Semantics for Probabilistic Programming

Chris Heunen

.
\ THE UNIVERSITY of EDINBURGH

- informatics

1/21

Bayes’ law

P(B | A)xP(A)

PAIB) =~

2/21

Bayes’ law

P(B | A)xP(A)

P(A|B) =)

Bayesian reasoning:
» predict future, based on model and prior evidence
» infer causes, based on model and posterior evidence
» learn better model, based on prior model and evidence

2/21

Bayesian networks

SPRINKLER

0.4 0.8
0.01 0.99

—- =

GRASS WET
SPRINKLER RAIN‘ T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

3/21

Bayesian inference

Stan implements gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference, stochastic, gradient-based variational
Bayesian methods for approximate Bayesian inference, and gradient-based optimization for penalized maximum likelihood estimation.

About TensorFlow

TensorFlow™ is an open source software library for numerical
computation using data flow graphs. Nodes in the graph represent

TeNSOIFIOW 1 iemsticat enerations white the aranh arines ronramant the

Infer.NET

Infer.NET is a framework for running Bayesian inference in graphical models.

infer.net

4/21

Linear regression

Try to find values for W and b that compute y_data = W * x_data + b
(We know that W should be 8.1 and b 0.3, but TensorFlow will

figure that out for us.)

W = tf.Variable(tf.random_uniform([1], -1.8, 1.0))

b = tf.variable(tf.zeros([1]))

y =W * x_data + b

Minimize the mean squared errors.

loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

Before starting, initialize the variables. We will 'run' this first.
init = tf.global_variables_initializer()

Launch the graph.
sess = tf.Session()
sess.run(init)

Fit the line.
for step in range(201):
sess.run(train)
if step % 26 == 0:
print(step, sess.run(W), sess.run(b))

5/21

Probabilistic programming

P(A|B) x P(B|A) x P(A)
posterior likelihood x prior

functional programming + observe + sample

6/21

Probabilistic programming

P(A|B) x P(B|A) x P(A)
posterior likelihood x prior
functional programming + observe + sample

Church & is a universal probabilistic programming language, extending Scheme with probabilistic semantics, and is
well suited for describing infinite-dimensional stochastic processes and other recursively-defined generative processes

Venture & is an interactive, Turing-complete, higher-order probabilistic programming platform that aims to be
sufficiently expressive, extensible and efficient for general-purpose use. Its virtual machine supports multiple scalable,
reprogrammable inference strategies, plus two front-end languages: VenChurch and VentureScript.

Anglican @ is a portable Turing-complete research probabilistic programming language that includes particle MCMC
inference.

6/21

Linear regression

(defquery Bayesian-linear-regression

(let [f (let [s (sample (normal 0.0 3.0))
b (sample (normal 0.0 3.0))]

(observe
(observe
(observe
(observe
(observe

(predict

(fn [x]

(normal
(normal
(normal
(normal
(normal

:f £)))

(+

(f
(f
(f
(f
(f

(x s x) b)))]

1.0)
2.0)
3.0)
4.0)
5.0)

0.5)
0.5)
0.5)
0.5)
0.5)

2.5)
3.8)
4.5)
6.2)
8.0)

7/21

Linear regression

8/21

Linear regression

10

9/21

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0, 1) with probability around 0.34

Q
o
gt

10/21

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0, 1) with probability around 0.34

e

A measurable space is a set X with a family Yx of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p: ¥x — [0, o]
that satisfies p(> Un) = >_p(Uy) (and has p(X) = 1)

10/21

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0, 1) with probability around 0.34

A measurable space is a set X with a family Yx of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p: ¥x — [0, o]
that satisfies p(> Un) = >_p(Uy) (and has p(X) = 1)

A function f: X — Y is measurable iff_l(U) cYxforUcecXy
A random variable is a measurable function R — X

10/21

Function types

indX

ev

11/21

Function types

11/21

Quasi-Borel spaces

A quasi-Borel space is a set X together with My C [R — X] satisfying:

