters are now ⌧ and {↵i

,�i
1, . . . ,�

i
d,✓

i
1, . . . ,✓

i
d},

i 2 1, . . . , N . The ↵
i
j relate to pre-infusion patient spe-

cific vitals levels which could be estimated in advance
of anaesthetic induction if data are available.

3.2 Proposed multi-task model

By considering each patient i as a task, we can use a low-
rank multi-task structure to share information between
patients. Define a latent variable z

i 2 Rk as the low
dimensional representation of the task parameters, and
a loading matrix  2 Rp⇥k in analogy with Factor
Analysis. We can relate this to the individual task
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Figure 1: Multi-task input-output dynamical system.
Stochastic nodes are denoted by circles and determin-
istic nodes by diamonds; arrows indicate functional
relationships.

parameters via the following model:

z
i ⇠ N (0, I) (6a)

�i = f( zi) (6b)

�i
1, �

i
2, �

i
3, ✓

i
1, . . . ,✓

i
d, ↵

i = unpack(�i) (6c)

with each of the parameters in (6c) serving as the multi-
task parameters in the deterministic state space model
(5). f is a pre-specified vector-valued function acting
componentwise on  z in a potentially nonlinear way
(see below). The ‘unpack’ operation here partitions the
vector �i into dimensionally consistent quantities as
implied by the LHS. Assuming a Bayesian approach to
fitting (5), this results in a reduction of latent variables
from Np to Nk vs. a single task approach.

The function f is introduced primarily in order to sat-
isfy the constraints required for (5) in Section 3.1, and
is defined elementwise by various univariate transfor-
mations. For example, the non-negativity constraints
for {�i

1} can be enforced by softplus(x) = log(1 + e
x)

and the unit interval for {�i
2} by a logistic sigmoid,

etc. For all unconstrained parameters, such as o↵sets,
no nonlinearity is applied. (If desired, more elaborate
transformations may be considered.) The use of an
elementwise f results in any multivariate relationships
to be approximated by the covariance structure learned
in  .

Collecting all task observations as Y = {yi
1:Ti

}Ni=1 and
similarly U = {ui

1:Ti
}Ni=1, Z = {zi}Ni=1, the joint distri-

bution over observations and latent variables is:

p(Y, Z | U ; ) =
NY

i=1

p(yi
1:Ti

| zi, ui
1:Ti

; ) p(zi). (7)

See Figure 1 for a graphical model. While the likeli-
hood is time structured, observations are conditionally
independent given z

i due to the deterministic evolution.
The resulting decomposition yields a nonlinear non-iid
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hierarchical model: p(yi
1:Ti

| zi, ui
1:Ti

; ) =
Q

t p(y
i
t |

z
i
, u

i
1:t; ).

The above model has been formulated for the case
that z

i are unobserved, but some side information
may be known about the task. For example, in our
drug response problem, we may have patient covariates
such as age, height, weight etc. which may (partially)
describe the di↵erences between tasks. In this case,
the latent variables can be replaced by observed ones,
which we call the task-descriptor model. In the case
that all dimensions of each {zi} are assumed known,
test time predictions may be calculated for new tasks
without need of an inference step.

3.2.1 Practical implementation

Inference. Inference of Z in this model is challeng-
ing. For our experiments, we use a Monte Carlo ap-
proach in order to obtain an accurate representation of
uncertainty. Unfortunately, while inference proceeds se-
quentially, Sequential Monte Carlo (SMC) methods will
su↵er from severe particle degeneracy due to the static

model formulation (Chopin, 2002). The proposed reju-
venation step in Chopin (2002) is also quite expensive
in our case. In the experimental results given, we use
Hamiltonian Monte Carlo (HMC, see e.g. Neal et al.,
2011) using the implementation of NUTS (Ho↵man
and Gelman, 2014) in Stan (Carpenter et al., 2016).
Alternatively a more general SMC samplers approach
(Del Moral et al., 2006) could have been used.

Learning. Optimising the parameters  requires in-
tegrating eq. (7) over Z. This can be approached
iteratively via (Monte Carlo) Expectation Maximisa-
tion (see e.g. McLachlan and Krishnan, 2007, ch. 6.1)
or gradient methods using HMC, but is expensive; in
practice we performed joint optimisation of the Z and
 , i.e. argmaxZ, p(Y, Z|U ; ) as an approximation of
the objective. Learning can then proceed by use of
gradient methods and automatic di↵erentiation; our
implementation used Adam (Kingma and Ba, 2014)
using the PyTorch (Paszke et al., 2017) framework.

