Ontological models as functors

Andru Gheorghiu Chris Heunen

arXiv:1905.09055

(Finite-dimensional) Quantum theory

state	unit vector in complex Hilbert space	$ \psi\rangle \in H, \ \psi\rangle\ ^2 = 1$
transformation	unitary operator	$uu^\dagger=u^\dagger u=1$
composition	tensor product	$H_{AB} = H_A \otimes H_B$
observation	orthonormal basis	$\{ i\rangle\}, \langle i\mid j\rangle = \delta_{ij}$

Are quantum states real?

Are quantum states real?

Hilbert space
$$\longrightarrow$$
 ontic (measurable) space
$$H \longmapsto (\Lambda, \Sigma_{\Lambda})$$

Are quantum states real?

state		probability measure
$ \psi angle$	\longmapsto	$\mu_{\psi} \colon \Sigma_{\Lambda} \to [0,1]$

state probability measure
$$|\psi\rangle \longmapsto \mu_{\psi} \colon \Sigma_{\Lambda} \to [0,1]$$
 measurement response function
$$\{|i\rangle\}_{1 \leq i \leq \dim(H)} \longmapsto \xi_{i} \colon \Lambda \to [0,1]$$

state probability measure
$$|\psi\rangle \longmapsto \mu_{\psi} \colon \Sigma_{\Lambda} \to [0,1]$$
 measurement response function
$$\{|i\rangle\}_{1 \leq i \leq \dim(H)} \longmapsto \xi_{i} \colon \Lambda \to [0,1]$$

 $\int_{\Lambda} \xi_i(\lambda) d\mu_{\psi}(\lambda) = |\langle i \mid \psi \rangle|^2$

state probability measure
$$|\psi\rangle \longmapsto \mu_{\psi} \colon \Sigma_{\Lambda} \to [0, 1]$$
 measurement response function
$$\{|i\rangle\}_{1 \leq i \leq \dim(H)} \longmapsto \xi_{i} \colon \Lambda \to [0, 1]$$

$$\int_{\Lambda} \xi_{i}(\lambda) d\mu_{\psi}(\lambda) = |\langle i \mid \psi \rangle|^{2}$$

$$\forall \lambda \in \Lambda \colon \sum_{i=1}^{\dim(H)} \xi_{i} = 1$$

Epistemic model

$$0 < |\langle \psi | \phi \rangle| < 1 \quad \longmapsto \quad \stackrel{\uparrow}{\biguplus} \mu_{\phi}$$

Epistemic model

"Quantum state is state of knowledge about underlying ontic reality"

$$0 < |\langle \psi | \phi \rangle| < 1 \quad \longmapsto \quad \stackrel{\uparrow}{\biguplus} \mu_{\phi} \qquad \qquad \Lambda$$

Epistemic model (otherwise ontic model)

"Quantum state is state of knowledge about underlying ontic reality"

[Leifer arXiv:1409.1570]

Pusey-Barrett-Rudolph arXiv:1111.3328]
Preparation independence: $\{|\psi\rangle\otimes|\phi\rangle\}_{\psi\in H_A,\phi\in H_B}\mapsto (\Lambda_A\times\Lambda_B,\Sigma_{\Lambda_A}\otimes\Sigma_{\Lambda_B})$ $\mu_{\psi\otimes\phi}=\mu_{\psi}\otimes\mu_{\phi}$

Pusey-Barrett-Rudolph arXiv:1111.3328]
Preparation independence: $\{|\psi\rangle\otimes|\phi\rangle\}_{\psi\in H_A,\phi\in H_B}\mapsto (\Lambda_A\times\Lambda_B,\Sigma_{\Lambda_A}\otimes\Sigma_{\Lambda_B})$ $\mu_{\psi\otimes\phi}=\mu_{\psi}\otimes\mu_{\phi}$

Leifer-Maroney arXiv:1208.5132]

Maximally epistemic: $\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 = \int_{\text{supp}(\mu_{\phi})} d\mu_{\psi}(\lambda)$

