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Measurement

State:

Measurement:

unit vector x in C"

in basis e1, ..., e,
gives outcome 7 with probability (e; | x)
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Measurement

State:

Measurement:

unit vector x in C"

function e: C™ — M,, such that

e ¢ linear

oc(l,....1)=1

o c(T1Y1, ..., Tnyn) = e(x)e(y)

o c(T1,...,Tp) =e(x)*

gives outcome ¢ with probability tr(eli) x)



Measurement

State:

Measurement:

unit vector x in C"

unital *-homomorphism e: C" — M,
gives outcome ¢ with probability tr(eli) x)



Measurement

State:

Measurement:

unit vector x in C"

unital x-homomorphism e: C"™ — M,
gives outcome ¢ with probability tr(eli) x)



Measurement
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Measurement:
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Measurement

State: unit vector « in Hilbert space H

Measurement: unital *-homomorphism e: C™ — B(H)
gives outcome ¢ with probability tr(eli) x)

“projection-valued measure” (PVM)
“sharp measurement”
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Compatible measurements

PVMs e, f: C™ — B(H) are jointly measurable
when each e|i) and f|j) commute.

(In)compatibilities form graph:
/ T\
p

Theorem: Any graph can be realised as PVMs on a Hilbert space.

3
q t

el “Quantum theory realises all joint measurability graphs”
- 8 Physical Review A 89(3):032121, 2014
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Probabilistic measurement
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Measurement:
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Probabilistic measurement

State:

Measurement:

unit vector = in Hilbert space H

function e: C"™ — B(H) such that

e ¢ linear
oc(l,....1)=1
o e(zixy,..., x5 xy) = a*a for some a in B(H)

gives outcome ¢ with probability tr(eli) x)



Probabilistic measurement

State: unit vector x in Hilbert space H

Measurement: unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) x)



Probabilistic measurement

State: unit vector « in Hilbert space H

Measurement: unital (completely) positive linear e: C"™ — B(H)
gives outcome ¢ with probability tr(eli) x)

“positive-operator valued measure” (POVM)
“unsharp measurement”
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Compatible probabilistic measurements

POVMs e, f: C™ — B(H) are jointly measurable
when there exists POVM g: C™* — B(H)
such that eli) = >_; glij) and flj) = >=; glij)

(e, f are marginals of g)
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Compatible probabilistic measurements

POVMs e, f: C™ — B(H) are jointly measurable
when there exists POVM g: C™* — B(H)

such that e|i) = Zj glij) and f|j) = >_; glij)

(e, f are marginals of g)

(In)compatibilities form abstract simplicial complex:

rF——S§

AN

Theorem: Any abstract simplicial complex can be realised as
POVMs on a Hilbert space.

3 1
ke “All joint measurability structures are quantum realizable”
™ Physical Review A 89(5):052126, 2014
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States

State:

Measurement:

unit vector z in Hilbert space H

unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) x)



States

State:

Measurement:

ensemble of
unit vectors z in Hilbert space H

unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) x)



States

State:

Measurement:

ensemble of
projections |x) (x| onto vectors in Hilbert space H

unital (completely) positive linear e: C™ — B(H)
gives outcome 7 with probability tr(e|:) |z)(x|)



States

State:

Measurement:

ensemble of
rank one projections p? = p = p* in B(H)

unital (completely) positive linear e: C™ — B(H)
gives outcome 7 with probability tr(e|:) |z)(x|)



States

State:

Measurement:

positive operator p in B(H) of norm 1

unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) p)



States

State:

Measurement:

linear function p: B(H) — C such that
pla) >0ifa>0,and p(1) =1

unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) p)
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unital (completely) positive linear p: B(H) — C
“density matrix”

unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) p)
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State: unital (completely) positive linear p: B(H) — C
“density matrix”

Measurement: unital (completely) positive linear e: C™ — B(H)
gives outcome ¢ with probability tr(eli) p)

So really only the set B(H) matters.
It is a C*-algebra.
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The above works for any C*-algebra A:
can formulate measurements, and derive states in terms of A alone



States
State: unital (completely) positive linear p: A — C
“density matrix”

Measurement: unital (completely) positive linear e: C™ — A
gives outcome ¢ with probability tr(eli) p)

So really only the set B(H) matters.
It is a noncommutative C*-algebra.

