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Abstract

ZX-calculus is a powerful diagrammatic language to reason about quantum the-

ory. To make drawing the diagrams easier, this project aims to develop a recognition

program for hand-drawn ZX-calculus diagrams which could be implemented in a web

page or theory rewrite program such as Quantomatic.

The recognition algorithm is a hypothesis-based system divided into four stages

including segmentation, classification, connection and correction. The strokes drawn

by the users are represented by paths in the SVG format. We segment the hand-drawn

diagram into path groups and generate hypotheses representing different ways of com-

binations. When the users correct the diagram, it will generate more hypotheses candi-

dates. Each path group forms a shape and then the shapes are fed into an SVM classifier

for classification. Finally, we connect the recognised elements with the diagram rules

and score the hypotheses to find a winner.

We visualise the recognition results in SVG images and LaTeX PDF to evaluate the

accuracy. The accuracy of uncorrected diagrams and corrected diagrams are 94.33%

and 69.26%. The failures are mainly caused by unconventional user behaviours and the

defective rules for determining users’ corrections. According to the evaluation results,

the future work will primarily focus on improving hypothesis mechanism and applying

more professional domain knowledge to the diagram rules.
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Chapter 1

Introduction

1.1 Motivation

The ZX-calculus diagram is a powerful graphical language for reasoning about

quantum theory. This formalism is intuitive for expressing the networked process.

As quantum computation becomes a more mature technology now rather than pure

theories, the demand of using ZX-calculus also increases (de Beaudrap and Horsman,

2017). But it is inefficient to draw an electronic form of the diagrams on a computer

with the current human-computer interface. Users need to spend time on choosing and

learning the drawing tools first and then generate the diagrams by typing commands or

doing the click-drag motion.

There are some recognition algorithms for diagram sketches in the past few years.

However, each kind of diagrams has its features, so these methods only work for spe-

cific diagrams. This is the reason why we need to develop a new algorithm for recog-

nising ZX-calculus sketches in this program.

1.2 Hypothesis and Deliverables

Our goal is to design an algorithm to recognise hand-drawn ZX-calculus diagrams

and do the implementation, so the hypothesis of this project is whether such recognis-

ing algorithm exists. The deliverable program should have three core functions which

include recognising all the elements in a sketch, connecting these elements to a dia-

gram, and allowing users to correct their drawing.

The final output of the program is some structured data containing the recognised

diagram information. The data should be able to help reconstruct the diagram sketch

1



Chapter 1. Introduction 2

or to be used in other applications.

1.3 Contributions

The main contribution of this project is that we provide an efficient recognition

program for ZX-calculus sketches. The output of this program can be embedded in

other applications for different uses. For instance, it can be embedded into web page

or software, where users can get LaTeX code of the diagram sketch and also PDF

images generated by this code. They might use these images either for papers or pre-

sentations. Besides, it can also assist quantum graphical reasoning programs such like

Quantomatic (Kissinger, 2012), which is an automatic rewrite program that translates

ZX-calculus diagrams to other formalisms given rewrite rules. With our recognition

algorithm, users no longer can import the diagrams with much less time and efforts.

Although this project focus on ZX-calculus diagrams, we try to design our algo-

rithm to be as general as possible. The recognition program is also extensible for other

string diagrams such like data flow diagrams. It allows the wire elements to have a

very high flexibility in their shape, as we separate the wire elements and node ele-

ments before recognising them. And we use a feature-based classifier which enables

other developers to modify or add node types quickly.



Chapter 2

Background and Related Work

2.1 ZX-Calculus

ZX-calculus is a graphical language based on category theory introduced by Co-

ecke and Duncan (Coecke and Duncan, 2011). Comparing with the low-level formal-

ism such as matrix mechanics, the graphical formalism is more intuitive and easier for

parsing complex computations.

A ZX-calculus diagram is a kind of string diagram consisting of nodes and wires.

Nodes denote maps and wires denote systems. In different ZX-calculus version, their

appearance might have small variations. These are some commonly used elements in

the diagram:

• Dot nodes. There are two colours of dot nodes, usually green and red. The green

nodes represent X-basis elements, and the red ones represent Z-basis elements. They

can have an arbitrary number of inputs and outputs including none.

• Morphism nodes. The morphism node appears as a right trapezoid with a function

label. It has four orientations. Like the dot nodes, morphism nodes also have multi-

ple inputs and outputs. The input and output wires are connected to the trapezoid’s

top side and bottom side.

• H nodes. The H nodes are yellow squares with exactly one input and one output. It

represents the Hadamard gate used for changing the X and Z basis.

• Black diamond. The black diamonds don’t have any inputs or outputs. It is the result

of composing a cup and a cap.

3



Chapter 2. Background and Related Work 4

• Wires. The wire ends at the input or output interface point of the diagram. Wires

linking inputs form a cup and wires connecting outputs form a cap. They can be

bending or straight and can intersect with other wires.

Figure 2.1: ZX-calculus elements.

We read a ZX-calculus diagram from bottom to top. The parallel operations lie

horizontally in the diagram, and the sequential operations are stacked vertically.

There are some other nodes and diagram rules to denote more complicated computa-

tion. However, in this thesis, we only consider the diagrams with dot nodes, morphism

nodes and wires with the basic rules mentioned above.

2.2 Image Format

The inputs of a diagram recognition algorithm are diagram images. We considered

two image formats and compared their features on recognising sketches.

2.2.1 Pixel-based graphics

We first consider pixel-based graphics such like Portable Network Graphics (PNG).

These are raster images composed of pixels. The strokes drawn by users are black dots

in pixel slots. With pixel-based graphics, recognition is a process dealing with the

matrix of pixel values.

• Advantages: 1©Most previous sketch recognition study used pixel-based images as

inputs, which could provide many useful recognising ideas and tools. For example,

feature extraction techniques were frequently used to find out image patterns and

were proved successful. 2© There are also some great existing libraries for pixel-

based image recognition such like OpenCV.

• Drawbacks: 1© Users’ strokes are important information for separating the elements

in the diagram, but it’s impossible to get the strokes in pixel images without front-
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end recording support. 2© Although existing methods performed well on shapes, it

might be hard to recognise wires, especially long, bending and intersected wires.

2.2.2 Vector-based graphics

We also consider the vector-based graphics such as Scalable Vector Graphics (SVG).Vector

graphics lead through locations by control points with definite positions on the x axis

and the y axis to determines the paths. Paths could be assigned with different attributes.

With vector-based graphics, recognition is to handle these control points.

• Advantages: 1© It is straightforward to know how the users draw strokes one by

one since they are stored as separate paths. It helps us to divide the strokes into

shapes. 2© We can use the sequential positions to calculate stroke directions and

intersections easily.

• Drawbacks: It’s hard to recognise complicated shapes with sparse control points

unless we set the smoothness of the strokes at a low value.

In this project, we choose the vector-based graphics SVG as the inputs of the recog-

nition algorithm. First, the nodes in ZX-calculus diagrams are shapes with simple

features which don’t need powerful shape recognition methods. Second, unlike recog-

nising a single shape, it is essential to separate the elements correctly and find the

relationships between them when dealing with a diagram. So SVG performs better in

the aspects that we care about.

2.3 Shape Classifier

In the recognition algorithm, we need a classifier to classify the nodes into dots

and morphisms. The inputs of the classifier could be shape attributes, path points or

path curvatures. Then the feature dimension is likely to range from 2 to 100, and the

dataset could be linear or nonlinear data. We compared some mainstream supervised

classification models used in sketch recognition (Ouyang and Davis, 2009b; Li et al.,

2013; Awal et al., 2014; Angadi and Lakshman Naika, 2014) and finally choose SVM

as the node classifier.
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2.3.1 Lazy Learning

Lazy learning such like K-Nearest Neighbors (KNN) is a primary classification

algorithm. It calculates generalisation of the training set only when there is a request.