Prediction. The primary goal of our drug-dosing
model is to provide improved predictions for anaes-
thetic induction. The predictive r-step ahead posterior
p(yi

t+1:t+r|yi
1:t; ) is not available in closed form, but

can be approximated using the Monte Carlo posterior
of Z, p(zi|yi

1:t; ) ⇡ 1
M

PM
m=1 �(z

i � z
i(m)) where �(·)

is the Dirac delta function. Then p(yi
t+1:t+r|yi

1:t; ) =

Z
p(yi

t+1:t+r|zi; ) p(zi|yi
1:t; ) dz

i

⇡ 1

M

MX

m=1

p(yi
t+1:t+r|zi(m); ) . (8)

Practical details. We presume the existence of a
training set such that  can be learned in an o✏ine
stage, and so (8) only requires inference of zi at each
relevant time point. In our experiments, taking 3000
samples using 2 chains (after a thin factor of 2) su�ced
for suitable mixing and an e↵ective sample size typically
exceeding 100. In order to achieve good mixing, we
found it helpful to initialise from the relevant MAP
value, and where necessary, also supplied a custom
mass matrix from preliminary runs.

Our single task experiments (see below) also used HMC
to infer the parameters, now in p = 36 dimensional
space. This problem is higher dimensional and also
less constrained, and hence is much harder than the
MTL experiments. We limited CPU time to 10⇥ that
used by the MTL experiments, which we believe gives
a fair comparison of the methods; in both cases we
leave ourselves open to the possibility that some chains
had not reached convergence.

Use of the MAP approximation for learning produces a
scale degeneracy not present in the original formulation.
For example shrinking a MAP estimate of ZMAP by
a diagonal factor D (with the inverse applied to  )
can result in an improved MAP objective value. This
can be circumvented in practice by early stopping, and
re-scaling to ensure diag(ZT

Z) = I.

The low-rank structure confers benefits of both statisti-
cal strength and computational e�ciency at test time,
which is controlled by choice of k. While the e↵ective
dimensionality of the parameter variation is unknown,
we choose k based on model comparison (BIC) on pre-
liminary experiments which suggested that k = 5, 7
represented a good trade-o↵ between individual and
cohort performance.

4 RELATED WORK

There is a substantial literature on multi-task learn-
ing (MTL) when there is iid input-output data for
each task, see e.g. the review paper by Zhang and
Yang (2017). This may involve learning a hidden-unit
representation shared across tasks (see e.g. Caruana,
1993), low rank structure over the task parameters (see
e.g. Ando and Zhang, 2005) or task clustering (see e.g.
Bakker and Heskes, 2003). If a vector of “task descrip-
tors” is available for each task, these can be used in
MTL, see e.g. Bonilla et al. (2007).

There is some literature on MTL for time series models.
For example Dürichen et al. (2015) consider multi-task
Gaussian processes (GPs) for condition monitoring of
patients, but in their case the multi-task nature is over
multiple obervation channels, not patients, and they
make use of GP methods for modelling the correlation
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between channels (see also Bonilla et al. 2008).

Like us Schulam and Saria (2015) do consider multi-
ple patients, but assume an additive decomposition of
population, subpopulation, individual and noise com-
ponents, so ‘individual level’ contributions work as
o↵sets to the population and subpopulation e↵ects. In
contrast our eq. (6) uses a more general low-rank struc-
ture. Alaa et al. (2018) use patient-specific covariates
to personalise a mixture of GPs, but control inputs are
not considered, and personalisation is restricted to a
fixed set of subtypes. In Automatic Speech Recogni-
tion a similar concept called ‘i-vectors’ (Kenny, 2005)
is used for speaker personalisation, but does not adapt
dynamics or handle control inputs.