The above works for any C*-algebra A:
can formulate measurements, and derive states in terms of A alone



Continuous measurement

State: unital (completely) positive linear p: A — C

Measurement: with m discrete outcomes
unital (completely) positive linear e: C"™ — A



Continuous measurement

State: unital (completely) positive linear p: A — C

Measurement: with outcomes in compact Hausdorff space X
unital (completely) positive linear e: C(X) — A

Here, C(X) = {f: X — C continuous} is a commutative C*-algebra.



Continuous measurement

State: unital (completely) positive linear p: A — C

Measurement: with outcomes in compact Hausdorff space X
unital (completely) positive linear e: C(X) — A

Here, C(X) = {f: X — C continuous} is a commutative C*-algebra.

Theorem: Every commutative C*-algebra is of the form C(X).

{ _‘\ “On normed rings”
Doklady Akademii Nauk SSSR 23:430-432, 1939



Classical data

Unsharp measurement: unital positive linear e: C(X) — A
Sharp measurement: unital *-homomorphism e: C(X) — A

Measurement: only way to get (classical) data from quantum system
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Classical data
Unsharp measurement: unital positive linear e: C(X) — A
Sharp measurement: unital *-homomorphism e: C(X) — A
Measurement: only way to get (classical) data from quantum system

Theorem: ‘unsharp measurements can be dilated to sharp ones’:
any POVM e: C(X) — B(H) allows a PVM f: C(X) — B(K) and
isometry v: H — K such that e(—) = v* o f(—) ow.

Sharp measurements give all (accessible) data about quantum system

“Positive functions on C*-algebras”
™ Proceedings of the American Mathematical Society, 6(2):211-216, 1955
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Classical data
Unsharp measurement: unital positive linear e: C(X) — A
Sharp measurement: unital *-homomorphism e: C(X) — A
Measurement: only way to get (classical) data from quantum system

Theorem: ‘unsharp measurements can be dilated to sharp ones’:
any POVM e: C(X) — B(H) allows a PVM f: C(X) — B(K) and
isometry v: H — K such that e(—) = v* o f(—) ow.

Sharp measurements give all (accessible) data about quantum system

Lemma: the image of a unital x-homomorphism e: C(X) — A is a
(unital) commutative C*-subalgebra of A.

Commutative C*-subalgebras record all data of quantum system

“Positive functions on C*-algebras”
™ Proceedings of the American Mathematical Society, 6(2):211-216, 1955
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Coarse graining

Can collapse measurement with 3 outcomes into measurement with
2 outcomes by pretending two states are the same.

continuous function X - Y ~» shomomorphism C(Y) — C(X)
surjection X — Y ~» injection C(Y) — C(X)
quotient of state space X ~»  C*-subalgebra of C'(X)
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Coarse graining

Can collapse measurement with 3 outcomes into measurement with
2 outcomes by pretending two states are the same.

continuous function X - Y ~» shomomorphism C(Y) — C(X)
surjection X — Y ~» injection C(Y) — C(X)
quotient of state space X ~»  C*-subalgebra of C'(X)

Larger C*-subalgebras give more information
going up in order = better classical approximations (tomography)

Definition: If A is a C*-algebra, C(A) is the set of commutative
C*-subalgebras, partially ordered by inclusion C.

9/26



Results about C(A): topos

» Consider “contextual sets” over C*-algebra A
assignment of set S(C') to each C € C(A)
such that C' C D implies S(C) — S(D)
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Results about C(A): topos

» Consider “contextual sets” over C*-algebra A
assignment of set S(C') to each C € C(A)
such that C' C D implies S(C) — S(D)

» They form a topos T(A)!
category whose objects behave a lot like sets
in particular, it has a logic of its own!

» There is one canonical contextual set A
AC)=C

» T(A) believes that A is a commutative C*-algebra!

i = el <A Topos for Algebraic Quantum Theory”
e | ¥
v\{ Communications in Mathematical Physics 291:63-110, 2009

10/ 26



Results about C(A): reconstruction
To what extent does C(A) determine A?
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Can characterize partial orders of the form C(A).
Involves action of unitary group U(A).
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Communications in Mathematical Physics 331(1):215-238, 2014
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Results about C(A): reconstruction
To what extent does C(A) determine A7

Can characterize partial orders of the form C(A).
Involves action of unitary group U(A).

If C(A) 2 C(B), then A = B as Jordan algebras.
(Except C? and Ms.)