The advantage of lazy learning is that it can solve multiple problems simultane-

ously because the target function is approximated in a local area (Wettschereck et al.,

1997). For example, KNN assigns an object to a class by the vote of its k nearest

neighbours.

Its disadvantages include we have to prepare a dataset with a large size and the

high quality. Lazy learning needs sufficient data makes sure the new query can always

find proper neighbours for comparing (Guru et al., 2010). Besides, it is sensitive to

outliers because it doesn’t calculate generation in training phase or doesn’t have the

training phase. Another disadvantage is that the processing time of classifying is long

especially when the feature dimension is high.

However, lazy learning such like KNN is usually defeated by other models when

doing sketch recognition in both accuracy and processing time. The main reasons are a

lack of the delicate sketch dataset in a large size and the difficulty in finding the proper

window parameter k.

2.3.2 Support Vector Machines

Given a set of labelled points in the space, Support Vector Machines (SVM) can

separate these points with one or more hyperplanes which make the gaps between

categories as wide as possible. In general, a larger margin means a lower generalisation

error. For the data that can’t be separated linearly, it uses the kernel trick to map the

original space to a higher dimensional space to do the separation.

Compared with lazy learning, the SVM gives a more accurate and robust result

because it provides a good out-of-sample generalisation by only using the most relevant

points (Auria and Moro, 2008). Besides, it can avoid local minima and provide a

unique solution.

The most problem with the SVM is the choice of the kernel and the kernel’s pa-

rameters. The kernel models are very sensitive to over-fitted model selection criterion

(Cawley and Talbot, 2010). Besides, the SVM doesn’t have probability estimates itself.

These are calculated using an expensive five-fold cross-validation

So the SVM seems a good model to classify nodes in our algorithm as it could

provide a rather good result and flexible choices to use different kernels according to
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the data distribution.It is also the most used model recently for recognising symbols in

various 2D languages such like diagram Hammond et al. (2010); Ouyang and Davis

(2009a), circuit Angadi and Lakshman Naika (2014) and mathematical expressions

Awal et al. (2014). These papers proved that considering precision and computation,

the SVM achieved a better result in symbol classification than other models such as

KNN, Image Deformable Model, and Neural Network.

2.3.3 Neural Network

Neural Network is a network composed of many interconnected neurons, which

receive input, change their states and produce output depending on the input and acti-

vation. These neurons are organised in different layers performing different transfor-

mations on their inputs.

The most advantage of the neural network is that it can learn imprecise pattern

from the examples. As it has the ability approximating any function regardless of the

linearity, it is usually used for complicated data (Dreiseitl and Ohno-Machado, 2002).

However, the disadvantage of the neural network is obvious. It spends much

longer time on training the dataset than other classifiers we mentioned above (Ge et al.,

2013). Sometimes other simpler models can reach the same accuracy as the neural

network does and they cost much less.

In sketch recognition studies, the neural network usually uses pixels as the inputs

to extract patterns during training instead of extracting features in advance. The testing

results showed that the neural network is a powerful model, but we think it’s a kind of

overuse for this project. Shapes in the ZX-calculus diagrams are simple and don’t have

many useful patterns for training.

2.4 Related work

There aren’t any existing methods on recognising ZX-calculus diagrams, so we

searched for some papers that work on other diagrams. Their algorithms can be used

for reference when we work on ZX-calculus.

We introduce the methodology of recognising circuits and chemical diagrams.

Among all the diagram recognition papers, circuits are the most similar one to the

ZX-calculus, because both of them are string diagrams. So we hope to learn some

general ideas of string diagram recognition from the papers working on circuits. As
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for chemical diagrams, they are quite different from ZX-calculus because they don’t

have connectors (wires). However, the hypothesis system for segmentation introduced

in chemical diagram recognition is a good design, and it applies to general diagrams.

So we include this method in this section.

Besides the methodology of recognising the whole diagram, we also introduce

some work focused on user correction on the diagrams, as we plan to add correct

function in our algorithm.

2.4.1 Circuits

The most recent study on circuit recognition is proposed by (Angadi and Laksh-

man Naika, 2014). This algorithm doesn’t need the support of front-end recording.

Instead, it uses complete circuit bitmap images as the input. It divides the recognising

process into three stages:

• Segmentation: segment strokes or break up the image into shapes

• Classification: classify shapes

• Connection: connect discrete shapes to a diagram

In the segmentation part, it uses pixel density to remove the straight parts of the

wires but keep the corners. The remains are dispersed nodes and components, and the

corner of the wires. This is more efficient than the previous method of combining the

strokes in (Calhoun et al., 2002).

After getting these separated elements, it extracts features from each of them and

feeds the data into an SVM classifier. It adopts the methods in (Gennari et al., 2005),

use the geometry and simple domain knowledge to connect these recognised elements

with wires.

Although this algorithm works for pixel-based diagram images, it provides a good

solution to differentiating nodes and wires. It is possible to apply this segmentation

algorithm to other string diagrams even if the input images are in the SVG format,

as we can use point density instead of the pixel density. However, the nodes in ZX-

calculus are simple shapes with low point density, which means such segmentation

might mix up the nodes and wires. If so, we will try to combine strokes using the

methods in (Calhoun et al., 2002).
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2.4.2 Chemical Diagrams

The latest study on chemical diagram recognition is proposed by (Ouyang and

Davis, 2011). In this approach, the basic unit in the diagram is corner points. Each

two corner points compose a stroke segment, and the stroke segments form a shape

element. It uses the conditional random fields to combine the features in corner points,

stroke segments and shapes. There aren’t the three stages we mentioned in circuit

recognition. Instead, the whole recognition is a probability-based system capturing

the relationships between the entities. This approach achieves nearly perfect results.

However, it is not suitable for ZX-calculus. The reason is, in chemical diagrams, the

stroke segments in one shape have regular patterns. But ZX-calculus elements are

usually drawn with one stroke and the segments do not have certain patterns.

We find a better system design in (Ouyang and Davis, 2007). It uses the front-end

tablet to record stroke sequences and then generates hypotheses of all different com-

binations of up to 7 sequential strokes. Shape features are extracted from these stroke

groups and put into an SVM classifier. By using prior chemical valence knowledge

to check the rationality of adjacent elements, the system can find out the most reason-

able segmentation hypothesis, and also to recover the diagram from inconsistencies by

adding strokes. Apparently, this is a more general approach than the CRF which can

be applied to other kinds of diagrams as well. The hypothesis-based system might also

work well for ZX-calculus diagrams.

2.4.3 User Correction

Besides the algorithm of recognising a whole diagram image, in Wu et al. (2014)

there was an approach to incorporate users’ correction on recognised sketches, which

could also be applied to diagram recognition. This research discovers three editing

modes of users’ intention when they’re correcting: local correction, replacement, and

enhancement. Based on these three editing modes, different correction algorithms are

designed. But this paper only focused on single symbol correction and assumed all

strokes are already well grouped. Connectors were not considered in this research.

2.5 Conclusion

We discuss the input formats, classifying tools and some related works in the pre-

vious sections. Although there is no existing recognition for ZX-calculus diagrams,
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there are still some good solutions in previous research for other diagrams. To develop

our algorithm, first, we decide to choose SVG as the input format. SVG internally

records stroke sequences and stores them separately, which could help to do the seg-

mentation. As the ZX-calculus diagram is a kind of string diagram comprised of nodes

and wire, we could use the similar three stages used in circuit recognition including

segmentation, classification and connection, and build up a hypothesis-based system

for segmentation and connection parts.