» aof € My if « € My and f: R — R is measurable
» o € My if o: R — X is constant

» if R = ¢, Sn, with each set S, Borel, and a1, az, ... € My,
then 3 is in My, where 3(r) = an(r) forr € S,

12/21

Quasi-Borel spaces

A quasi-Borel space is a set X together with My C [R — X] satisfying:

» aof € My if « € My and f: R — R is measurable
» o € My if o: R — X is constant
» if R = ¢, Sn, with each set S, Borel, and a1, az, ... € My,

then 3 is in My, where 3(r) = an(r) forr € S,

A morphism is a function f: X — Y with f o a« € My if a« € My

» has product types
» has countable sum types
» has function types!

My ={a: R = [X = Y]|&: R xX — Y morphism}

12/21

Distribution types

A measure on a quasi-Borel space (X, Mx) consists of

» o € My and

» a probability measure ; on R

Two measures are identified when they induce the same p(a~1(-))

3/21

Distribution types

A measure on a quasi-Borel space (X, Mx) consists of

» o € My and

» a probability measure ; on R

Two measures are identified when they induce the same p(a~1(-))

Gives monad

» P(X,Mx) = {(«, 1) measure on (X,Mx}/ ~
» return x = [Ar.x, u]. for arbitrary
» bind uses integral [fd(«,p) = [(foa)duiff: (X,Mx) —» R

for distribution types

3/21

Example: facts about distributions

Hlet x = sample(gauss(0.0,1.0))

in return (x<0) ﬂ = [sample(bern(0.5))]

14/21

Example: importance sampling

[sample(exp(2)) I

let x = sample(gauss(0,1)))
= | observe(exp-pdf(2,x)/gauss-pdf(0,1,x));
return x

15/21

Example: conjugate priors

in observe(bern(x), true); let x = sample(beta(2,1))

ulet x = sample(beta(l,1)) ﬂ uobserve(bern(O.S), true);ﬂ
return x in return x

//
/

y
beta(1,1) /" beta(2,1)

16/21

Linear regression

(defquery Bayesian-linear-regression

Prior:

(let [f (let [s (sample (normal 0.0 3.0))
b (sample (normal 0.0 3.0))]

Likelihood:

(observe
(observe
(observe
(observe
(observe

Posterior:

(predict

(fn [x] (+ (* s x) b)))]

(normal (f 1.0)
(normal (£ 2.0)
(normal (f 3.0)
(normal (f 4.0)
(normal (f 5.0)

:f £)))

0.5)
0.5)
0.5)
0.5)
0.5)

2.5)
3.8)
4.5)
6.2)
8.0)

17/21

Linear regression: prior
Define a prior measure on [R — R]

b (sample (normal 0.0 3.0))]

N(let [f (let [s (sample (normal 0.0 3.0)) ﬂ
(fn [x] (+ (* s x) B)))]
= [a, v ® V] € P([R — R])

where v is normal distribution, mean 0 and standard deviation 3,
and a: RxR — [R — R]is (s,b) — Arsr+b

10

18/21

Linear regression: likelihood

Define likelihood of observations (with some noise)

(observe (normal (f 1.0) 0.5) 2.5)
(observe (normal (f 2.0) 0.5) 3.8)
(observe (normal (f 3.0) 0.5) 4.5)
(observe (normal (f 4.0) 0.5) 6.2)
(observe (normal (f 5.0) 0.5) 8.0)

= d(f(1),2.5)-d(f(2),3.8) - d(f(3),4.5) - d(f(4),6.2) - d(f(5),8.0)

where f free variable of type [R — R], and d: R? — [0, cc) is density
of normal distribution with standard deviation 0.5

d(n,x) = /27 exp(~2(x — p)?)

19/21

Linear regression: Posterior
Normalise combined prior and likelihood

[(predict :f £)))] € P([R — R])

10

20/21

Want more?

» “Semantics for probabilistic programming: higher-order functions,
continuous distributions, and soft constraints”
LiCS 2016

» “A convenient category for higher-order probability theory”
arXiv:1701.02547