Communications in Mathematical Physics 331(1):215-238, 2014

1 “Characterizations of Categories of Commutative C*-subalgebras”

Houston Journal of Mathematics, 2015

& ﬁ “Abelian Subalgebras and Jordan Structure of Von Neumann Algebras”

“Isomorphisms of Ordered Structures of Abelian C*-subalgebras”
Journal of Mathematical Analysis and Applications 383:391-399, 2011
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Results about C(A): reconstruction
To what extent does C(A) determine A7

Can characterize partial orders of the form C(A).
Involves action of unitary group U(A).

If C(A) 2 C(B), then A = B as Jordan algebras.
(Except C? and Ms.)

If C(A) 2 C(B) and A finite-dimensional, then A = B.

| “Characterizations of Categories of Commutative C*-subalgebras”
Communications in Mathematical Physics 331(1):215-238, 2014

Houston Journal of Mathematics, 2015

& E “Abelian Subalgebras and Jordan Structure of Von Neumann Algebras”

“Isomorphisms of Ordered Structures of Abelian C*-subalgebras”
Journal of Mathematical Analysis and Applications 383:391-399, 2011

“Classifying fininite-dim’l C*-algebras by posets of commutative C*-subalgebras”

International Journal of Theoretical Physics, 2015
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Non-results about C(A): reconstruction

Extra ingredient necessary to reconstruct A:
commutative
state spaces

algebras .

!

all algebras --- X ---»

”

Theory and Applications of Categories 29(17):457-474, 2014

' E “Extending Obstructions to Noncommutative Functorial Spectra
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Non-results about C(A): reconstruction

Extra ingredient necessary to reconstruct A:

commutative
«——— state spaces
algebras .

!

all algebras————X———fa5

Trace almost suffices as extra ingredient.
(If associative *: Ml,, ® M,, — M, satisfies vy = yz = z *y = xy and
Tr(z *y) = Tr(xy), then it must be matrix multiplication (or opposite). )

I E “Extending Obstructions to Noncommutative Functorial Spectra”

Theory and Applications of Categories 29(17):457-474, 2014

; “Matrix Multiplication is determined by Orthogonality and Trace”
Linear Algebra and its Applications 439(12):4130-4134, 2013
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Non-results about C(A): reconstruction

Extra ingredient necessary to reconstruct A:
commutative

algebras

!

all algebras————X———fa5

«——— state spaces

Trace almost suffices as extra ingredient.
(If associative *: Ml,, ® M,, — M, satisfies vy = yz = z *y = xy and
Tr(z *y) = Tr(xy), then it must be matrix multiplication (or opposite). )

Orientation suffices as extra ingredient.
(If C(A) = C(B) preserves U(A) x C(A) — C(A) then A~ B. )

' E “Extending Obstructions to Noncommutative Functorial Spectra”

Theory and Applications of Categories 29(17):457-474, 2014

E ‘ “Matrix Multiplication is determined by Orthogonality and Trace”

Linear Algebra and its Applications 439(12):4130-4134, 2013
!

‘Active Lattices determine AW*-algebras”
Journal of Mathematical Analysis and Applications 416:289-313, 2014
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What kind of partial order is C(A)?

Lemma: Chains C; in C(A) have least upper bound \/ C; := |J C;.

May regard A as ‘ideal’ system approximated by C;.
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What kind of partial order is C(A)?

Lemma: Chains C; in C(A) have least upper bound \/ C; := |J C;.
May regard A as ‘ideal’ system approximated by C;.

Common refinement:

Lemma: Nonempty {C;} have greatest lower bound A C; := () C;.

“The space of measurement outcomes as a spectral invariant”
Foundations of Physics 42:896-908, 2012

13/26



Domains
Desirable properties:

» Continuous: can take approximants way below
C=\V{B|C<\B;, = 3i: B< By}

“Domain Theory”

Handbook of Logic in Computer Science 3, 1994

fa “ . . R
) - 3 g “Continuous Lattices and Domains”
y m Cambridge University Press, 2003
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» Continuous: can take approximants way below

» Algebraic: can take approximants compact
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» Quasi-continuous: finitely many observations per approximant

» Quasi-algebraic: finitely many observations per approximant
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4 “Continuous Lattices and Domains”
y Cambridge University Press, 2003
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Domains
Desirable properties:

» Continuous: can take approximants way below
C=V{B|C<\B; = 3i: B< B}

v

Algebraic: can take approximants compact
C=\{B<C|B<\VB; = 3i: B< B}

v

Quasi-continuous: finitely many observations per approximant

v

Quasi-algebraic: finitely many observations per approximant

v

Atomistic: approximation proceeds in indivisible steps
C=\V{B>0|0<B <B = B =B}

% “Domain Theory”
Handbook of Logic in Computer Science 3, 1994
fa CCapts . . -
N == Continuous Lattices and Domains
y m Cambridge University Press, 2003
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Domains
Desirable properties:

