Sheaf representation of monoidal categories

Chris Heunen

Categories should be nice and easy

Category **Vect** of vector spaces is monoidal. So is **Vect** × **Vect**. Clearly **Vect** is **easier**: does not decompose as product.

Any monoidal category embeds into a nice one, and any nice monoidal category is dependent product of easy ones.

Nice and easy

 $\prod_{i \in \{0,1\}} \textbf{Vect}$ is decomposable since $\{0,1\}$ is disjoint union

Can reconstruct opens of $\{0,1\}$ as subunits of $\textbf{Vect} \times \textbf{Vect}$

Nice and easy

 $\prod_{i \in \{0,1\}}$ **Vect** is decomposable since $\{0,1\}$ is disjoint union

Can reconstruct opens of $\{0,1\}$ as *subunits* of **Vect** \times **Vect**

Category is nice if subunits form frame respected by tensor product:

- stiff: subunits form semilattice
- universal joins of subunits: subunits form complete lattice

Nice and easy

 $\prod_{i \in \{0,1\}}$ **Vect** is decomposable since $\{0,1\}$ is disjoint union

Can reconstruct opens of $\{0,1\}$ as *subunits* of **Vect** \times **Vect**

Category is nice if subunits form frame respected by tensor product:

- stiff: subunits form semilattice
- universal joins of subunits: subunits form complete lattice

Category is easy if subunits are like singletons:

(sub)local: any (finite) cover contains the open that is covered every net converges to a single focal point

Sheaves are continuously parametrised objects

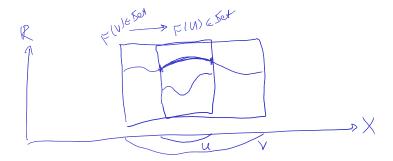
Write $\mathcal{O}(X)$ for open sets of space X.

Presheaf on X is functor $F: \mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$

Elements of F(U) are called *local sections*.

Elements of F(X) are called *global sections*.

Map $F(U \subseteq V)$: $F(V) \rightarrow F(U)$ is called *restriction*.



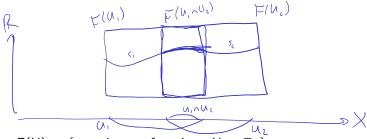
Sheaf condition

Sheaf is continuous presheaf: $F(\text{colim } U_i) = \lim F(U_i)$

- ▶ Elements of F(U) are *global sections* over $U = \text{colim } U_i = \bigcup U_i$
- \blacktriangleright Elements of $\lim F(U_i)$ are compatible local sections:

$$\lim F(U_i) = \big\{ (s_i) \mid F(U_i \cap U_j \subseteq U_i)(s_i) = F(U_i \cap U_j \subseteq U_j)(s_j) \big\}$$

Compatible local sections must glue together to unique global section



Example: $F(U) = \{ \text{ continuous functions } U \to \mathbb{R} \}$

Sheaves of categories

What if *F* takes values not in **Set** but in **V**?

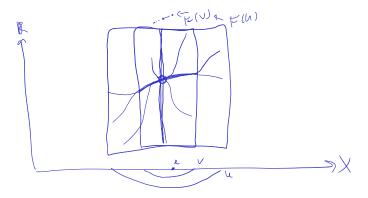
Then sheaf condition becomes equaliser in **V**:

$$F(\bigcup_{i} U_{i}) \xrightarrow{\langle F(U_{i} \subseteq \bigcup U_{i}) \rangle_{i}} \prod_{i} F(U_{i}) \xrightarrow{\langle F(U_{i} \cap U_{j} \subseteq U_{i}) \circ \pi_{i} \rangle_{i,j}} \prod_{i,j} F(U_{i} \cap U_{j})$$

$$\downarrow f_{i} \downarrow f_{i}$$

Stalk

of sheaf F at point x is $\operatorname{colim}\{F(U) \mid x \in U\}$



Say F is a "sheaf of ..." when its stalks are "..." E.g. sheaves of local rings

Sheaf representation

Literature:

- ▶ Boolean algebra is global sections of sheaf of spaces {0,1}
- ring is ring of global sections of sheaf of local rings
- topos is category of global sections of sheaf of local toposes
- or restriction monorids?

Will generalise all three into:

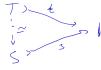
 monoidal category with universal join of subunits is category of global sections of sheaf of local monoidal categories

Corollary:

 stiff monoidal category embeds into category of global sections of sheaf of local monoidal categories

Subunits

How to recover $\mathcal{O}(X)$ from Sh(X)? Look at subobjects of terminal object $s: S \rightarrow 1$.



What if we want sheaves with values not in **Set**?

A subunit in a monoidal category **C** is a subobject $s: S \rightarrow I$ such that $S \otimes s : S \otimes S \to S \otimes I$ is invertible. They form set $ISub(\mathbf{C})$.