- Pusey-Barrett-Rudolph arXiv:1111.3328]
 Preparation independence: $\{|\psi\rangle\otimes|\phi\rangle\}_{\psi\in H_A,\phi\in H_B}\mapsto (\Lambda_A\times\Lambda_B,\Sigma_{\Lambda_A}\otimes\Sigma_{\Lambda_B})$ $\mu_{\psi\otimes\phi}=\mu_{\psi}\otimes\mu_{\phi}$
- Leifer-Maroney arXiv:1208.5132]

 Maximally epistemic: $\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 = \int_{\text{supp}(\mu_{\phi})} d\mu_{\psi}(\lambda)$
- ► [Aaronson-Bouland-Chua-Lowther arXiv:1303.2834] Symmetric and maximally nontrivial:

$$\Lambda = H
 u|\psi\rangle = \psi \implies \mu_{u\psi}(u\lambda) = \mu_{\psi}(\lambda)
 \forall |\psi\rangle, |\phi\rangle : |\langle\psi|\phi\rangle|^2 > 0 \iff \int_{\text{supp}(\mu_{\psi})} d\mu_{\phi}(\lambda) > 0$$

- Pusey-Barrett-Rudolph arXiv:1111.3328]
 Preparation independence: $\{|\psi\rangle\otimes|\phi\rangle\}_{\psi\in H_A,\phi\in H_B}\mapsto (\Lambda_A\times\Lambda_B,\Sigma_{\Lambda_A}\otimes\Sigma_{\Lambda_B})$ $\mu_{\psi\otimes\phi}=\mu_{\psi}\otimes\mu_{\phi}$
- Leifer-Maroney arXiv:1208.5132]

 Maximally epistemic: $\forall |\psi\rangle, |\phi\rangle : |\langle\psi|\phi\rangle|^2 = \int_{\text{supp}(\mu_{\phi})} d\mu_{\psi}(\lambda)$
- ► [Aaronson-Bouland-Chua-Lowther arXiv:1303.2834] Symmetric and maximally nontrivial:

$$\Lambda = H
 u|\psi\rangle = \psi \implies \mu_{u\psi}(u\lambda) = \mu_{\psi}(\lambda)
 \forall|\psi\rangle, |\phi\rangle : |\langle\psi|\phi\rangle|^2 > 0 \iff \int_{\text{supp}(\mu_{\psi})} d\mu_{\phi}(\lambda) > 0$$

► [Gheorghiu-Heunen arXiv:1905.09055]: one approach to rule them all

Category theory

Explicitly invented to translate structure between different areas:

- ightharpoonup Algebraic topology: topology \mapsto groups
- ightharpoonup Algebraic geometry: varieties \mapsto schemes
- ightharpoonup Logic: theories \mapsto models
- ightharpoonup Computer compilers: high-level language \mapsto assembly
- ightharpoonup Complexity theory: algorithm \mapsto function
- ightharpoonup Semantics: computer programs \mapsto mathematical model
- ightharpoonup Physics: physical systems \mapsto mathematical abstractions

Here: quantum physics \mapsto statistical physics

 \mathbf{FHilb}

 \mathbf{FHilb}

BoRel

BoRel

Borel space:

topological measurable space

Markov kernels:

 $f: X_A \times \Sigma_B \to [0,1]$ $f(-,W): X_A \to [0,1]$ bounded measurable $f(x,-): \Sigma_B \to [0,1]$ probability measure

BoRel

States

States

States

$$F(|\psi\rangle)(\bullet, -) \colon \Sigma_{\Lambda} \to [0, 1]$$
 probability measure

Effects

Effects

Effects

$$F(\langle \psi |)(-, \{ \bullet \}) \colon \Lambda \to [0, 1]$$
 response function

Operational category

- ightharpoonup is monoidal (\otimes ,I)
- ▶ has distinguishing object 2
- \blacktriangleright has set Ω of elements called probabilities
- ▶ has evaluation $\langle \rangle \colon \mathbf{C}(I,2) \to \Omega$