Chapter 3

Methodology and Implementation

In this chapter, we introduce the methodology of recognising freehand ZX-calculus

diagrams. We’ll describe the four main stages of the recognition algorithm are segmen-

tation, classification, connection, and correction in detail, and also briefly explain how

we realise this algorithm in code.

3.1 Input and Preprocessing

The input of the algorithm is an SVG file containing one ZX-calculus diagram.

All the diagram strokes are drawn by freehand lines without snapping in Inkscape and

stored as paths separately in the file. As SVG files could be read in Extensible Markup

Language (XML), we load the XML tree of the input SVG file and extract all path

elements.

The path elements have an attribute ”d” which contains point positions. The

”m (x,y)” command means move to the absolute position and the ”c (x1,y1) (x2,y2)...”

command means the relative positions of a sequence of Cubic Bezier Curves. A Cubic

Bezier Curve has one start point, two control points, and an end point. So each three

points in the c command is a group, and the last point of the former group is the start

point of the current group. Then we can calculate all the absolute positions in the c

command.

In our algorithm, we set the smoothness of the freehand line at a small value so

that the strokes can describe the corners of the trapezoids. With such setting, almost

all the control points also lie on the shape corner, so we treat them as the start points

and end points. Finally, we get set of paths, and each path contains a sequence of point

positions.

11
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Figure 3.1: The left is an example of freehand diagram in SVG. We plot all the points of

the paths on the image. The right image is its corresponding XML tree.

3.2 Segmentation

Although we already have every stroke stored in each path separately, it is not

reasonable to skip the segmentation phase and classify the strokes directly. There is

one thing we must consider is that the user might draw one element by multiple strokes.

For example, it is very likely to draw a trapezoid in three strokes. So the first step of our

algorithm is still to segment all the strokes into shapes. Our segmentation algorithm

could find groups consisting of 2 or 3 strokes with all sorts of matching conditions.

3.2.1 Find Neighbouring Strokes

If the user draws a shape in multiple strokes, the ends of these strokes must be

close. We use this trick to find adjacent stroke pairs.

We also record the matching types of every adjacent pair. Each stroke has two

ends with different positions, so there are six types of matching, including four types

of two-end matching and two types of four-end matching. We create a match list to

store these matchings for further use. Then we search matches with three strokes in the

match list. For example, there are three path objects named path 1, path2 and path3.

If the matches (path1,path2), (path2,path3), (path1,path3) are simultaneously found in

the match list, we will create a new match [path1,path2,path3] and append it to the list.

We only implement the algorithm finding up to 3 matching strokes in this pro-
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Figure 3.2: The six matching types of two strokes.

gram. Similar methods could be used for searching groups including more strokes.

Figure 3.3: The match of three strokes.

Then we could combine these pairing matches to one path. As each path com-

prises a sequence of coordinate points, we must combine matched strokes according to

their matching types. For those groups with more than two strokes, we will combine

the strokes two by two.

3.2.2 Generate Hypotheses

After finding out the pairing strokes, we generate all possible segment hypotheses

with these matches. Mathematically, there should be 2n hypotheses with n matches, so

we generate a list of n binary number to represent these hypotheses in the program. If

Figure 3.4: One of the hypothesis label when there are 7 matches among all the strokes.

This hypothesis will switch on the 2nd, 4th, 5th, and 7th match in the match list.

the ith binary number is 1, we will use the ith match in the match list in this hypothesis.

Otherwise, we still use the separated strokes. For those matches switched on, the old
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pairing paths are removed from the diagram and the new combined path is added. One

thing needs to be mentioned is that there are some invalid hypotheses.

Figure 3.5: This diagram includes four matches: (path1,path2) labeled match1,

(path1,path3) labeled match2, (path2,path3) labeled match3 and (path1,path2,path3)

labeled match4. There are 24 binary numbers represent 16 different hypothesis can-

didates: ”0000”, ”0001”, ”0010”, ”0011”, ”0100”,...,”1111”, where only 5 hypotheses are

valid: ”0000”, ”0001”, ”0010”, ”0100” and ”1000”.

In Figure 3.5, hypothesis ”1100” is invalid because we can’t use match1 (path1,path2)

and match2 (path1,path3) simultaneously. If (path1,path2) is switched on, (path1,path3)

can’t be used because path1 is already removed. So we check the validity before using

each match. Once one match conflicts with others in the hypothesis, we throw up this

hypothesis.

After the segmentation stage, we should get a set of hypotheses where each hy-

pothesis contains grouped paths. Each path is considered a shape and ready for being

classified.

3.3 Classification

In this phase, we first transform all the paths to polygons. To describe a shape, we

could calculate the shape factor including aspect ratio, compactness, elongation, and

waviness. We choose three factors: aspect ratio, compactness, and elongation which

can tell circles from trapezoids. We create a dataset of freehand nodes, extract these

attributes and use these them as the training data for the SVM classifier.
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3.3.1 Classify Wires

For each path in the hypotheses, we don’t classify the wires by the SVM classifier,

because their shape features have a high randomness. It might confuse the classifier,

especially if we add more elements into the diagrams in the future. For this reason, we

use two simple but effective rules to exclude the wires from the nodes before we apply

the SVM classifier:

• Calculate the distance d between the two ends of the path and the perimeter P of

the path. If the the ratio ϕopen =
d
P . If the ϕopen is larger than a threshold value, we

consider it as an open shape. Otherwise, it is a closed shape. If the path is an open

shape, it must be a wire.

• Transform the paths into polygons. Check whether the polygon is a convex shape or

a concave shape by calculating its convex ratio ϕconvex =
areashape

areaconvexhull
. If the ϕconvex is

smaller than a threshold value, it is a concave shape. It is defined as a convex shape

otherwise. If the path is a concave shape, it is a wire.

If a path satisfies any one of these two conditions, we classify the path into the

wire class. Only closed and convex shapes are classified into nodes.

3.3.2 Classify Nodes

After we exclude the wires, the next step is to classify nodes into dots and mor-

phisms. We adopt a more delicate method: create a dataset and train an SVM classifier,

which provides a much higher accuracy than classifying by simple decision rules.

3.3.2.1 Extract Features

We first extract features from the rest polygons transformed from paths. These

features include:

• Eccentricity: Find the two principal axes of the shape and get the eigenvalues λ1 and

λ2.

cov =
1
N

N−1

∑
i=0

(
xi−gx

yi−gy

)(
xi−gx

yi−gy

)T

=

(
cxx cxy

cyx cyy

)
cov is the covariance Matrix of the polygon and G(gx,gy) is the polygon centroid.λ1 =

1
2 [cxx + cyy+

√
(cxx + cyy)2−4(cxxcyy− c2

xy)]

λ2 =
1
2 [cxx + cyy−

√
(cxx + cyy)2−4(cxxcyy− c2

xy)]
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Then calculate the ratio E of the eigenvalues and use it as a feature.

E =
λ1

λ2

• Circularity: The compactness equation should be:

comp =
2
√

aπ

P

However, according to (Montero and Bribiesca, 2009), if the shape has a twisted

contour, the compactness value will shrink.

Figure 3.6: The different compactness values of the circles with the same size. It’s the

twisted contour that causes the shrink of compactness.

As there are usually fewer twists when drawing a trapezoid with straight lines, and

more twists when drawing a circle with more curves in an SVG canvas with a low

smoothness, it’s not smart to use compactness factor directly as a feature of the

freehand shapes. So we modify the equation. We calculate the Euclidean distance

between the centroid and each vertex and find the farthest vertex away from the

centroid point. Use the distance as the radius r. Then calculate the ratio C of the

shape area to the circle area with radius r. Then the C is the second feature.