A key assumption made by multi-task GP approaches
is that tasks are a linear combination of the same set
of underlying processes, which is usually inappropri-
ate if the experimental units are separated in time
and/or space. We avoid this di�culty by performing
multi-task learning of the parameters rather than the
processes. Our MTL framework is therefore not merely
performing customisation across similar tasks (as in
the independent data case), nor gaining strength over
latent processes (as for MT GP models), but perform-
ing model customisation at the level of experimental
units.

Our methodology is in some sense similar to random

e↵ects used in the frequentist statistical context, which
has seen some development for time series. However,
the purpose of such work has largely been to gain
strength over individual parameters within a cohort.
We are instead looking to exploit relationships between
parameters to facilitate faster adaptation and improved
prediction in an MTL sense3. Furthermore, random
e↵ects are usually applied in specific ways, such as

3
This is an asymmetric use of MTL in the terminology

of Xue et al. (2007).

only to the emissions (Tsimikas and Ledolter, 1997)
or only to the dynamics (Zhou et al., 2013), and with
non-general learning algorithms.

5 EXPERIMENTS

In this section we discuss our experimental set-up and
results. Section 5.1 introduces the clinical data source,
models and training objective, Section 5.2 summarises
the results and Section 5.3 concludes with a discussion.

5.1 Experimental set-up

Data Our data were obtained from an anaesthesia
study carried out at the Golden Jubilee National Hos-
pital in Glasgow, Scotland, as described in Georgatzis
et al. (2016). These are time series of N = 40 patients
of median length 36 minutes (range approx. 27 - 50
mins) in length and subsampled to 15 second intervals.
There are usually d = 3 channels: BPsys, BPdia and
BIS channels, but 11 patients are missing BIS. Obvi-
ous artefactual processes (such as instrument dropout
or clear exogenous stimulation) were annotated and
removed; all such data were marked as missing in the
output data. The input data series were volumes ad-
ministered by the TCI pump, which were converted
into inputs {ui

t} by application of the PK model of
White et al. (2008) using ode45 in MATLAB. Each
patient had additional covariates of age, gender, height,
weight (and BMI).

Models and objective MTL models are imple-
mented as described in Section 3 and listed as MTL-k.
The k refers to the subspace dimension, excluding pa-
tient o↵sets, since all models infer these parameters.
We also implement a task-description model ‘Task-D’
where the z

i are taken as the covariates of patients as
listed above. Models are trained via maximum like-
lihood, and predictive accuracy is reported via Root

Figure 2: Example predictions for BIS channel at T=10, 20, 30 minutes (left-to-right) for cohort and MTL
(k = 5) models. Shown are the predictive mean and 90% (approx.) credible interval of the underlying function.
Retrospective fits are shown without intervals for clarity. Best viewed in colour.
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Table 1: 20 and 40-step RMSE and 40-step negative log likelihood (NLL) for all channels, calculated out-of-sample.
For all metrics, smaller is better.

t = 12 m t = 24 m

RMSE RMSE NLL RMSE RMSE NLL

20-ahead 40-ahead 20-ahead 20-ahead 40-ahead 20-ahead

Cohort 6.62 7.78 133.84 7.44 7.51 131.08

MTL-5 6.38 7.71 138.59 5.43 6.15 124.88

BPsys MTL-7 6.43 7.77 136.91 5.42 6.00 124.05

STL 11.34 13.65 159.61 7.03 8.48 140.22

Task-ID 6.82 8.16 137.23 8.39 8.87 138.31

Cohort 3.74 4.27 110.76 4.31 4.32 109.36

MTL-5 4.08 4.69 118.23 3.58 3.88 109.07

BPdia MTL-7 4.19 4.74 119.57 3.63 3.73 109.45

STL 5.46 6.61 132.20 5.58 5.91 126.33

Task-ID 4.21 4.92 117.59 4.36 4.64 114.07

Cohort 10.76 12.28 153.11 11.26 11.60 151.10

MTL-5 10.01 13.29 155.01 9.31 10.13 140.74

BIS MTL-7 9.77 13.63 156.48 9.14 9.98 140.84

STL 14.61 23.25 184.13 10.06 12.62 150.43

Task-ID 12.35 14.79 160.21 12.71 13.27 155.66

Mean Squared Error (RMSE) and log likelihood. The
variance ⌧

�1 calculated during training is not opti-
mised for prediction; we report an upper bound on
likelihood by optimising ⌧ in each predictive window,
patient, channel and model. All metrics are calculated
out-of-sample, for which we use a leave-one-out (LOO)
prediction scheme.

