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Boolean algebra: definition

A Boolean algebra is a set B with:

» a distinguished element 1 € B;

> a unary operations —: B — B;

> a binary operation A: B x B — B;
such that for all z,y, z € B:

» s A (yAz)=(zAy) Az

> T ANYy=9yAuzx;

> s A1 =ux;

> oz =(zAny) A(zAy)

“Sets of independent postulates for the algebra of logic”
'

Transactions of the American Mathematical Society 5:288-309, 1904
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Boolean algebra: definition

A Boolean algebra is a set B with:
> a distinguished element 1 € B;
> a unary operations —: B — B;
» a binary operation A: B x B — B;
such that for all z,y, z € B:
» s A(yAz)=(xANy) Az
> s ANy =yAu;
> z A1 =ux;
> T AT = 1
» A—-z=-1=-1Az; (-zis acomplement of z)

» cA-y=-1exAy=1 (0= -1is the least clement)

ﬂ “Sets of independent postulates for the algebra of logic”

Transactions of the American Mathematical Society 5:288-309, 1904
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Boole’s algebra
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Boolean algebra # Boole’s algebra

LA -
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THE MATHEMATICAL THEORIES OF LOGIC
AND PROBABILITIES.

Y
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66 PRINCIPLES OF SYMBOLICAL REASONING.  [CHAT. V.-

CHAPTER V.

OF THE FUNDAMENTAL PRINCIPLES OF STMBOLICAL LEASONING, AND
OF THE EXPANSION O DEVELOPMENT OF EXPRESSIONS INVOLV-
ING TOGICAL STABOLS.

1. FHE previous chapters of this work have been devoted to

the investigation of the fandamental Jaws of the opera-
tions of the mind in reasoning; of their development in the
Taws of the symbols of Liogic; and of the principles of expression,
by which that species of propositions called primary may be repre-
sented in the language of symbols. These inquiries have been
in the striotest sense preliminary. They form an indispensable
introduction to one of the chicf objects of this treatise—the con-
struction of a system or method of Logic upon the basis of an
exact summary of the fundamental laws of thought. There are
certain considerations touching the nature of this end, and the
‘means of its attainment, to which T deem it necessary here to
direct attention.

2. T would remark in the first place that the generality of a
method in Logic must very much depend upon the generality of
its elementary processes and Jaws. We have, for instance, in the
‘previous sections of this work investigated, among ofher things,
the laws of that logieal process of addition which is symbolized
by the sign +. Now those laws have been determined from the
study of instances, in all of which it has been a necessary condi
tion, that the classes or things added together in thought should
be mutually exclusive. The expression & + y seems indeed un-
interpretable, unless it be assumed that the things represented
by « and the things represented by y are entirely sepamte 3
that they embrace no individuals in common.  And conditions
analogous to this have been involved in those acts of conception
from the study of which the Jaws of the other symbolical opera-
tions have been ascertained. The question then ariscs, whether




Boolean algebra = Jevon’s algebra

PURE LOGIC

on TR

LOGIC OF QUALITY APART FROM QUANTITY :

0
REMARKS O BOOLES SYSTEM AND
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REMARKS O BOOLES SYSTEM AND

OX THE RELATION OF LOGIC AND MATHEMATICS.

THallias

W. STANLEY JEVONS, M.A.
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Use of
brackets.

Comdina-

plural
terms.

Law of
unity.

Super-

terms.

26 PURE LOGIC.

is AB; if it is C, is AC, and it is therefore
cither AB or AC.

67. Let a plural term enclosed in brackets
S ), and placed beside another term,
mean that it is combined with it, as one single
term is with another :

Thus A (B+C) = AB+AC.

68. One plural term is combined with another
by combining each alternative of the one separately
with each of the other. Each combined alter-
native may then be combined with each alternative
of a third plural term, and so on:

Thus (D +E) (B+C)=B (D+E) +C (D+E)

=BD+BE+CD+CE.

69. Itis in the nature of thought and things
that same alternatives are together same in meaning,
as any one taken singly.