C =
a

πr2

• Aspect Ratio: Find the ratio of the two boundaries. Find the boundary of the shape

on x axis (x1,x2) and y axis (y1,y2). Then calculate the ratio of x boundary and y

boundary.

A =
x2− x1

y2− y1
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Figure 3.7: This figure shows the three features of a morphism shape.

Figure 3.8: This set of box plot to make sure that each of these features have the ability

to distinguish the circles and trapezoids.

3.3.2.2 Shape Generation

Before we use the classifier to classify shapes, we need to prepare the training

dataset to train it. However, the number of real hand-drawn shapes is insufficient, and

it is very likely that sometimes the user’s drawing has a bad quality which makes the

shapes become outliers. So we decide to write a snippet of code to generate shapes

with a stable and good quality. Using code to produce a relatively large size of data is

a kind of bootstrapping method, which can help the classifier to find a more accurate

distribution of the high-quality shapes.

To automatically generate shapes, we first need to find the equations of a circle

and a right trapezoid. According to Figure 3.9, the (0,0) coordinate is on the top-left

side of the canvas. For a circle, all the points(x,y) should satisfy x2 + y2 = r2. So we

generate a random x value between −r and r and calculate y using the equation. The

y will randomly be positive or negative. And then we generate n points and then sort
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Figure 3.9: The equations of the curves and lines in the shapes.

Figure 3.10: Shapes created by real users. Figure 3.11: Shapes created by code.

them in clockwise. After these steps, we get a sequence of path points.

For a morphism, the points lie on four different lines. Before generating a point,

we need to select to which line the point belongs randomly. Then we do the same

thing as we did for the circle to create the points of the path. For example, if the point

belongs to the line x =−a/2, we will set the x value at −a/2 and generate a random y

value between −h/2 and h/2.

When we create the circles and right trapezoids, all the parameters including point

number n, circle radius r and trapezoid edge lengths a, b, h are arbitrary values in some

certain ranges, so that the shapes can have a random size and a random point density.

The final step is to slightly deform the regular shapes to make them look more

”freehand”. For each point on the shapes, we give it a small random movement in both

x axis and y axis. Then we get the ”freehand” shapes, and we could use them for the

classifier.

3.3.2.3 Train the Classifier

These shape attributes are the training data of the SVM classifier. The feature

dimension is three, so we visualise the labeled training data. According to Figure 3.12,

there are only a few outliers. The two shapes’ features are distributed nicely that we

can directly use a 2d plane to separate these points. So we plan to use a binary SVM

with the linear function kernel instead of a nonlinear function kernel.
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Figure 3.12: The data distribution of 600 dots and 600 morphisms. The three axes are

eccentricity, circularity and aspect ratio. The red points represent dot features, and the

blue ones represent morphism features.

We set the plane equation as:

f (~x) =~ωT~x+d

where ~xi = (xi,yi,zi) and ~ω = (a,b,c). We label dot as {+1} and morphisms as {-1},
and set the red points’ side is the positive side to the plane and the blue points’ side is

the negative side. So the distance from a point to this plane is:

dist =
1
‖~ω‖

(~ωT~x+d)

According to the definition of the SVM, we want to find a 2d plane which makes

the largest gap between the two categories. The closest red point and blue point to this

plane are called support vector. The distance of two support vectors to the plane is

the same. Then the plane should equal to argminplane margin(plane) where function

margin(∗) means the distance from the support vector to the plane.

So for each point ~xi, we want to find:

argmax
~ω,d

{ 1
‖~ω‖

min
n
[ fi(~ω

T~xi +d)]}

which is the same as:

argmin
~ω,d

1
2
‖~ω‖2, sub ject to fi(~ω

T~xi +d)> 1
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Then we use Lagrange Multiplier:

L =
1
2
‖~ω‖2−

N

∑
n=1

an×{ fn(~ω
T~xn +d)−1}

The partial derivative ∂L
∂~ω

= 0 and ∂L
∂d = 0 are calculated and put the results back

to the L equation. Then we could get the parameters ~ω and d.

Figure 3.13: The 2d plane that separates the two categories. Its parameters are ~ω =

(−0.76151752,4.011278,−1.08616378) and d =−0.66255707.

To classify a test point~u, the decision rule is:

I f ~ωT ·~u+b > 0, T hen ′DOT ′

I f ~ωT ·~u+b 6 0, T hen ′MORPHISM′

Then we use this trained classifier to classify each node in each hypothesis. After

the classification phase, all the shapes in the hypotheses set are classified into wires,

dots, and morphisms.

3.3.3 Morphism Orientation

According to the ZX-calculus rules, the morphisms can have four orientations.

According to Figure 3.14, the four orientations include an original direction, a horizon-

tal flipping direction, a vertical flipping direction and a horizontal-and-vertical flipping

direction.
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When we calculate the features of the shape, we calculate the centroid position

and the bounding box of them. These two attributes are used for calculating the mor-

phisms’ orientation.

Figure 3.14: The four orientations of a trapezoid.

To calculate the orientation, we find out the farthest point on the bounding box

from the centroid. Like the examples in Figure 3.15, we divide the space into four parts.

The blue point is the centroid and the red point is the farthest point. The trapezoid’s

centroid point is placed on the origin coordinate so that we can calculate the sharp

corner’s direction according to the centroid.

Figure 3.15: The method we use to determine the morphisms’ orientation.

3.4 Connection

In each hypothesis, we have a set of wires and a set of nodes. We will connect the

wires and nodes to make a diagram. Then these diagrams are given a score, and we

choose the hypothesis with the highest score as the recognition result.
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3.4.1 Connect and Score Rules

For one end of the wire, we iterate the node set and calculate the distance between

the end position and each point position on the node contour. A threshold distance

value is set, and only a distance smaller than the threshold will be recorded. After

iterated all the nodes, we pick the node with the smallest distance in the history as the

node to be connected with this wire and make this connection information as attributes

of this wire and the connected node. We do this for each end of all the wires in the

wire set.

After we’ve checked the connection, we iterate all the elements including wires

and nodes in one hypothesis to check their connection attributes and give the score

according to the rules below:

• Set the default score = 1.0

• If an element is connected to nothing, score = score×α1

• If an element is connected to one another element, score = score×α2

• If an element is connected to two or more other elements, score = score×α3

The relationships of the αi should be α1 < 1.0 < α2 < α3. These parameter are

manually tuned by testing on the dataset.

3.4.2 Reject Wrong Segmentation

Our strategy is to use the connection rules to find out the most reasonable seg-

mentation. Here we give some examples of diagram segments to show the rationality

of the scoring rules.

Segment 1 is an example of a broken wire. No matter the complete wire is con-

nected to a node or not (no matter we have path1 and path4 or not), the scoring rules

always tend to group the strokes of the broken wire.

Segment 2 is an example of gathered wire ends (the ends of path2 and path3). Our

rules will separate these ends instead of connecting the wires (path2 and path3).

Segment 3 is an example of a node with multiple strokes. The rules tend to group

the strokes instead of leaving them separated.

We don’t include the confidence of SVM classification in the score. The main

reason is, there are a lot of other shapes that have similar features with circles and

trapezoids. It is hard to find out some features that can rule out all the other shapes.
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Figure 3.16: Three examples of diagram segments.

Example No. Hypo No. Switched-on Matches Score

Segment 1
0 None 1.054 = 1.2155

1 (path2,path3) 1.052 ∗1.2 = 1.323

Segment 2

0000 None 1.053 = 1.1576

0001 (path1,path2,path3) 0.8

0010 (path2,path3) 0.82 = 0.64

0100 (path1,path3) 0.82 = 0.64

1000 (path1,path2) 0.82 = 0.64

Segment 3
0 None 0.82 = 0.64

1 (path1,path2) 0.8

Table 3.1: The score of different hypotheses for each diagram segments using param-

eters α1 = 0.8, α2 = 1.05 and α3 = 1.2. Only valid hypotheses are listed.