Operational category

- ightharpoonup is monoidal (\otimes ,I)
- ▶ has distinguishing object 2
- \blacktriangleright has set Ω of elements called probabilities
- ▶ has evaluation $\langle \rangle$: $\mathbf{C}(I,2) \to \Omega$

FHilb is operational:

- $ightharpoonup 2 = \mathbb{C}^2, \, \Omega = [0, 1]$

Operational category

- ightharpoonup is monoidal (\otimes ,I)
- ▶ has distinguishing object 2
- \blacktriangleright has set Ω of elements called probabilities
- ▶ has evaluation $\langle \rangle$: $\mathbf{C}(I,2) \to \Omega$

FHilb is operational:

- $2 = \mathbb{C}^2, \ \Omega = [0, 1]$

BoRel is operational:

- $2 = (\{0,1\}, \{\emptyset, \{0\}, \{1\}, \{0,1\}\}), \Omega = [0,1]$
- $f: I \to 2, \langle f \rangle = f(\bullet, \{0\}) \text{ if } f(\bullet, \{0\}) = 1 f(\bullet, \{1\})$

Operational model

is functor $F\colon \mathbf{C}\to \mathbf{D}$ between operational categories satisfying:

$$F(I) = I$$

$$F(2) = 2$$

$$\langle F(\eta) \rangle = \langle \eta \rangle$$

Operational model

is functor $F \colon \mathbf{C} \to \mathbf{D}$ between operational categories satisfying:

$$F(I) = I$$

$$F(2) = 2$$

$$\langle F(\eta) \rangle = \langle \eta \rangle$$

For C = FHilb and D = BoRel:

$$\int_{\Lambda} \xi_i(\lambda) d\mu_{\psi}(\lambda) = |\langle i|\psi\rangle|^2$$

$$F(|\psi\rangle) = \mu_{\psi}$$

$$F(\langle i|) = \xi_i$$

Distinguishability

If **C** operational category with $\Omega = [0, 1]$, $\Psi \subseteq \mathbf{C}(I, A)$ collection of states $\chi \colon A \to 2$ measurement,

 χ distinguishes ψ from Ψ when

$$\sum_{\phi\in\Psi,\phi\neq\psi}\langle\chi\circ\phi=0$$

Epistemic operational models

Operational model is epistemic when there are distinct states $\psi \neq \phi \colon I \to A$ such that $F(\psi)$ and $F(\phi)$ are not distinguishable

Epistemic operational models

Operational model is epistemic when there are distinct states $\psi \neq \phi \colon I \to A$ such that $F(\psi)$ and $F(\phi)$ are not distinguishable

i.e. "distributions overlap":

Operational vs ontological

- ▶ operational model is more restrictive
- composition needs to be preserved
- trivial ontic models can be constructed
- ▶ not clear whether ontic operational models exist at all

No-go results: Pusey-Barrett-Rudolph

No epistemic ontological model when: preparation independence

$$\{|\psi\rangle\otimes|\phi\rangle\}_{\psi\in H_A,\phi\in H_B}\mapsto (\Lambda_A\times\Lambda_B,\Sigma_{\Lambda_A}\otimes\Sigma_{\Lambda_B})$$
$$\mu_{\psi\otimes\phi}=\mu_{\psi}\otimes\mu_{\phi}$$

No-go results: Pusey-Barrett-Rudolph

No epistemic ontological model when: preparation independence

$$\{|\psi\rangle\otimes|\phi\rangle\}_{\psi\in H_A,\phi\in H_B}\mapsto (\Lambda_A\times\Lambda_B,\Sigma_{\Lambda_A}\otimes\Sigma_{\Lambda_B})$$
$$\mu_{\psi\otimes\phi}=\mu_{\psi}\otimes\mu_{\phi}$$

Monoidal operational model implies this

So cannot have monoidal epistemic operational model!