Thus, what is the same as A or A is the same
as A, aself-evident truth.

A+A=A A+A+A=A A+A+B=A4+B

This law is correlative to the Law of Simplicity,
(§ 39), and is perhaps of equal importance and
frequent use. It was not recognised by Professor
Boole, when laying down the principles of his
system.

70. Ina plural term, any alternative may bere-
‘moved, of which a part forms another alternative.

Thus the term either B or BC  is the same in
meaning with B alone, or B+BC=B. Forit
is aself-evi (§99) that B standing al
is either the same as BC, oras B not-C. Thus

B+BC=B not-C+BC+BC
=B not-C+BC=B.
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Boole’s algebra isn’t Boolean algebra

Boole’s Algebra Isn’t
Boolean Algebra

A description, using modern algebra,
of what Boole really did create.

Turopore Hawreriy
Lehigh University
Bethlehem, PA 18015

To Boole and his mid-ni h century aries, the title of this article would have
been very puzzling. For Boole's first work in logic, The Mathematical Analysis of Logic, appeared
in 1847 and, although the beginnings of modern abstract algebra can be traced back to the early
part of the nineteenth century, the subject had not fully emerged until towards the end of the
century. Only then could one clearly distinguish and compare algebras. (We use the term algebra
here as standing for a formal system, not a structure which realizes, or is a model for, it— for
instance, the algebra of integral domains as codified by a set of axioms versws a particular
structure, e.g., the integers, which satisfies these axioms.) Granted, however, that this later full
degree of understanding has been attained, and that one can conceptually distinguish algebras, is

it nat trme that Ranle’s “alashra of losic” je Ranlean alashra?
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Piecewise Boolean algebra: definition

A piecewise Boolean algebra is a set B with:

» a reflexive symmetric binary relation ® C B?;

v

a (partial) binary operation A: ® — B;

v

a (total) function —: B — B;
» an element 1 € B with {1} x B C ©&;

such that every S C B with S2 C ® is contained in a T C B with
T? C ® where (T, A,—,1) is a Boolean algebra.

8/30



Piecewise Boolean algebra: example
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Piecewise Boolean algebra < quantum logic

Su a_set
Subspaces of a Hilbert space

L. “The logic of quantum mechanics”
S Annals of Mathematics 37:823-843, 1936

10 /30



Piecewise Boolean algebra < quantum logic

Subsetsofa set
Subspaces of a Hilbert space
An orthomodular lattice is:

>

>

>

>

A partial order set (B, <) with min 0 and max 1
that has greatest lower bounds z A y;

an operation | : B — B such that

z+t =z, and z < y implies y- < zt;

TVt = 1;

if < ythen y=2xzV(yAazb)

’5» “The logic of quantum mechanics”
f" Annals of Mathematics 37:823-843, 1936
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Piecewise Boolean algebra < quantum logic

Su set
Subspaces of a Hilbert space
An orthomodular lattice is not distributive:

( {j or 3) > and
) ——f

s “The logic of quantum mechanics”
,:-( Annals of Mathematics 37:823—-843, 1936
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Piecewise Boolean algebra < quantum logic

Subsetsofa set
Subspaces of a Hilbert space

biscuit
coffee

tea

nothing

"a, “The logic of quantum mechanics”
,,:" Annals of Mathematics 37:823-843, 1936
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Piecewise Boolean algebra < quantum logic

Subsetsofa set
Subspaces of a Hilbert space

biscuit
coffee

tea

nothing

However: fine when within orthogonal basis (Boolean subalgebra)

’a_. “The logic of quantum mechanics”
,,:" Annals of Mathematics 37:823-843, 1936

10/ 30



Boole’s algebra # Boolean algebra

Quantum measurement is probabilistic
(state a|0) + B|1) gives outcome 0 with probability |a|?)
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outcome to any possible measurement
(homomorphism of piecewise Boolean algebras to {0,1})
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Boole’s algebra # Boolean algebra

Quantum measurement is probabilistic
(state a|0) + B|1) gives outcome 0 with probability |a|?)