- |Sub(L)| = U(X)| Sub(Mode) (X)▶ $\mathsf{ISub}(\mathbf{Mod}_R) = \{I \subseteq R \text{ ideal } | I^2 = I\}$ for commutative ring R
- ► ISub(**Hilb**_{C(X)}) = O(X)

Nice subunits

Draw subunit as
$$\cite{S}$$
, and draw \cite{S} for inverse of \cite{S} \cite{S} \cite{S} \cite{S}

$$|\mathsf{Sub}(\mathbf{C}) \text{ semilattice} \iff \mathbf{C} \text{ is stiff} \iff \\ S \otimes T \otimes A \longmapsto T \otimes A \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ S \otimes A \longmapsto A \qquad \qquad \bigcirc_{S} \ \bigcirc_{T} \ \Big|_{A} = \bigcirc_{S} \ \bigcirc_{T} \ \Big|_{A}$$

Nicer subunits

s < t if there is unique $m: S \to T$ with $s = t \circ m$:

ISub(C) distributive lattice

- C has universal finite joins of subunits
- \iff ISub(**C**) has finite joins, $0 \simeq 0 \otimes A$ is initial, and

Embedding

Stiff **C** embeds into category with universal finite joins of subunits embeds into category with universal joins of subunits

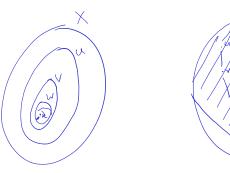
Universally, faithfully, preserving subunits and tensor products

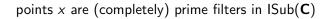
Base space

C has universal (finite) joins of subunits

 \implies ISub(\mathbf{C}) is a (distributive lattice) frame

 \implies Zariski spectrum $X = \text{Spec}(\mathsf{ISub}(\mathbf{C}))$ is topological space





Local sections F(s) = ke(s)

- ▶ Objects: as in **C**
- ▶ Morphisms: $A \otimes S \rightarrow B$ in **C**



► Composition:

► Tensor product:

$$T_{s}GC \xrightarrow{\longrightarrow} F(s)$$

$$T_{s}JSwb(C) \xrightarrow{\longrightarrow} [C,C]$$

Sheaf condition

To specify a sheaf $F \colon \mathcal{O}(X)^{\operatorname{op}} \to \operatorname{MonCat}$, it's enough to give a presheaf $F \colon \operatorname{ISub}(\mathbf{C})^{\operatorname{op}} \to \operatorname{MonCat}$, such that F(0) is terminal and the following is an equaliser:

$$F(s \lor t) \xrightarrow{\langle F(s \le s \lor t), F(t \le s \lor t) \rangle} F(s) \times F(t) \xrightarrow{F(s \land t \le s) \circ \pi_1} F(s \land t)$$

$$F(s \lor t) \xrightarrow{F(s \land t \le t) \circ \pi_2} F(s \land t)$$

Stalks F(x) are (sub)local

- ► Objects: as in **C**Morphisms: $A \otimes S \xrightarrow{f} B$ in **C** for $s \in x$, identified when

$$\frac{f}{f} = \frac{f'}{|s'|} \quad \text{for some real Solic}$$

► Composition of (s, f) and (t, g) is

Theorem

Any small stiff category with universal (finite) joins of subunits is monoidally equivalent to category of global sections of sheaf of (sub)local categories.

Any small stiff category embeds into a category of global sections of a sheaf of local categories.

Preservation

eservation		of Catu	nim
	\mathcal{C}	F(s) = C/s	F(x)
	category	local sections	stalks
	stiff	monoidal	stiff
	closed	closed	closed
	traced	traced	traced
,	compact	compact	compact $+ (\downarrow (\not x))$
po ((())	Boolean		two-valued (F(r))
مرطه	limits	limits	limits
,	projective colimits	colimits	colimits

Conclusion

- ► Cleanly separate 'spatial' from 'temporal' directions
- ns TETAL

- Does for multiplicative linear logic what was known for intuitionistic logic
- Directly capture more examples
- Concrete proof

- Completeness theorem?
- Coherence theorem?
- Restriction categories?
- ▶ Applications in computer science? Probability? Quantum theory?

References

"Space in monoidal categories" [arXiv:1704.08086]
 P. Enrique Moliner, C. Heunen, S.Tull

"Tensor topology" [arXiv:1810.01383]
 P. Enrique Moliner, C. Heunen, S. Tull

"Sheaf representation for monoidal categories" [arXiv:soon]
 R. Soares Barbosa, C. Heunen

► "Tensor-restriction categories" [arXiv:2009.12432]

C. Heunen, J. S. Pacaud Lemay

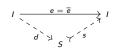
Restriction categories

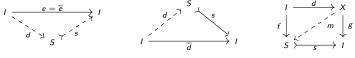
Turn restriction category ${\bf C}$ into monoidal category $S[{\bf C}]$:

- ► Objects: as in C
- ▶ Morphisms: $A \otimes S \rightarrow B$ in **C**
- ▶ Identity: $A \otimes I \rightarrow A$
- Tensor product: f g
- $\blacktriangleright \text{ Restriction: } \left(\left| \frac{|B|}{f} \right|_{A} \right|_{S} \right) = \left| \bigcirc_{A} \right|_{S}$

Tensor-restriction categories

point is $d: I \rightarrow S$ with restriction inverse that is tensor-total





- ▶ any $e = \overline{e}: I \rightarrow I$ factors via subunit s and point d
- any subunit s has point as restriction section
- ▶ any $f = \overline{f}: X \to X$ equals $f = e \bullet X$ for unique $e = \overline{e}: I \to I$
- ▶ any tensor-total f equals $f = g \circ \overline{f}$ for a unique restriction-total g;
- points left-lift against subunits
- points are closed under tensor product
- points are determined by codomain up to unique scalar