Sheaf representation of monoidal categories

Chris Heunen

THE UNIVERSITY of EDINBURGH

1/20



Categories should be nice and easy

Category Vect of vector spaces is monoidal. So is Vect x Vect.
Clearly Vect is easier: does not decompose as product.

Any monoidal category embeds into a one, and
any monoidal category is dependent product of easy ones.
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and easy
[licqo,1) Vect is decomposable since {0,1} is disjoint union

Can reconstruct opens of {0, 1} as subunits of Vect x Vect
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and easy
[licqo,1) Vect is decomposable since {0,1} is disjoint union

Can reconstruct opens of {0, 1} as subunits of Vect x Vect

Category is if subunits form frame respected by tensor product:
> . subunits form semilattice
> : subunits form complete lattice

Category is easy if subunits are like singletons:

» (sub)local: any (finite) cover contains the open that is covered
every net converges to a single focal point
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Sheaves are continuously parametrised objects
Write O(X) for open sets of space X.
Presheaf on X is functor F: O(X)°P — Set
Elements of F(U) are called local sections.

Elements of F(X) are called global sections.
Map F(U C V): F(V) — F(U) is called restriction.
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Sheaf condition

Sheaf is continuous presheaf: F(colim U;) = lim F(U;)

» Elements of F(U) are global sections over U = colim U; = |J U;

» Elements of lim F(U;) are compatible local sections:
lim F(U,') = {(S,‘) ‘ F(U,' n UJ - U,')(S,‘) = F(U,' N Uj - UJ)(SJ)}

Compatible local sections must glue together to unique global section

Example: F(U) = { continuous functions U — R }
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Sheaves of categories

What if F takes values not in Set but in V7
Then sheaf condition becomes equaliser in V:
(F(UinU; C Uj)omi)i;

FUU) =220 T F(U) [TF(UNY)

(F(U; N U; C Uj)om)j ij
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Stalk
of sheaf F at point x is colim{F(U) | x € U}

Say F is a “sheaf of ..." when its stalks are “
E.g. sheaves of local rings
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Sheaf representation

Literature:
» Boolean algebra is global sections of sheaf of spaces {0,1}
» ring is ring of global sections of sheaf of local rings

> topos is category of global sections of sheaf of local toposes

Will generalise all three into:

» monoidal category with universal join of subunits is
category of global sections of sheaf of local monoidal categories

Corollary:

» stiff monoidal category embeds into
category of global sections of sheaf of local monoidal categories
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Subunits

How to recover O(X) from Sh(X)?
Look at subobjects of terminal object s: S — 1.

What if we want sheaves with values not in Set?
A in a monoidal category C is a subobject s: § — /
such that S®s: S® S — S® [ is invertible. They form set ISub(C).

» ISub(Sh(X)) = O(X)

» ISub(L) = L for semilattice L

» 1Sub(Modg) = {/ C R ideal | I2 = I} for commutative ring R
> 1Sub(Hilbc(x)) = O(X)
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subunits

S S
Draw subunit as j) , and draw k?j for inverse of ?
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subunits

S
s < t if there is unique m: S — T withs=tom: $_T
S S

ISub(C) distributive lattice
<= C has of subunits
<= ISub(C) has finite joins, 0 ~ 0 ® A is initial, and

A <%5\/ T
A S ?T

SITRIA—TRA

T A

SRA— (SVT)®A

A

A
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Embedding

C embeds into category with of subunits
embeds into category with of subunits

Universally, faithfully, preserving subunits and tensor products
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Base space

C has
= ISub(C) is a (distributive lattice) frame
= Zariski spectrum X = Spec(ISub(C)) is topological space

points x are (completely) prime filters in ISub(C)
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Local sections F(s)

v

Objects: asin C

v

Morphisms: A® S — B in C

» Composition:

> Identity: | ?5

» Tensor product:
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Sheaf condition

To specify a sheaf F: O(X)°® — MonCat,
it's enough to give a presheaf F: ISub(C)°® — MonCat,
such that F(0) is terminal and the following is an equaliser:

F(snt<s)om

F(s) x F(t) T F(sAt)
F(snt<t)omp

(F(s <sVit),F(t<sVt))

F(sVt)
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Stalks F(x) are (sub)local

» Objects: asin C
» Morphisms: A® S — B in C for s € x, identified when
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Theorem

Any small stiff category with universal (finite) joins of subunits
is monoidally equivalent to category of global sections of sheaf
of (sub)local categories.

Any small stiff category
embeds into a category of global sections of a sheaf
of local categories.
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Preservation

category local sections stalks
stiff monoidal stiff
closed closed closed
traced traced traced
compact compact compact
Boolean two-valued
limits limits limits
projective colimits colimits colimits
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Conclusion

» Cleanly separate ‘spatial’ from ‘temporal’ directions

» Does for multiplicative linear logic
what was known for intuitionistic logic

» Directly capture more examples

» Concrete proof

Completeness theorem?
Coherence theorem?

Restriction categories?

vV v.v Yy

Applications in computer science? Probability? Quantum theory?
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Restriction categories
Turn monoidal category C into restriction category S[C]:

» Objects: asin C

» Morphisms: AR S — B in C
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Tensor-restriction categories

pointis d: | — S with restriction inverse that is tensor-total

VVvYyVvYVvyVYVYYy

=e ! X
(N 2 \ n
~ - e Fl /”mlg
N s N //
d ASY I/ _ S I
d Sr—s— 1
fog=f®g

any e = e: | — [ factors via subunit s and point d

any subunit s has point as restriction section

any f =f: X — X equals f = e® X for unique e =2: [ — |

any tensor-total f equals f = g o f for a unique restriction-total g;
points left-lift against subunits

points are closed under tensor product

points are determined by codomain up to unique scalar
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