A hidden variable for a state is an assignment of a consistent
outcome to any possible measurement
(homomorphism of piecewise Boolean algebras to {0,1})

Theorem: hidden variables cannot exist
(if dimension n > 3, there is no homomorphism
Sub(C™) — {0, 1} of piecewise Boolean algebras.)

“The problem of hidden variables in quantum mechanics”
Journal of Mathematics and Mechanics 17:59-87, 1967
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Piecewise Boolean domains: idea
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Piecewise Boolean domains: idea
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Piecewise Boolean domains: definition

Given a piecewise Boolean algebra B,
its piecewise Boolean domain Sub(B)
is the collection of its Boolean subalgebras,
partially ordered by inclusion.

[ A




Piecewise Boolean domains: example

IR
XK XK
N\

SN

Example: if B is

then Sub(B) is



Piecewise Boolean domains: theorems

Can reconstruct B from Sub(B)
(B = colim Sub(B))
(the parts determine the whole)

“Noncommutativity as a colimit”
Applied Categorical Structures 20(4):393-414, 2012
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Piecewise Boolean domains: theorems

Can reconstruct B from Sub(B)
(B = colim Sub(B))

(the parts determine the whole)

Sub(B) determines B
(B B' <= Sub(B) = Sub(B"))

(shape of parts determines whole)

“Noncommutativity as a colimit”
Applied Categorical Structures 20(4):393-414, 2012

L - “Subalgebras of orthomodular lattices”
! Order 28:549-563, 2011

15 /30



Piecewise Boolean domains: as complex as graphs

State space = Hilbert space
Sharp measurements = subspaces (projections)
Jointly measurable = overlapping or orthogonal (commute)
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Piecewise Boolean domains: as complex as graphs

State space = Hilbert space
Sharp measurements = subspaces (projections)
Jointly measurable = overlapping or orthogonal (commute)

(In)compatibilities form graph:
r—3s

AN

Theorem: Any graph can be realised as sharp measurements on
some Hilbert space.

t

-
.5 “Quantum theory realises all joint measurability graphs”
M Physical Review A 89(3):032121, 2014
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Piecewise Boolean domains: as complex as graphs

State space = Hilbert space
Sharp measurements = subspaces (projections)
Jointly measurable = overlapping or orthogonal (commute)

(In)compatibilities form graph:
/ r\s
p q
Theorem: Any graph can be realised as sharp measurements on
some Hilbert space.

t

Corollary: Any piecewise Boolean algebra can be realised on some
Hilbert space.

gel “Quantum theory realises all joint measurability graphs”
BFM@ Physical Review A 89(3):032121, 2014

Quantum probability — quantum logic”
Springer Lecture Notes in Physics 321, 1989

16 / 30



Piecewise Boolean domains: as complex as hypergraphs

State space = Hilbert space
Unsharp measurements = positive operator-valued measures
Jointly measurable = marginals of larger POVM
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AN

—=1

17 /30



Piecewise Boolean domains: as complex as hypergraphs

State space = Hilbert space
Unsharp measurements = positive operator-valued measures
Jointly measurable = marginals of larger POVM
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r——S§

AN

a—=1
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Piecewise Boolean domains: as complex as hypergraphs

State space = Hilbert space
Unsharp measurements = positive operator-valued measures
Jointly measurable = marginals of larger POVM

(In)compatibilities now form abstract simplicial complex:
/T\S
p——q—+
Theorem: Any abstract simplicial complex can be realised as
POVMs on a Hilbert space.

] “All joint measurability structures are quantum realizable”
5 ™ Physical Review A 89(5):052126, 2014
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Piecewise Boolean domains: as complex as hypergraphs

State space = Hilbert space
Unsharp measurements = positive operator-valued measures
Jointly measurable = marginals of larger POVM

(In)compatibilities now form abstract simplicial complex:
/T\S
p——q—+
Theorem: Any abstract simplicial complex can be realised as
POVMs on a Hilbert space.

Corollary: Any effect algebra can be realised on some Hilbert
space.