So, in the classification stage, once the shape is a closed convex shape, we always

consider it a node and give a result of ”dot” or ”morphism” even it’s a nonsense shape.

And also, we won’t use the confidence value as the reference of the score because a

nonsense shape is very likely to get a confidence as high as a well-drawn circle or

trapezoid.

3.5 Correction

We also consider users’ correction behaviour in our algorithm. When the algo-

rithm is embedded in a real-time program, the algorithm could generate hypotheses and

produce a result each time the user draws a stroke on the canvas. We use edit modes
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to describe the user’s intention of drawing a new stroke and add correction-related

functions to the three previous stages.

3.5.1 Edit Modes

We define two edit modes to describe the intention of a new stroke: Replace or

Enhance. Replace mode means that the latest stroke is to replace another stroke, and

Enhance mode means that the latest stroke is to add a new stroke in the diagram.

We set a simple rule to classify the most recent stroke to these two modes: iterate

all the previous paths and calculate the intersection between the previous path and

the new path. If the new stroke doesn’t intersect with any previous stroke, then it is

entirely in Enhance mode. Otherwise, there is a possibility that it’s in Replace mode.

The more intersections between the two paths, the larger the possibility is. We choose

the previous path which has most intersections with the new path as the one to be

replaced.

3.5.2 Correct Rules

We classify a stroke to one of the two edit modes before the beginning of the

segmentation stage. If it’s Enhance mode, we do nothing in all the previous stages.

If not, we’ll record the replaced path and the intersection number, and apply some

additional rules to segmentation, classification and connection stages.

• Segmentation

We will generate two sets of hypotheses. Assume there were n paths on the canvas

and the user draws a new stroke which is the (n+ 1)th path. The Pathn+1 is inter-

sected with Pathi. We first generate a hypothesis set named set1(Path1,Path2, ...,Pathn,Pathn+1)

for the Enhance mode, which is without correction. Then we replace Pathi with the

Pathn+1 and generate another set of hypotheses named set2(Path1, ...Pathi−1,Pathi+1, ...,Pathn+1)

for the Replace mode.

• Classification

Classify the shapes in the two sets of hypotheses.

• Connection

Connect the nodes and wires in the two sets of hypotheses. For set1, the initial score

is 1.0. For set2, the initial score will be the same or larger than 1.0.
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- Number of intersections = 1, then the score = score×β1.

- Number of intersections = 2, then the score = score×β2.

- Number of intersections = 3, then the score = score×β3.

- Number of intersections > 4, then the score = score×β4.

The relationships between the βi should be 1.0 6 β1 < β2 < β3 < β4When the in-

tersection number is large, all the hypotheses in set2 will have a much greater initial

score than the hypotheses in set1.

Figure 3.17: Two examples of diagram segmentation. The blue strokes are the latest

stroke. In the left example, the blue stroke has four intersections with one of the previous

stroke, so the hypothesis in the Replace mode will get a higher score. In the right

example, there is only one intersection between the blue stroke and the previous stroke,

so the hypothesis in the Enhance mode will get a higher score.

Example No. Mode Hypo No. Score

1
(left example)

Enhance 0 1.0∗1.053 = 1.1576

Replace 0 1.5∗1.052 = 1.6538

2
(right example)

Enhance 0 1.0∗1.24 = 2.0736

Replace 0 1.05∗1.052 ∗1.2 = 1.3892

Table 3.2: The score of the hypotheses for examples in Figure 3.17. For any two strokes

in each example, their ends are not close enough to make the two strokes a pair. So

there are only one hypothesis in each mode. In these examples, the connection param-

eters are α1 = 0.8, α2 = 1.05 and α3 = 1.2 and the correction parameters are β1 = 1.0,

β2 = 1.05, β3 = 1.2 and β4 = 1.5.

In example 1, the latest stroke has four intersections with the previous stroke.

If it is in Enhance mode, the initial score should be 1.0. There are three paths in

the diagram, and each element is connected to one another elements. So the score is
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1.1576. If the latest stroke is in Replace mode, the initial score will be 1.5. There are

two paths in the diagram, and each element is connected to one another elements. So

the score is 1.6538. The hypothesis in the Replace mode wins.

In example 2, the latest stroke only has one intersection with the previous stroke.

If the new stroke is in Enhance mode, the initial score should be 1.0. There are four

paths in the diagram, and each element is connected to two another elements. So the

score is 2.0736. If the latest stroke is in Replace mode, the initial score will still be

1.0. There are three paths in the diagram. Each dot is connected to one wire, and the

wire is connected to two nodes. So the score is 1.3892. The hypothesis in the Enhance

mode wins.

Through these two examples, we can see such correct rules enable the users to

make corrections to the diagram. However, the rules intend to reserve the intersections

between wires when the number of intersections is small because this situation is very

common in a ZX-calculus diagram.

3.6 Implementation and Output

We use Python code to implement the recognition algorithm. The input of the

program is an SVG file, and the output would be structured data of the recognition

results.

3.6.1 Program Structure

3.6.1.1 Classes

We create several classes to represent different forms of elements in different

processing phases. They are paths in segmentation stage, shapes in classification stage,

and nodes in connection stage. So there are five main classes used in the program:

• Path

- Need a sequence of relative point positions to create a Path object.

- Has the functions to calculate the absolute point positions and check intersection

with other paths.

• Shape

- Need a sequence of absolute point positions to create a Shape object.
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Figure 3.18: The structure of the program.

- Transform the point positions into polygons. Has the function to calculate shape

features.

• Dot & Morphism & Wire

- Need a sequence of absolute point positions and corresponding shape features to

create a node.

- Store the information of nodes’ main features such as centre, orientation, and con-

nection.

3.6.1.2 Functions

Then we create functions for the four recognition stages in three Python files:

segment, classify and connect. The correction functions are distributed in these three

files. The main functions of each file are:

• Segment
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- Check the intersection between the latest path and all the previous paths in a path

set. If there are one or more intersections, make a copy of the original path set and

replace the old path with the latest path.

- Find matches in a path set.

- Generate all valid hypotheses for a path set.

• Classify

- Generate training data.

- Collect feature data from manually drawn SVG files and generated shapes.

- Train an SVM classifier.

- Classify shape objects in hypotheses to the wire, dot or morphism classes. Create

corresponding node/wire objects and store them in the hypotheses.

• Connect

- Connect all the wires and nodes.

- Give scores to the hypotheses and find a winner.

There are also other functions for parsing the SVG files and drawing visualised

outputs. We provide pesudo code for these functions in Appendix A.

3.6.2 Output Data

This algorithm gives recognition results in the form of structured data. When

our recognition program is embedded in other programs, they could use the data to

generate different kinds of visual outputs. The diagram below shows what information

is included in the output data.

The winner hypothesis elected in the connection stage consists of a set of Dot

objects, Morphism objects and Wire objects. We fetch these object attributes as the

output data. If we still use Python to generate visual outputs, we can directly use

these data to do the next step. If the algorithm is embedded in a program using other

languages such like JSON, the output data will be transformed to a string to transfer

the information.
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Object Attribute Description

Dot

Centre Centroid position

Colour Red/green, white/gray

Connection Wire objects’ path points

Morphism

Centre Centroid position

Orientation East/south/west/north

Connection Wire objects’ path points

Wire
path points All the points on the path

connection Node objects’ centre, colour/orientation and connecting angle

Table 3.3
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Visualisation

As introduced in Chapter 3, The output we get from this algorithm is some struc-

tured data including recognised information. However, it is not convenient for both

algorithm developers and users to evaluate the results. So we visualise the results in

two ways: SVG images and LaTeX PDF. The SVG image is an unmodified feedback

of the output data for the user to check their drawing, and the LaTeX command is a

kind of application of this algorithm which can be directly used in papers. In this chap-

ter, we briefly introduce the process we generate the visualised output and demonstrate

some examples.