In practice the iid modelling assumptions are violated
significantly. This was not especially problematic dur-
ing training, but caused substantial problems for infer-
ence on shorter sequences at test time. On a number
of occasions, un-modelled noise processes in the data
resulted in implausible predictions with high confidence.
A simple approach that appears to alleviate this prob-
lem is to downsample the observation data given to the
inference algorithm by a factor of 4. This removes all
significant partial autocorrelations seen in the residuals;
predictions are still made on the full data. A further
model violation was discovered at the initial stages
of the time series. Many patients had elevated vital
signs (some had systolic BP above 200), which may be
explained by anxiousness prior to a surgical procedure.
Since we have no record of steady state vital signs,
but the MTL fit showed strong evidence of downwards
bias in the first four minutes, we discarded these initial
datapoints during inference at test time.

Benchmark models A one-size-fits-all cohort model

is optimised over all patients, with only the patient-
specific o↵sets {↵i} inferred for the predictive poste-
rior. This is an improvement to the state-of-the-art
in PK/PD modelling, which does not adapt online. A
single-task model was implemented for comparison us-

ing relatively uninformative zero-mean Gaussian priors
on each parameter with standard deviation 100. These
represent the two extremes of which MTL sits in the
middle.

5.2 Results

Figure 2 illustrates the behaviour of the MTL and co-
hort models on the BIS channel of one patient. The
central compartment concentration ut is shown at the
bottom of the plot. Credible intervals show the pre-
dictive posterior for the underlying PD function after
three di↵erent time points. The Cohort model (green)
is fixed in shape and updates its o↵set as more data-
points are seen; the MTL model permits much greater
flexibility as seen by its adaptation and credible inter-
vals. The MTL model is using data from all 3 channels,
but BPsys and BPdia are not shown. Only MTL-5 is
shown for clarity; the performance of MTL-7 is very
similar in almost all tasks. More examples are shown
in supp. mat.

Figure 3a shows the 20-step-ahead (or 5-mins-ahead)
RMSE for the Cohort, MTL and STL models for the
BPsys, BPdia and BIS channels, averaged over LOO
patients. Table 1 gives these results for each channel
for times t = 12 mins and t = 24 mins, along with
40-step-ahead RMSE and negative log likelihood (for
all columns lower is better). There is a clear win for
MTL over STL in the plots for the first 30 minutes of
infusion. The benefit is sustained across all time points
in this initial period, but observe the STL model is
‘closing the gap’ as we approach the 30 minute mark.
Notice that prediction errors show some dependence on
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(a) 20-step ahead Predictive RMSE

(b) Retrospective RMSE (all preceding datapoints)

Figure 3: Performance over time (in mins). In 3a, the lower dotted line indicates the avg. error for the retrospective
fit of the optimal PD function over each task. If the MTL or Cohort model is significantly better than the other
(see text), it is shown as the relevant coloured dot below. Best viewed in colour.

time, particularly after large changes due to infusion
scheduling (see appendix A.1) at approximately 13
mins. and again after 27 mins.

Comparing MTL and the Cohort model, the results
are closer, but MTL broadly out-performs the Cohort
model on aggregate after 15 minutes of observations,
although the performance drops back at the infusion
change at approx. 27 minutes. It is not so surprising
that the Cohort model does better early on, as it has
fewer latent variables to estimate than the MTL model.
Many of these improvements are significant according
to a p < 0.05 Wilcoxon signed-rank test as shown under
Figure 3a, although no adjustment has been made for
multiple testing (such as a Bonferroni correction). Ta-
ble 1 demonstrates that these features are also retained
in a longer predictive interval.

The performance of the patient covariate model Task-D
is also given in Table 1. It performs worse in general
than the Cohort model and does not perform substan-
tially better even on the training set. This is indicative
of a lack of information in our patient covariates. Use
of more complex models such as Long Short Term
Memory (LSTM, Hochreiter and Schmidhuber, 1997)
networks in preliminary investigations also supported
this conclusion. In principle one could combine the
unsupervised MTL method with the task descriptors,
but no benefit would be expected on this dataset.