» Continuous: can take approximants way below
C=V{B|C<\B; = 3i: B< B}

» Algebraic: can take approximants compact
C=\{B<C|B<\VB; = 3i: B< B}

» Quasi-continuous: finitely many observations per approximant
» Quasi-algebraic: finitely many observations per approximant

» Atomistic: approximation proceeds in indivisible steps
C=\V{B>0|0<B <B = B =B}

» Meet-continuous: approximation respects restriction

O/\\/Cj:\/C/\Ci

% “Domain Theory”
Handbook of Logic in Computer Science 3, 1994
fa CCapts . . -
N == Continuous Lattices and Domains
y m Cambridge University Press, 2003
14 /26




Robust approximation

Theorem: For a C*-algebra A, the following are equivalent:
» C(A) is continuous;
» C(A) is algebraic;
> C(A)
» C(A) is quasi-algebraic;
(4)
(4)

A) is quasi-continuous;

v

C(A) is atomistic;

> C

A) is meet-continuous;

“Domains of commutative C*-subalgebras”
§ Logic in Computer Science, 2015




Robust approximation

Theorem: For a C*-algebra A, the following are equivalent:
» C(A) is continuous;
» C(A) is algebraic;

» C(A) is quasi-continuous;

v

C(4)

C(4)

» C(A) is quasi-algebraic;

C(A) is atomistic;
c(4)

A) is meet-continuous;

A is scattered

v

“Domains of commutative C*-subalgebras”
§ Logic in Computer Science, 2015




Degeneration

Could play same game with von Neumann algebras A,
with commutative von Neumann subalgebras V(A) = {C C A}.

Proposition: For W*-algebras A there is a Galois correspondence:

V(M) 1 C(M)

—
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Degeneration

Could play same game with von Neumann algebras A,
with commutative von Neumann subalgebras V(A) = {C C A}.

Proposition: For W*-algebras A there is a Galois correspondence:

V(M) 1 C(M)

—

However, von Neumann algebras are rarely scattered.

Theorem: The following are equivalent for W*-algebras A:
» C(A) is continuous

C(A) is algebraic

V(A) is continuous

V(A) is algebraic

A is finite-dimensional

“Unsharp values, domains and topoi”
2y Quantum field lu()l\ and gravity 65-96, 2012
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Algebraic approximation

Can only access finite-dimensional subalgebras in finite time.

Definition: A C*-algebra A is approximately finite-dimensional
when A = |J 4, for a chain A; of finite-dimensional C*-algebras.

‘ “Inductive Limits of Finite Dimensional C*-algebras”
L

Transactions of the American Mathematical Society 171:195-235, 1972
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Algebraic approximation

Can only access finite-dimensional subalgebras in finite time.

Definition: A C*-algebra A is approximately finite-dimensional
when A = |J 4, for a chain A; of finite-dimensional C*-algebras.

» If X =0, 1], then C(X) is not approximately finite-dimensional
» If X is Cantor set, C'(X) is approximately finite-dimensional

“Inductive Limits of Finite Dimensional (j*—21L\_U‘(‘l)l'éLStT
i

Transactions of the American Mathematical Society 171:195-235, 1972




Scatteredness

Definition: A topological space is scattered if every nonempty
closed subset has an isolated point.
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> one-point compactification {1 | n € N} U {0} of the naturals
» any ordinal number under the order topology



Scatteredness

Definition: A topological space is scattered if every nonempty
closed subset has an isolated point.
> any discrete space
> one-point compactification {1 | n € N} U {0} of the naturals
» any ordinal number under the order topology

Definition: A C*-algebra A is scattered when, equivalently:
» cach C € C(A) is approximately finite-dimensional
» X is scattered for each maximal C'(X) € C(A)
» each state is a countable sum of pure ones

Example: the unitization of compact operators K(H) + Cly

("3 “Scattered C*-algebras”
Mathematica Scandinavica 41:308-314, 1977



Higher order approximation

Topologies on C(A) whose notion of limit is that of approximation:

> Scott topology: if f: A — B is a s-homomorphism,
then C(f): C(A) — C(B) is Scott continuous.

» Lawson topology refines Scott topology and lower topology
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» Scott topology: if f: A — B is a x-homomorphism,
then C(f): C(A) — C(B) is Scott continuous.