4.1 SVG Images

We generate SVG images simply with unmodified element objects and some

XML commands. We have three kinds of shapes in the diagram which are dots, mor-

phisms and wires. So we use circle and path elements in the XML:

• Dot

Read the recognised dot’s centre and define a radius. Put this information into a

circle element to create a dot.

• Morphism

Read the recognised dot’s centroid and define edge lengths. Use the v-vertical lines

and h-horizontal lines to create a right trapezoid.

• Wire

Read the recognised wire’s point list and pick 3-6 points uniformly. The positions

of the two end points are replaced by its connecting nodes’ (if there are connected

30
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nodes) edges. Then we can create a smooth wire by feeding the points’ positions

into curve commands.

The SVG images provide great convenience when developing the algorithm. Be-

sides, it can be embedded into any program using this algorithm for the users to check

whether they would get a right result with the current drawing. If the recognition is

wrong, the user can make a correction on the canvas to correct it.

4.2 LaTeX PDF

As the ZX-calculus diagrams are for academic use, they are sometimes demon-

strated on papers. So we also develop this function for the users who want to use

ZX-calculus diagrams for demonstrating.

We use Tikz package to create dot and morphism templates, and also use it to

draw the diagram. Before generating a neat ZX-calculus in LaTeX, the output data

need to be reorganised first.

• Node

Before drawing the nodes, we need to do following preprocessing to the recognised

nodes:

1. First, find the nearest two nodes nodep and nodeq and make one of them as

the origin coordinate, which means put nodep at (0,0). We use their distance

dmin = distance(nodep,nodeq) as the unit edge length of the diagram.

2. Create a grid with the unit grid length of dgrid (1.0 in our program). For

each other node nodei, calculate its relative position (xrel,yrel) according to

the centering node nodep. Then the nodei’s position in the grid should be

(round( xrel
dmin

),round( yrel
dmin

)), where round is the function to round a float to a

multiple of the dgrid .

By the two steps above, we can know the positions of all recognised nodes on the

grid. To draw these nodes in the latex, we just need to feed their types and grid

positions into the drawing commands.

• Wire

We define two types of wires in the LaTeX code. One is the basic wire, and another

is the long wire. Both of them need to be created by an out-node, an in-node, an
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out-angle and an in-angle. The difference is that the long wires also include some

inter-points. Inter-points are points between the start point and the end point of a

wire. With these points, we can draw longer wires with any curvature we want.

Again, we need to do following preprocessing before drawing the wires:

1. We first create another grid with a higher density (0.5 for the unit grid length in

our program). For the wires connecting to nodes, the connected nodes become

their in-node and out-node. For those wires whose ends connecting to nothing,

we put the end points of these wires onto the wires’ grid. Then the end points

become their in-node or out-node.

2. The in-angle and out-angle are the connecting angles which could be retrieved

directly from the output data. If the wire is connecting to a dot or connecting

to nothing, we round the angle value to a multiple of 30.0 to make the dia-

gram look tidy. If the wire is connecting to a morphism, it will always come

in or come out the morphism vertically. When there is more than one wire

connecting to a morphism, these wires will be placed evenly on its sides.

Figure 4.1: A part of a long wire.

3. If the wire’s length is longer than 1.5×dmin, it will be defined as a long wire.

We pick inter-points from the wires’ point list and calculate their relative posi-

tions in the wires’ grid. The wire segments between each two inter-points also

have their own out-angle and in-angle. For example, we have three wire seg-

ments in Figure 4.1 include s0, s1, and s2. The blue arrows represent in-angles,

and they are calculated by the relative positions between the two inter-points

of the segment. The red arrows represent out-angles, and they (excluding out0
which is the out-angle of the whole wire) are always in the opposite direction
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to the in-angle of the previous segment, such like out1 = (in0 + 180)%360.

This setting can make the long wire go smoothly.

To draw a wire in LaTeX, we first feed the out-node, in-node, out-angle and in-angle

information into the command, and then check whether the wire is a long wire. If

yes, add the inter-points into the command.

Figure 4.2: The diagram we draw in the LaTeX. The nodes are placed on the grids with

the lower density, and the wire points including all the inter-points are placed on the

grids with the higher density.

We show two examples of SVG visualisations and LaTeX visualisation. Accord-

ing to Figure 4.3 and Figure 4.4, both two visualising ways can correctly reconstruct

the hand-drawn diagrams.
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Figure 4.3: The first example of visualisation. The dot node uses default colour which

could be changed in the code. The wires linked to a morphism are evenly arranged in

LaTeX output.

Figure 4.4: The second example of visualisation. In the LaTeX output, We add inter-

points in a wire command to draw the long and bending wire in the diagram.
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Evaluation

In this chapter, we evaluate the recognition performance of the algorithm in chap-

ter 3 and the output quality of visualisation in chapter 4. The algorithm evaluation is

mainly based on the accuracy of shape classification and the accuracy of the whole

hypothesis-based recognition system. It demonstrates the algorithm’s recognition abil-

ity.

5.1 Shape Classification

In this section, we report the accuracy of classifying. The performance of classi-

fying wires and nodes is based on the parameter setting, and the performance of dots

and morphisms classification relies on the SVM classifier’s ability. We will test them

together with one dataset.

5.1.1 Dataset

We use around 2000 shapes including circles and right trapezoids as the training

data for the SVM classifier. Two real users create 20% of these shapes and the rest

80% are generated by code. There are another about 300 manually created shapes for

evaluating. One of the two users doesn’t know the classifying rules in this algorithm

at all.

We didn’t ask the users to draw wires in the dataset because it is meaningless to

test wires drawn by users who don’t know the ZX-calculus rules. Or we can say it is

”dangerous” to test wires separately outside of the diagrams. There might be wires

that look like nodes. If we want to know the real proportion of these wires and how

35
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our parameters work, we must ask those who know the ZX-calculus very well to draw

the diagrams and then do the test. So we gave up this part in our evaluation.

Parameter Value Description

Real
hand-
drawn
shapes

Smoothness 20
The smoothing level of freehand

strokes in Inkscape

Snapping 0

The threshold distance that
determines whether a stroke’s end

should snap another’s

Code-
generated

shapes

Circle radius r (60,80) The semi-diameter of a circle
Trapezoid

edge lengths
a,b,h

a∈ (40−70)
b∈ (50−90)
h∈ (30−80)

The lengths of the top edge,
the bottom edge and the

left edge.

Point number n (80−120)
The number of points in a

generated shape path

Deformation
ratio θ 0.03

The movement when deform a shape
Circle: (−0.03,0.03)∗ r

Trapezoid:(−0.03,0.03)∗
√

a2/4+h2/4

SVM
Classifier

Features

Eccentricity&
Circularity&
Aspect ratio The three features described in chapter 3

Kernel Linear Use the linear function as the kernel

Loss Hinge Loss function

Penalty L2 The norm for the penalization

Iteration 1000 The maximum iterations to run

tol 1e-4 Tolerance for stopping criteria

Wire
classifying

Open threshold 0.10
The threshold value of opencheck

ratio for a shape element.

Convex threhold 0.70
The threshold value of convexcheck

ratio for a shape element.

Table 5.1: The settings of the classification part in the program.

All the settings and the parameters we use in the classifying evaluation are intro-

duced in Table 5.1. As for the tools, we use Inkscape as the drawing board to create

real freehand shapes, SVM package from Scikit-learn to train the classifier.