No-go results: Leifer-Maroney

No maximally epistemic ontological model

$$\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 = \int_{\operatorname{supp}(\mu_{\phi})} d\mu_{\psi}(\lambda)$$

No-go results: Leifer-Maroney

No maximally epistemic ontological model

$$\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 = \int_{\text{supp}(\mu_{\phi})} d\mu_{\psi}(\lambda)$$

This is implied when operational model preserves duality:

$$F(\psi^{\dagger}) = F(\psi)^{\dagger}$$
$$\langle \psi^{\dagger} \circ \phi \rangle = \langle F(\psi)^{\dagger} \circ F(\phi) \rangle$$

No-go results: Leifer-Maroney

No maximally epistemic ontological model

$$\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 = \int_{\text{supp}(\mu_{\phi})} d\mu_{\psi}(\lambda)$$

This is implied when operational model preserves duality:

$$F(\psi^{\dagger}) = F(\psi)^{\dagger}$$
$$\langle \psi^{\dagger} \circ \phi \rangle = \langle F(\psi)^{\dagger} \circ F(\phi) \rangle$$

So cannot have duality preserving operational model!

No-go results: Aaronson-Bouland-Chua-Lowther

No symmetric epistemic ontological model

$$\Lambda = H$$

$$U|\psi\rangle = \psi \implies \mu_{U\psi}(U\lambda) = \mu_{\psi}(\lambda)$$

$$\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 > 0 \iff \int_{\text{supp}(\mu_{\psi})} d\mu_{\phi}(\lambda) > 0$$

No-go results: Aaronson-Bouland-Chua-Lowther

No symmetric epistemic ontological model

$$\Lambda = H$$

$$U|\psi\rangle = \psi \implies \mu_{U\psi}(U\lambda) = \mu_{\psi}(\lambda)$$

$$\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 > 0 \iff \int_{\text{supp}(\mu_{\psi})} d\mu_{\phi}(\lambda) > 0$$

Implied by equivariance of operational model:

$$M: H_A \to H_B$$

$$F(M \circ \psi)(\bullet, U) = F(\psi)(\bullet, M \cdot U)$$

$$M \cdot U \text{ measurable}$$

No-go results: Aaronson-Bouland-Chua-Lowther

No symmetric epistemic ontological model

$$\Lambda = H$$

$$U|\psi\rangle = \psi \implies \mu_{U\psi}(U\lambda) = \mu_{\psi}(\lambda)$$

$$\forall |\psi\rangle, |\phi\rangle \colon |\langle\psi|\phi\rangle|^2 > 0 \iff \int_{\text{supp}(\mu_{\psi})} d\mu_{\phi}(\lambda) > 0$$

Implied by equivariance of operational model:

$$M: H_A \to H_B$$

$$F(M \circ \psi)(\bullet, U) = F(\psi)(\bullet, M \cdot U)$$

$$M \cdot U \text{ measurable}$$

So cannot have equivariant operational model!

What about a "go" result?

Borel space:

topological measurable space

signed Markov kernels:

$$f: X_A \times \Sigma_B \to [-1, 1]$$

 $f(-,W): X_A \to [-1,1]$ bounded measurable $f(x,-): \Sigma_B \to [-1,1]$ quasi-probability measure

 (X_C, Σ_C) (X_B, Σ_B) (X_A, Σ_A)

QBoRel

What about a "go" result?

Borel space:

topological measurable space

signed Markov kernels:

$$f: X_A \times \Sigma_B \to [-1, 1]$$

 $f(-,W)\colon X_A\to [-1,1]$ bounded measurable $f(x,-)\colon \Sigma_B\to [-1,1]$ quasi-probability measure

 $\mathbf{Q}\mathbf{B}\mathbf{o}\mathbf{R}\mathbf{e}\mathbf{l}$

- ▶ Possible! In fact monoidal (in odd dimension)!
- ► Wigner functions
- quasi-probabilistic epistemic model [Ferrie arXiv:1010.2701]

Summary

- ▶ Unify ontological interpretations
- ► Many questions
- ► Can have operational model at all?
- ▶ What about target category of *quantum measures*?

$$\mu(U \cup V) \neq \mu(U) + \mu(V)$$

$$\mu(U \cup V \cup W) = \mu(U \cup V) + \mu(V \cup W) + \mu(W \cup U) - \mu(U) - \mu(V)$$