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Categories should be nice and easy

Category Vect of vector spaces is monoidal. So is Vect× Vect.
Clearly Vect is easier: does not decompose as product.

Any monoidal category embeds into a nice one, and
any nice monoidal category is dependent product of easy ones.
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Nice and easy

�
i∈{0,1}Vect is decomposable since {0, 1} is disjoint union

Can reconstruct opens of {0, 1} as subunits of Vect× Vect
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Nice and easy

�
i∈{0,1}Vect is decomposable since {0, 1} is disjoint union

Can reconstruct opens of {0, 1} as subunits of Vect× Vect

Category is nice if subunits form frame respected by tensor product:

� stiff: subunits form semilattice

� universal joins of subunits: subunits form complete lattice

Category is easy if subunits are like singletons:

� (sub)local: any (finite) cover contains the open that is covered
every net converges to a single focal point

3 / 20



Sheaves are continuously parametrised objects

Write O(X ) for open sets of space X .

Presheaf on X is functor F : O(X )op → Set
Elements of F (U) are called local sections.
Elements of F (X ) are called global sections.
Map F (U ⊆ V ) : F (V ) → F (U) is called restriction.

4 / 20



Sheaf condition

Sheaf is continuous presheaf: F (colimUi ) = limF (Ui )

� Elements of F (U) are global sections over U = colimUi =
�
Ui

� Elements of limF (Ui ) are compatible local sections:

limF (Ui ) =
�
(si ) | F (Ui ∩ Uj ⊆ Ui )(si ) = F (Ui ∩ Uj ⊆ Uj)(sj)

�

Compatible local sections must glue together to unique global section

Example: F(U) = { continuous functions U → R }
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Sheaves of categories

What if F takes values not in Set but in V?

Then sheaf condition becomes equaliser in V:

F (
�
i
Ui )

�
i
F (Ui )

�
i ,j

F (Ui ∩ Uj)
�F (Ui ⊆ �

Ui )�i
�F (Ui ∩ Uj ⊆ Ui ) ◦ πi �i,j

�F (Ui ∩ Uj ⊆ Uj ) ◦ πj �i,j
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Stalk

of sheaf F at point x is colim{F (U) | x ∈ U}

Say F is a “sheaf of ...” when its stalks are “...”
E.g. sheaves of local rings
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Sheaf representation

Literature:

� Boolean algebra is global sections of sheaf of spaces {0, 1}
� ring is ring of global sections of sheaf of local rings

� topos is category of global sections of sheaf of local toposes

Will generalise all three into:

� monoidal category with universal join of subunits is
category of global sections of sheaf of local monoidal categories

Corollary:

� stiff monoidal category embeds into
category of global sections of sheaf of local monoidal categories
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Subunits

How to recover O(X ) from Sh(X )?
Look at subobjects of terminal object s : S � 1.

What if we want sheaves with values not in Set?
A subunit in a monoidal category C is a subobject s : S � I
such that S ⊗ s : S ⊗ S → S ⊗ I is invertible. They form set ISub(C).

� ISub(Sh(X )) = O(X )

� ISub(L) = L for semilattice L

� ISub(ModR) = {I ⊆ R ideal | I 2 = I} for commutative ring R

� ISub(HilbC(X )) = O(X )
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Nice subunits

Draw subunit as
S

, and draw
S

SS

for inverse of
S S

=
SS

ISub(C) semilattice ⇐= C is stiff ⇐⇒

S ⊗ T ⊗ A T ⊗ A

S ⊗ A A
S T A

=
S T A
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Nicer subunits

s ≤ t if there is unique m : S → T with s = t ◦m:
S

T

=
S

ISub(C) distributive lattice
⇐= C has universal finite joins of subunits
⇐⇒ ISub(C) has finite joins, 0 � 0⊗ A is initial, and

S ⊗ T ⊗ A T ⊗ A

S ⊗ A (S ∨ T )⊗ A
S T

S ∨ T

A

A

=
TS

S ∨ T

A

A
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Embedding

Stiff C embeds into category with universal finite joins of subunits
embeds into category with universal joins of subunits

Universally, faithfully, preserving subunits and tensor products
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Base space

C has universal (finite) joins of subunits
=⇒ ISub(C) is a (distributive lattice) frame
=⇒ Zariski spectrum X = Spec(ISub(C)) is topological space

points x are (completely) prime filters in ISub(C)
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Local sections F (s)

� Objects: as in C

� Morphisms: A⊗ S → B in C

� Composition:
f

g
B

SA

C

� Identity:
A S

� Tensor product:
f g

B D

SA C
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Sheaf condition

To specify a sheaf F : O(X )op → MonCat,
it’s enough to give a presheaf F : ISub(C)op → MonCat,
such that F (0) is terminal and the following is an equaliser:

F (s ∨ t) F (s)× F (t) F (s ∧ t)
�F (s ≤ s ∨ t), F (t ≤ s ∨ t)�

F (s ∧ t ≤ t) ◦ π2

F (s ∧ t ≤ s) ◦ π1
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Stalks F (x) are (sub)local

� Objects: as in C

� Morphisms: A⊗ S → B in C for s ∈ x , identified when

f
S

RA

B

=
f �

S�

RA

B

� Composition of (s, f ) and (t, g) is
f

g

A S

C

T
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Theorem

Any small stiff category with universal (finite) joins of subunits
is monoidally equivalent to category of global sections of sheaf

of (sub)local categories.

Any small stiff category
embeds into a category of global sections of a sheaf

of local categories.
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Preservation

category local sections stalks

stiff monoidal stiff

closed closed closed

traced traced traced

compact compact compact

Boolean two-valued

limits limits limits

projective colimits colimits colimits
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Conclusion

� Cleanly separate ‘spatial’ from ‘temporal’ directions

� Does for multiplicative linear logic
what was known for intuitionistic logic

� Directly capture more examples

� Concrete proof

� Completeness theorem?

� Coherence theorem?

� Restriction categories?

� Applications in computer science? Probability? Quantum theory?
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Restriction categories
Turn restriction category C into monoidal category S [C]:

� Objects: as in C

� Morphisms: A⊗ S → B in C

� Composition:
f

g

A S

C

T

� Identity: A⊗ I → A

� Tensor product:
f g

B D

S TA C

� Restriction:

�
f
A S

B
�

=
A S
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Tensor-restriction categories

point is d : I → S with restriction inverse that is tensor-total

I I

S

e = e

d s
I I

S

s

d

d
I X

S I

d

gf

s

m

� f ⊗ g = f ⊗ g

� any e = e : I → I factors via subunit s and point d

� any subunit s has point as restriction section

� any f = f : X → X equals f = e • X for unique e = e : I → I

� any tensor-total f equals f = g ◦ f for a unique restriction-total g ;

� points left-lift against subunits

� points are closed under tensor product

� points are determined by codomain up to unique scalar
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