5.1.2 Metrics and Results

For wire and node classifying, we set the accuracy of classifying nodes as the

evaluation metric, since there are no wires in our dataset.

Accuracy =
Nodes

All the shapes
=

2
325

= 99.38%
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For dot and morphism classifying, we set the precision, recall and the F-measure

of the recognised result as the evaluation metrics.

Actual

Dot Morphism

Predicted
Dot 154 0

Morphism 1 168

Table 5.2: Confusion matrix of the SVM recognised result.

Precision =
{relevant shapes}∩{retrieved shapes}

{retrieved shapes}
== 100%

Recall =
{relevant shapes}∩{retrieved shapes}

{relevant shapes}
= 99.35%

F1 =
2×Precision×Recall

Precision+Recall
= 99.67%

5.1.3 Discussion

Our classification algorithm classifies two nodes into the wire class. In our pa-

rameter setting, if the distance between a stroke’s two ends exceeds one-tenth of its

parameter, the stroke will be defined as a wire. According to the wrongly classified

stroke which we retrieved from the dataset in Figure 5.1, it’s hard to tell whether it is

more like a dot or a wire by our observation because the gap between the ends is huge.

We conclude that our classifying rules for wires might be reasonable but too absolute.

It is not sensible to define a sketch stroke simply by all-or-nothing rules because there

is much uncertainty in the sketches. As we already establish a hypothesis-based sys-

tem, generating hypotheses for uncertain wire classification may be a good solution to

this problem.

Figure 5.1: This shape is in the dot dataset but classified into the wire class by our

classifying algorithm.
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For dot and morphism classification, we conclude that the SVM is a very reliable

classifier according to the results and it applies to our program. The main reason

why it performs well is that circles and right trapezoids are relatively simple shapes

with distinctly different features. That means the SVM should be a good choice for

classifying diagram elements even when there are more kinds of shapes in the diagram.

However, it has the drawback that we need to find the features to separate the categories

and test them, which might be time-consuming and such features do not always exist.

We retrieve the wrongly recognised dot in the test images and find that the recog-

nising failure is mainly caused by the poor quality of drawing (Figure5.2). We believe

a human will classify it into the right class because we can see the curvature of this

shape, while curvature is not valid as we choose a low smoothness of freehand strokes

to reserve the sharp corners of the trapezoids. However, this is the drawback of the

input images, not the classifier’s. If there exist some input formats from which we can

calculate the curvature and add it to the SVM, the classifier will perform better.

Figure 5.2: This shape is in the dot dataset but classified into the morphism class by

our classifier.

5.2 Diagram Recognition

As the segmentation and connection are two interactive parts and they constitute

the hypothesis-based scoring system, so we decide to test them together. So we report

the accuracy of diagram recognition with correction and without correction in this

section, and discuss the correction system and the overall algorithm design.

5.2.1 Dataset

We create 300 ZX-calculus diagrams using Inkscape by three real users. One of

the three users doesn’t know the rules in this algorithm. After testing the accuracy

without correction, we add one more stroke on each of the correctly recognised dia-
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grams to make a correction dataset. The correction stroke might be correcting nodes

or wires.

Parameter Value Description

Segmentation Match distance 10
The maximum distance between two paths’

ends that determines to group them

Connection

Score
parameters

αi

α1 = 0.8
α2 = 1.05

α3=1.2
The score of an element
with 0/1/2 connections

Correction

Score
parameters

βi

β1 = 1.0
β2 = 1.1
β3 = 1.2
β4 = 1.5

The score of the correction set
with 1/2/3/more than 4 intersections

between the last path and one
previous path

Generated
diagrams

Canvas size A4
The size of the canvas

we draw the diagram on
Number
of nodes (2,7)

The number of nodes we draw
in the dataset

Table 5.3: The settings of the whole diagram recognition process in the program. The

SVG drawing settings is the same as the settings in classification evaluation.

5.2.2 Metrics and Results

We set the recognition accuracy as the metric for evaluating uncorrected diagrams.

Only when the recognizer correctly recognises all the nodes and the connections, we

define the diagram a correctly recognised diagram.

accuracy =
correctly recognised diagrams

all diagrams

For evaluation of the correction, the metric is the percentage of successful cor-

rections. We compare the re-recognised diagrams and the users’ correct intention. If

the result produced by the recognizer is exactly what the users want, we define it a

successful correction.

Accuracy / successful

correction rate

uncorrected diagrams 94.33%

corrected diagrams 69.26%

Table 5.4: The evaluation results of the whole recognition system.
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5.2.3 Discussion

The accuracy of the uncorrected recognition system is still over 90% but is much

lower than the classification. We retrieve the wrongly recognised examples and discuss

the reasons for the failures to see which aspects of the algorithm still needs improve-

ment.

There are mainly two types of failure recognition of uncorrected diagrams. One

is that multiple elements are drawn with one stroke and the recognizer considers they

were only one element. We made a short interview asking the users who drew the

dataset about their drawing habits, and it showed the users didn’t tend to draw multiple

elements in one stroke. So such failure should be caused by the snapping function of

the drawing tool Inkscape. Although we closed the snapping function, the snapping

still might happen when the user starts a stroke exactly on the end of another stroke,

and combine two strokes into one. No matter it is the users’ intention to use one stroke

to draw two elements, or it’s the mechanism of the drawing tool, this failure shows

an apparent defect of our algorithm that it doesn’t have the function of segmenting

single strokes in the diagrams. If we can solve this problem, our algorithm can tolerate

strange drawing behaviours and unwanted snapping, which will greatly increase the

recognition accuracy.

Figure 5.3: The example of failure recgonition which is caused by drawing multiple

elements with one stroke.

Another kind of failure happens when the user uses four or more strokes to draw

one element. Our algorithm only supports groups with three or fewer strokes, as it’s

unlikely that users use too many strokes to create a shape. We also don’t recommend

the users to do so because it will generate many hypotheses in the segmentation stage

which need lots of computation. So the maximum number of stroke 3 is a reasonable

setting with the current algorithm. We might increase the number of strokes in one
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group or even cancel the upper limit of this number in the future if we can improve the

computation problem of the hypotheses generating.

Figure 5.4: The example of failure recgonition which is caused by drawing an element

with more than three strokes.

In the testing of corrected diagrams, the result is that the algorithm works well for

node correction but not for wires. The failure happens when the users draw a stroke

with zero or one intersection with the target stroke. Based on our scoring rules, it’s

difficult to know whether the user wants to add a wire or correct a wire when there

is only one or less intersection, especially one intersection between wires is common

in ZX-calculus diagrams. In fact, sometimes it’s even hard for a human to tell what

is the user’s real intention. The current solutions for this problem could be telling the

users our rules of correction or adding some ZX-calculus connection knowledge to the

scoring rules.

To conclude, our hypothesis-based system is a good recognizer for the ZX-calculus

diagrams. It is especially applicable for sketch recognising because the hypotheses can

solve the uncertainty problem of the drawing. However, it still might fall when receiv-

ing unusual behaviours or poor drawing from the users.
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Conclusion

6.1 Summary

In this thesis, we confirm the hypothesis that the recognition algorithm for ZX-

calculus diagrams exists.

The algorithm is divided into four stages which are segmentation, classification,

connection, and correction. In the first three stages, we segment the diagram sketch into

elements, classify them and then reconstruct the diagram by connecting these elements.

The correction is embedded in these three stages to help users correct strokes drawn

by mistakes. The whole process is a hypothesis-based system.

We evaluate the main component classifier and the entire system by the dataset

created by ourselves. The results show that our algorithm is a feasible solution, but

there are still some small defects need improvement in the future.