] “All joint measurability structures are quantum realizable”
5 ™ Physical Review A 89(5):052126, 2014

'; “Hilbert space effect-representations of effect algebras”
g Reports on Mathematical Physics 70(3):283-290, 2012
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Piecewise Boolean domains: partition lattices
What does Sub(B) look like when B is an honest Boolean algebra?
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What does Sub(B) look like when B is an honest Boolean algebra?
Boolean algebras are dually equivalent to Stone spaces

Transactions of the American Mathematical Society 40:37—111, 1936

@ “The theory of representations of Boolean algebras”
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Piecewise Boolean domains: partition lattices
What does Sub(B) look like when B is an honest Boolean algebra?
Boolean algebras are dually equivalent to Stone spaces
Sub(B) becomes a partition lattice

1/2 /ng\ 123/4

1/23°  13/2  12/3

1/234

12 1/2/3

Transactions of the American Mathematical Society 40:37—111, 1936

@ “The theory of representations of Boolean algebras”

“On the lattice of subalgebras of a Boolean algebra”
Proceedings of the American Mathematical Society 36: 87-92, 1972
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Piecewise Boolean domains: partition lattices

What does Sub(B) look like when B is an honest Boolean algebra?
Boolean algebras are dually equivalent to Stone spaces
Sub(B) becomes a partition lattice

1/2 ITB 12&,’1M/lmml,'2ﬂ
. ‘ 1/23°  13/2  12/3
12 ‘ . 12/3/4 13/2/4 14/2/3 1/23/4 1/3/24 1/2/34
1/2/3
1/2/3/4

Idea: every downset in Sub(B) is a partition lattice (upside-down)!

./I\./I\O

ﬁ “The theory of representations of Boolean algebras”
A

Transactions of the American Mathematical Society 40:37—111, 1936

“On the lattice of subalgebras of a Boolean algebra”
Proceedings of the American Mathematical Society 36: 87-92, 1972

18 /30



Piecewise Boolean domains: characterisation

Lemma: Piecewise Boolean domain D gives functor F': D — Bool
that preserves subobjects; “F' is a piecewise Boolean diagram”.
(Sub(F(z)) = |z, and B = colim F)

SN

ICALP Proceedings, Lecture Notes in Computer Science 8573:208-219, 2014

3 “Piecewise Boolean algebras and their domains”
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Piecewise Boolean domains: characterisation

Lemma: Piecewise Boolean domain D gives functor F': D — Bool
that preserves subobjects; “F' is a piecewise Boolean diagram”.

(Sub(F(z)) = |z, and B = colim F)
O, O

/I\/I\ . AR EN
\\|// — O{\?/}O

O

“Piecewise Boolean algebras and their domains”
ICALP Proceedings, Lecture Notes in Computer Science 8573:208-219, 2014
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Piecewise Boolean domains: characterisation

Lemma: Piecewise Boolean domain D gives functor F': D — Bool
that preserves subobjects; “F' is a piecewise Boolean diagram”.

(Sub(F(z)) = |z, and B = colim F)

SINSIND L sEs e
\\l// — O{\g/}o

Theorem: A partial order is a piecewise Boolean domain iff:
» it has directed suprema;
» it has nonempty infima;
» cach element is a supremum of compact ones;
» each downset is cogeometric with a modular atom;
>

each element of height n < 3 covers ("erl) elements.

ICALP Proceedings, Lecture Notes in Computer Science 8573:208-219, 2014

3 “Piecewise Boolean algebras and their domains”

19/:



Piecewise Boolean domains: higher order

Scott topology turns directed suprema into topological convergence
(closed sets = downsets closed under directed suprema)

Lawson topology refines it from dcpos to continuous lattices

(basic open sets = Scott open minus upset of finite set)
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Scott topology turns directed suprema into topological convergence
(closed sets = downsets closed under directed suprema)

Lawson topology refines it from dcpos to continuous lattices

(basic open sets = Scott open minus upset of finite set)

If By is piecewise Boolean algebra, Sub(By) is algebraic dcpo and
complete semilattice, hence a Stone space under Lawson topology!