Fig. 3b shows the retrospective RMSE as a function of
time for the di↵erent models, based on “post-dicting”
the the data seen up to time t given the inferences for
z at time t. These plots show that the MTL model is
substantially better at this task than the Cohort and
STL models for both BP channels.

5.3 Discussion

The results in Section 5.2 demonstrate that the MTL
framework can achieve a predictive RMSE close to that
obtained by the optimal function in the PD class, as
shown by the dotted line in Figure 3a. This represents
the predictive RMSE of the best-fitting PD function of
form (5) fitted retrospectively per patient on the test
set.

Two major factors in the data elevate the minimum
achievable RMSE for the PD model. Firstly, even with
obvious artefacts removed, there remain many other
exogenous ‘events’ which cannot be explained by the
model. Secondly, the relative level of peaks and troughs
for a given patient (particularly in BIS) cannot always
be adequately fitted with the PD model. The changes
sometimes appear more like input-driven phase changes
(see e.g. Mukamel et al. 2014). Thus a more flexible
(deterministic) model class may not improve the fit
very much.
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The performance of the Cohort PD model is surprisingly
good. Traditionally, PD models have adaptive o↵sets
based on covariates, and practicing anaesthetists may
mentally perform further customisation. Our work is
the first instance (to our knowledge) of investigating an
online estimation of these o↵sets over several channels,
and our Cohort PD model appears to outperform those
generally used in practice. Nevertheless, the Cohort
model does not fit well retrospectively (Fig. 3b) which
indicates both that it does not capture the inter-patient
variation, and that it may perform poorly in future –
that is, if the past is representative of the future.

The worsening performance of the MTL model as t

approaches 30 minutes is due to a changepoint in the
infusion schedule (see appendix A.1). These change-
points occur twice in the infusion sequences at approx.
t = 13 and t = 27 minutes and clearly present a more
challenging part of the task. The data observed so far
may contain little information about the response here,
and perhaps in future the infusion sequence can be
designed to be more informative.

An important result given by the Task-D model is the
failure of patient covariates to improve performance.
While there appears to be very little information about
vitals shape available in the covariates, some informa-
tion about level may be expected had we not estimated
o↵sets online. Note that the covariates have already
been used to personalise the upstream PK model.

6 CONCLUSION

In this paper we have presented a method for extend-
ing the multi-task learning framework to collections
of sequential tasks. We have seen via use of the drug-
response example that MTL can improve the aggre-
gate performance of a collection of discrete time input-
output dynamical systems over either a cohort or single-
task approach. Time series without control inputs can
be handled equally well. The framework is of course
more general than the use case in this paper and we
are actively exploring other areas of application.

The application of this framework to the PK/PD mod-
elling problem provides a novel approach to person-
alised medicine, and at least in this case shows substan-
tial promise over traditional methods which personalise
using patient covariates. Where patient covariates con-
tain such a low signal, an unsupervised approach is
essential for better performance, and a larger dataset
per se will not help much. Further improvements in
this approach may be possible by incorporating artefact
models and the optimal design of infusion sequences.

There are other important findings that may be of
interest to a clinical audience. For example, in defin-

ing a benchmark PD model, we have proposed a PD
model that is better than usually used in clinical prac-
tice, which we have improved further using MTL. In
some tasks, correlations learned between channels via
latent variables have led to useful predictions even for
a channel that has dropped out. Finally, the loading
matrix  may be of direct interest in itself; we leave a
disentangled representation to future work.
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A APPENDIX

A.1 Infusion Schedule

The volumes of Propofol infused during each exper-
iment followed one of two regimes: a high-low-high
dose or a low-high-low dose. 18 patients were allocated
to the first group, 22 patients to the second. Despite
di↵erences in regimes and volumes, the changepoints
between types of dosage happened at approximately
the same time. After 27-30 minutes, the MTL models
are observing a low-high or high-low transition for the
first time. Prior to observing this information, it is
di�cult to out-perform an average e↵ect.

Figure 4 plots each of the di↵erent inputs {ui
t} over

all patients, split into these regimes. Note that these
are the central compartment solutions to the PK equa-
tion (1) using personalised rate constants and exhibit
substantial variation in magnitude.

Figure 4: Inputs {ui
t} for all patients. Di↵erent regimes

are split into separate panels for clarity.
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