6.2 Future Work

According to the discussion in Chapter 5, there are mainly three defects in the

algorithm that we can improve in future work. As time is limited, we leave these

three problems for future work. But for each problem, we propose one or two possible

solutions.

The first issue is the algorithm might classify nodes into the wire class. This

can be solved by generating hypotheses for uncertain classifications. In our original

algorithm design, a stroke will be defined as a wire if its open ratio is over 0.1 or its

convex ratio is lower than 0.70. We propose to use range values and the probability

instead of the absolute criterion. For example, we set the ranges for the two ratios at

42
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(0.05,0.15) and (0.55,0.85). Then there is 50% probability for the stroke which has

the open ratio of 0.1 and the convex ratio of 0.85 to become a wire or a node. When

the open ratio increases or the convex ratio decreases, the probability of being a node

goes down. Otherwise, it is more likely to be a node. We can generate hypotheses and

score them with the probability. When both two ratios are out of this range, we do not

generate hypotheses.

The second is the algorithm fails to recognise multiple elements with one stroke.

One possible solution that we will try in the future is to segment each single stroke

and generate more hypotheses. Assuming there are n points in one stroke, we could

check the distance between each two points on one stroke. If two points pi and p j are

very close to each other and the path from pi to p j composes a convex shape, we will

generate one more hypothesis in which this stroke is segmented into Path1(p1, ..., pi),

Path2(pi, ..., p j) and Path3(p j, ..., pn). Then we might be able to find out some of the

situations that the users use one stroke to draw more than one element.

Figure 6.1: The example of drawing one

nodes and two wires with one stroke.

Figure 6.2: The example of drawing multiple

wires with one stroke.

However, the solution above can only solve the situation in Figure 6.1. If the user

draws multiple wires with one stroke, it won’t segment it. Another possible solution

is to find abruptly changing tangent along the stroke. In Figure 6.2, we will chop

the Path(p0, pn) into Path2(p0, pi) and Path(pi, pn) as there is a sharp corner at pi.

But the strokes drawn by a free hand pen with a low smoothness are jagged. (The low

smoothness is to reserve precise shape of the elements.) If we want to use this solution,

we must find out the way to preprocess the strokes to make them smooth but still keep

the corners.

The third defect is the algorithm can’t tell whether the users want to add a new

stroke or correct the old stroke when there is only one intersection between the latest

stroke Pathn and the old stroke Pathi. To solve this problem, we plan to add the knowl-

edge of ZX-calculus into the scoring rules. When a user adds a new stroke and we
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determine that there is a possibility that the user is trying to correct the diagram, we

will assess the two wire associations in Enhance mode and Replace mode including

the new stroke. Assume that Pathp and Pathq have the same input node or output node

as Pathn or Pathi. We’ll check Association2(Pathp,Pathq,Pathn) (where Pathi is cor-

rected) and Association1(Pathp,Pathq,Pathi,Pathn) (where Pathn is the new stroke).

If a wire association is common in the ZX-calculus, it will receive a high score over

1.0. Otherwise, it’s score will be lower than 1.0. This method might not be able to get

the users’ intentions right all the time since it’s even confusing to human eyes. But it

should be able to increase the accuracy rate for wire corrections significantly.

In conclusion, the hypothesis mechanism and the ZX-calculus knowledge are es-

sential elements of our algorithm. By improving the functions in these two aspects,

our algorithm could overcome ambiguities, increase the tolerance for unconventional

users’ behaviours, and decrease the error rate of correction judgment.



Appendix A

Pseudo Code

In this appendix, we provide the Pseudo Code of most important functions in each

stage of the algorithm. For full code and examples, please see

https://github.com/emmacaort/freehand-zxcalculus-recognition.

A.1 Segmentation

Algorithm 1: Generate hypotheses with matches found in the path list

1 Generate Hypotheses (pathlist, train);

2 if train = False then
3 matchlist← FindMatches(pathlist)

4 for hypothesis← YieldHypothesis(pathlist,matchlist) do
5 TransToShapes(hypothesis)

6 hypotheses← AddToHypotheses(hypothesis)

7 end
8 return hypotheses

9 else
10 TransToShapes(pathlist)

11 hypotheses← AddToHypotheses(pathlist)

12 return hypotheses

13 end

45

https://github.com/emmacaort/freehand-zxcalculus-recognition


Appendix A. Pseudo Code 46

Algorithm 2: Replace the old stroke if there are intersections

1 Replace Stroke by correction (pathlist);

2 last path← FindLastPath(pathlist)

3 max intersection← 0

4 forall path ∈ pathlist do
5 intersection←CountIntersection(last path, path)

6 if intersection > max intersection then
7 maxintersection,replace path← intersection, path

8 end

9 end
10 if maxintersection > 0 then
11 pathlist← RemoveStroke(pathlist,replacepath)

12 end
13 return pathlist
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A.2 Classification

Algorithm 3: Train the SVM with existing files and generated shapes

1 Train the SVM (train f ile,dot n,mor n);

2 generated nodes← GenerateNodes(dot n,mor n)

3 forall node ∈ (train f ile,generated nodes) do
4 f eature2← ExtractFeature(node)

5 label2← GetLabels(node)

6 end
7 classi f ier← trainSV M( f eature, label)

8 return classi f ier

Algorithm 4: Classify a shape and create a wire or node object

1 Classify a shape (shape,classi f ier);

2 concave←CheckConcave(shape)

3 open←CheckOpen(shape)

4 if convex and open then
5 wire←CreateElement(shape,′wire′)

6 return wire

7 else
8 nodetype← classi f ier(shape)

9 node←CreateElement(shape,nodetype)

10 return node

11 end
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A.3 Connection

Algorithm 5: Give the score to a hypothesis

1 ScoreHypothesis (hypothesis, parameters);

2 correct param,connect param← parameters

3 score← 1.0

4 intersection n← Getintersection(hypothesis)

5 score←CorrectScore(score,correct param, intersection n)

6 forall element ∈ hypothesis do
7 score←ConnectScore(score,connect param,element)

8 end
9 return score

Algorithm 6: Give the score to a hypothesis

1 FindWinner (enhance set,replace set, parameters);

2 max score← 0.0

3 forall hypothesis ∈ (enhance set,replace set) do
4 score← ScoreHypothesis(hypothesis, parameters)

5 if score > max score then
6 winner← hypothesis

7 end
8 return winner

9 end
10 return hypothesis
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A.4 Visualisation

Algorithm 7: Get the centre point and unit distance of the diagram for the grid

1 CreateGrid (nodelist);

2 centroids← GetCentroids

3 min d← a large number

4 for (node1,node2)← YieldNodePairs(nodelist) do
5 d← distance(node1,node2)

6 if d < min d then
7 min d← d

8 centre← node1

9 end

10 end
11 return centre,min d

Algorithm 8: Draw a node element in LaTeX

1 DrawNode (node,centre,min d,unit d);

2 attributes← GetAttributes(node,centre,min d,unit d)

3 command⇐ComposeNodeCommand(attributes)

4 return command
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Algorithm 9: Draw a wire element in LaTeX

1 DrawWire (wire,centre,min d,unit d);

2 forall end ∈ GetEnds(wire) do
3 connection← GetConnection(end)

4 if connection 6= None then
5 connect point← GetNodeCentre(connection)

6 else
7 connect point← end

8 end
9 end attr←CalculateConnectAttr(connect point,centre,min d,unit d)

10 ends attr← AddToCommandAttr(end attr,ends attr)

11 end
12 if CheckLongWire(wire)=True then
13 interpoints← GetInterpoints(wire)

14 inter attr←
CalculateInterAttr(interpoints,ends attr,centre,min d,unit d)

15 end
16 command⇐ComposeWireCommand(ends attr, inter attr)

17 return command
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