S . . . -
) e o 4 “Continuous lattices and domains”
" & Al Cambridge University Press, 2003
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Piecewise Boolean domains: higher order

Scott topology turns directed suprema into topological convergence
(closed sets = downsets closed under directed suprema)

Lawson topology refines it from dcpos to continuous lattices

(basic open sets = Scott open minus upset of finite set)

If By is piecewise Boolean algebra, Sub(By) is algebraic dcpo and
complete semilattice, hence a Stone space under Lawson topology!

It then gives rise to a new Boolean algebra B;. Repeat: B, Bs, ...
(Can handle domains of Boolean algebras with Boolean algebral)

“Continuous lattices and domains”
Cambridge University Press, 2003

“Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450-461, 2015
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Piecewise Boolean diagrams: topos

» Consider “contextual sets” over piecewise Boolean algebra B
assignment of set S(C) to each C' € Sub(B)
such that C' C D implies S(C) C S(D)
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Piecewise Boolean diagrams: topos

» Consider “contextual sets” over piecewise Boolean algebra B
assignment of set S(C) to each C' € Sub(B)
such that C' C D implies S(C) C S(D)

» They form a topos T(B)!
category whose objects behave a lot like sets

in particular, it has a logic of its own!

» There is one canonical contextual set B
B(C)=C

» T(B) believes that B is an honest Boolean algebral

“A topos for algebraic quantum theory”
Communications in Mathematical Physics 291:63-110, 2009

21 /30



Operator algebra

C*-algebras: main examples of piecewise Boolean algebras.
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Operator algebra

“d -algebras: main examples of piecewise Boolean algebras.

Example: C(X) = {f: X — C continuous}
Theorem: Every commutative i -algebra is of this form.

)

=% “Normierte Ringe”
‘ Matematicheskii Sbornik 9(51):3-24, 1941
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Operator algebra

4 -algebras: main examples of piecewise Boolean algebras.

Example: C(X) = {f: X — C continuous}
Theorem: Every commutative i -algebra is of this form.

Example: B(H) = {f: H — H continuous linear}
Theorem: Every f-algebra embeds into one of this form.

.} “Normierte Ringe”
Matematicheskii Sbornik 9(51):3-24, 1941

“On the imbedding of normed rings into operators on a Hilbert space”
 Mathematicheskii Sbornik 12(2):197-217, 1943
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“{ -algebras: main examples of piecewise Boolean algebras.

Example: C(X) = {f: X — C continuous}
Theorem: Every commutative i -algebra is of this form.

Example: B(H) = {f: H — H continuous linear}
Theorem: Every f-algebra embeds into one of this form.

piecewise Boolean algebras - I3 -algebras

projections

.} “Normierte Ringe”
Matematicheskii Sbornik 9(51):3-24, 1941

“On the imbedding of normed rings into operators on a Hilbert space”
 Mathematicheskii Sbornik 12(2):197-217, 1943
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Operator algebra

“{ -algebras: main examples of piecewise Boolean algebras.

Example: C(X) = {f: X — C continuous}
Theorem: Every commutative i -algebra is of this form.

Example: B(H) = {f: H — H continuous linear}
Theorem: Every f-algebra embeds into one of this form.

. . /\
piecewise Boolean algebras P I3 -algebras

projections

.} “Normierte Ringe”
Matematicheskii Sbornik 9(51):3-24, 1941

#

ﬁ%x 5
‘Active lattices determine AW*-algebras”

ag

Journal of Mathematical Analysis and Applications 416:289-313, 2014

“On the imbedding of normed rings into operators on a Hilbert space”
Mathematicheskii Sbornik 12(2):197-217, 1943
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Operator algebra: same trick

A (piecewise) i -algebra A gives a dcpo Sub(A4).
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Operator algebra: same trick

A (piecewise) i -algebra A gives a dcpo Sub(A4).

Can characterize partial orders Sub(A) arising this way.
Involves action of unitary group U(A).