» Lawson topology refines Scott topology and lower topology

Proposition: If A is scattered, then C(A) is a totally disconnected
compact Hausdorff space in the Lawson topology, whence C(C(A)) is
a commutative C*-algebra.

Can speak about approximation within language of C*-algebras!
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Higher order approximation

Topologies on C(A) whose notion of limit is that of approximation:
» Scott topology: if f: A — B is a x-homomorphism,
then C(f): C(A) — C(B) is Scott continuous.
» Lawson topology refines Scott topology and lower topology

Proposition: If A is scattered, then C(A) is a totally disconnected
compact Hausdorff space in the Lawson topology, whence C(C(A)) is
a commutative C*-algebra.

Can speak about approximation within language of C*-algebras!
What is the relationship between A and C(X)?

» A +— X is not functorial

» No iteration: if A is scattered, then C(A) is scattered only if A
is finite-dimensional

19 /26



Labelled Transition Systems: deterministic

Model computational behaviour of discrete systems
e.g. traffic light, computer programs
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Labelled Transition Systems: deterministic

Model computational behaviour of discrete systems
e.g. traffic light, computer programs

N a ¢ states: one at a time
—®
b transitions: move token
d d .
initial: place token

a
T final: accept token
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Labelled Transition Systems: deterministic

Model computational behaviour of discrete systems
e.g. traffic light, computer programs

~ a ¢ states: one at a time transition matrices
—®

b transitions: move token 0000
d{ {d itial ol . 1 0 00
a mitial: place token 000 0
@T final: accept token 0010
entries in {0, 1}
£>

1 at (4,7) iff ¢

20/ 26



Labelled Transition Systems: invertible

Model computational behaviour of reversible systems
e.g. logic gates, electronic circuits, processor architectures
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Labelled Transition Systems: invertible

Model computational behaviour of reversible systems
e.g. logic gates, electronic circuits, processor architectures

~ a,¢ b states: one at a time
cO—=® N
b a transitions: can ‘undo’
C C
w [ initial: place token

a
p & %)\5 . final: accept token



Labelled Transition Systems: invertible

Model computational behaviour of reversible systems
e.g. logic gates, electronic circuits, processor architectures

a,c b g . . it bt e
\® @Q states: one at a time permutation matrices
G o .

b w a [ transitions: can ‘undo’ 0100
C C

1

a initial: place token 0
—_—

y O @c \5 . final: accept token

o O O
= o O
O = O

entries in {0, 1}
one 1 per row/column



Labelled Transition Systems: probabilistic

Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence
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Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence

ml3) mlglr nmo states: convex weights
CO=—=@"
L transitions: stochastic
r m[1],1 o . . .
H * initial: distribution
@ final: threshold
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Labelled Transition Systems: probabilistic

Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence

m[é mlglr ™ states: convex weights stochastic matrices
®<;@D o . 11 1
! transitions: stochastic 5 71 1
|| mlEl - o 010
H initial: distribution 00 1
C/@ final: threshold entries in [0, 1]

L,m rows sum to 1

N
%]

™)



Labelled Transition Systems: quantum

Model computational behaviour of quantum-mechanical systems
e.g. quantum computation, quantum communication
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e.g. quantum computation, quantum communication

p ¢ 0 states: complex weights
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Labelled Transition Systems: quantum

Model computational behaviour of quantum-mechanical systems
e.g. quantum computation, quantum communication

bQ 0 gb states: complex weights hermitian matrices
O=—®

al~d transitions: stochastic <0 —i>
i 0
initial: distribution
entries in C
final: threshold



Approximating Labelled Transition Systems

Identify (bisimilar) states:
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Approximating Labelled Transition Systems

Identify (bisimilar) states:
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Algebraic dualisation

Linking transitions ~» multiplying transition matrices
Reversing transitions ~- transposing transition matrices

All possible runs ~ (C*-algebra generated by transition matrices
(subset B(H) closed under addition, multiplication, adjoint, limits)

Transitions ~+ observable properties

State space X ~» C*-algebra C'(X) = {f: X — C}
Quotient ~ subalgebra

Warning: different terminology states
Warning: duality up to trace semantics
Nevertheless: approximate transition system

commutative sublanguage?

) “Minimization via duality”
@& LNCS 7456:191-205, WoLLIC 2012




Conclusion

Questions:

» Approximate transition systems
» Universal construction C(C(A))
> Solve domain equations

» Recognize structure of A from C(A) (e.g. postliminal, AW*)