If Sub(A) = Sub(B), then A = B as Jordan algebras.
Except C? and Ms.

| “Characterizations of categories of commutative C*-subalgebras”
Communications in Mathematical Physics 331(1):215-238, 2014

‘ “Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras”

Journal of Mathematical Analysis and Applications, 383:391-399, 2011
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Operator algebra: same trick

A (piecewise) i -algebra A gives a dcpo Sub(A4).

Can characterize partial orders Sub(A) arising this way.
Involves action of unitary group U(A).

If Sub(A) = Sub(B), then A = B as Jordan algebras.
Except C? and Ms.

If Sub(A) = Sub(B) preserves U(A) x Sub(A) — Sub(A),
then A = B as [ -algebras.
Needs orientation!

“Characterizations of categories of commutative C*-subalgebras”
| Communications in Mathematical Physics 331(1):215-238, 2014

“Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras”
Journal of Mathematical Analysis and Applications, 383:391-399, 2011

AE

‘Active lattices determine AW*-algebras”
Journal of Mathematical Analysis and Applications 416:289-313, 2014
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Operator algebra: way below relation
If A is j@-algebra, Sub(A) is depo: VD =D

C € Sub(A) compact iff
VD C Sub(4): C <|JD = 3DeD: CCD

24 /30



Operator algebra: way below relation
If A is j-algebra, Sub(A) is dcpo: VD =JD

C € Sub(A) compact iff
VD C Sub(4): C <|JD = 3DeD: CCD

Proposition: C' € Sub(A) compact iff C finite-dimensional

“The space of measurements outcomes as a spectral invariant”
Foundations of Physics 42(7):896-908, 2012

S S . . 5
M “Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450-461, 2015
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Operator algebra: way below relation
If A is j-algebra, Sub(A) is dcpo: VD =JD

C € Sub(A) compact iff
VD C Sub(4): C <|JD = 3DeD: CCD

Proposition: C' € Sub(A) compact iff C finite-dimensional

Proposition: B < C in Sub(A) iff B C C and B finite-dimensional

Foundations of Physics 42(7):896-908, 2012

TSy . . - »
# “Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450-461, 2015

ﬁ “The space of measurements outcomes as a spectral invariant”
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Operator algebra: domain
Theorem: the following are equivalent for a [f-algebra A:

» Sub(A4) is algebraic

» each C' € Sub(4) equals [J{D C C | dim(D) < oo}~

1SSy . . 5
M “Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450-461, 2015
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Operator algebra: domain
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» each C' € Sub(4) equals [J{D C C | dim(D) < oo}~

» Sub(A) is continuous
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Operator algebra: domain
Theorem: the following are equivalent for a [f-algebra A:

» Sub(A4) is algebraic
» each C' € Sub(4) equals [J{D C C | dim(D) < oo}~
» Sub(A) is continuous

» each C € Sub(4) is approximately finite-dimensional
(C =UD for directed set D of finite-dimensional subalgebras)

SRS . . 5
M “Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450-461, 2015
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Operator algebra: domain
Theorem: the following are equivalent for a [f-algebra A:

Sub(A) is algebraic

v

» each C' € Sub(4) equals [J{D C C | dim(D) < oo}~
» Sub(A) is continuous

» each C € Sub(A) is approximately finite-dimensional
(C =UD for directed set D of finite-dimensional subalgebras)

» each C' € Sub(A) has Stone space as Gelfand spectrum

» Sub(A) is atomistic
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Operator algebra: domain

Theorem: the following are equivalent for a [f-algebra A:

v

>

Sub(A) is algebraic
each C' € Sub(A) equals U{D C C | dim(D) < oo}~
Sub(A) is continuous

each C € Sub(A) is approximately finite-dimensional
(C =UD for directed set D of finite-dimensional subalgebras)

each C' € Sub(A) has Stone space as Gelfand spectrum

Sub(A) is atomistic

These imply that Sub(A) is meet-continuous.
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Scatteredness

A space is scattered if every nonempty subset has an isolated point.
Precisely when each continuous f: X — R has countable image.

Example: {0, 1, %, %, %, %, .

“Inductive Limits of Finite Dimensional C*-algebras”
Transactions of the American Mathematical Society 171:195-235, 1972

“Scattered C*-algebras”
Mathematica Scandinavica 41:308-314, 1977

K.
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A g -algebra A is scattered if X is scattered for all C(X) € Sub(A4).
Precisely when each self-adjoint a = a* € A has countable spectrum.
Example: K(H) + 1y
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Scatteredness

A space is scattered if every nonempty subset has an isolated point.
Precisely when each continuous f: X — R has countable image.
Example: {0, 1, %, %, %, %, .

A g -algebra A is scattered if X is scattered for all C(X) € Sub(A4).

Precisely when each self-adjoint a = a* € A has countable spectrum.
Example: K(H)+ 1y

Nonexample: C(Cantor) is approximately finite-dimensional
Nonexample: C([0, 1]) is not even approximately finite-dimensional

‘ “Inductive Limits of Finite Dimensional C*-algebras”
\
L

Transactions of the American Mathematical Society 171:195-235, 1972
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Scatteredness

Theorem: the following are equivalent for a [-algebra A:

» Sub(A) is algebraic
> Sub(4

is continuous

v

)

(4)
» Sub(A) is quasi-algebraic
Sub(A) is quasi-continuous
(4)

Sub(A) is atomistic

v

P “A characterization of scattered C*-algebras and application to crossed products”
7 Journal of Operator Theory 63(2):417-424, 2010
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Scatteredness

Theorem: the following are equivalent for a [-algebra A:

» Sub(A) is algebraic

» Sub(A4

is continuous

» Sub(A4) is quasi-continuous

Sub(A) is atomistic

v

)
(4)
> Sub(A) is quasi-algebraic
(4)
(4)

A is scattered

v

M “A characterization of scattered C*-algebras and application to crossed products”
| Journal of Operator Theory 63(2):417-424, 2010
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Back to quantum logic

For g -algebra C(X), projections are clopen subsets of X.
Can characterize in order-theoretic terms: (if |X| > 3)
closed subsets of X = ideals of C'(X) = elements of Sub(C(X))

clopen subsets of X = ‘good’ pairs of elements of Sub(C(X))

“Compactifications and functions spaces”
Georgia Institute of Technology, 1996
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For g -algebra C(X), projections are clopen subsets of X.
Can characterize in order-theoretic terms: (if |X| > 3)
closed subsets of X = ideals of C'(X) = elements of Sub(C(X))

clopen subsets of X = ‘good’ pairs of elements of Sub(C(X))

Each projection of Jij-algebra A is in some maximal C' € Sub(A).
Can recover poset of projections from Sub(A)! (if dim(Z(A)) > 3)

“Compactifications and functions spaces”
Georgia Institute of Technology, 1996
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Radboud University Nijmegen, 2015

28 /30



Back to piecewise Boolean domains

Sub(B) determines B

(B B' <= Sub(B) = Sub(B))
(shape of parts determines whole)
Caveat: not 1-1 correspondence!

S - “Subalgebras of orthomodular lattices”
L Order 28:549-563, 2011
I.
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Back to piecewise Boolean domains

Sub(B) determines B

(B= B' <= Sub(B) = Sub(B’))
(shape of parts determines whole)
Caveat: not 1-1 correspondence!

Theorem: The following are equivalent:

> piecewise Boolean algebras
> piecewise Boolean diagrams
» oriented piecewise Boolean domains

JINC /1N
ecRefiede

75 § . ) .
.*A; as) “Subalgebras of orthomodular lattices”
; Order 28:549-563, 2011

..

S|

3 “Piecewise Boolean algebras and their domains”

ICALP Proceedings, Lecture Notes in Computer Science 8573:208-219, 2014
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Conclusion

v

Should consider piecewise Boolean algebras

» Give rise to domain of honest Boolean subalgebras

v

Complicated structure, but can characterize

v

Shape of parts enough to determine whole

v

Same trick works for scattered operator algebras

v

Orientation needed for categorical equivalence



