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Proposal

An alternative algorithm for amplitude amplification such that
– the number of iterations is not specified beforehand and
– it keeps the quantum speed-up: O

(
1/√ρ

)
oracle queries.

Our approach uses a while loop: after every iteration, we test
a condition by applying a weak measurement. Once the con-
dition is satisfied, the algorithm succeeds.

Background

Amplitude amplification. Let B be a finite set and let
χ : B → {0, 1} be the oracle function that characterises a
marked subset of B. Define Hilbert spaces

Hi = span{b ∈ B | χ(b) = i}
for i ∈ {0, 1} and H = H0 ⊕H1. Choose some |ψ〉 ∈ H as the
initial state. The task, starting from |ψ〉, is to return a state in
H1 with probability close to 1.
Write P1 for the orthogonal projection onto H1 and

ρ = 〈ψ|P1|ψ〉
for the initial success probability. The algorithm is efficient if
its expected number of queries to χ is O

(
1/√ρ

)
.

Aweak measurement “gives very little information about the
system on average, but also disturbs the state very little” [1]
Let P = span{⊥,>} be a Hilbert space known as the probe. A
weak measurement on |φ〉 ∈ H is achieved by applying a unitary

Eκ : H⊗P → H⊗P
on state |φ〉⊗|⊥〉 and then measuring only the probe. Parameter
κ ∈ [0, 1] determines the strength of the measurement.

Eκ = P0 ⊗ IP + P1 ⊗Rκ

Rκ =
√1− κ
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Our Algorithm

Consider the decomposition
|ψ〉 = cosα|ψ0〉 + sinα|ψ1〉

where |ψi〉 = Pi|ψ〉. For any iteration n, we find (2) the corre-
sponding angle an that describes the current state.

Here, UB is the isomorphismH⊗P → H⊕H separating ⊥ from
>. Qχ is the unitary applied on each iteration of the standard
algorithm; it increases the angle by 2α. Eκ is given in (1) and it
is part of a weak measurement. With probability

p> = κ sin2 an

the outcome is > and a marked element is found. Otherwise, the
angle is reduced by some θn and we keep iterating.

an+1 = an + 2α− θn
a0 = α ≈ √ρ. (2)

The value of θn can be calculated using trigonometry. We prove
κ ≤ √ρ ⇒ |θn| ≤ α. (3)

implying the angle an increases at a steady pace throughout the
iterations. We argue that, for roughly half of the iterations,
sin2 an ≥ 1/2 so that p> ≥ κ/2.
The algorithm succeeds as soon as > is measured, hence, the
number of iterations our algorithm takes follows a geometric dis-
tribution; its expected value is µ = 4/κ. Finally, by imposing

κ = √ρ (4)
we achieve a query complexity of O

(
1/√ρ

)
.
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Previous Work

In the standard algorithm, the number of iterations is fixed to
K = π

4√ρ. In contrast, the number of iterations is not prede-
termined in our approach, but instead the strength of the mea-
surement is set to κ = √ρ. In either case, we must define some
parameter according to the value of ρ.
We later found out a paper [2] proposing essentially the same
algorithm as ours, although they do not discuss it from the per-
spective of while loops and weak measurements.

Alternative: test-restart approach

Weak measurements may be replaced by the following procedure:
1. pick a random number r ∈ [0, 1] from a uniform distribution,
2. if and only if r ≤ κ, apply a projective measurement on H.

If the outcome of the measurement is a marked element, the
algorithm succeeds. Otherwise, the state is initialised to |ψ〉 and
the algorithm restarts.
The number of iterations between restarts follows a geometric
distribution with µ = 1/κ. For κ = √ρ, this is close to the π

4√ρ
iterations required in standard amplitude amplification.
It follows that the average query complexity matches O

(
1/√ρ

)
.

Further statistical analysis has shown that the variance of the
number of queries also roughly matches that of our weak mea-
surement approach.
We conclude that weak measurements are not providing an al-
gorithmic advantage. However, there might be other benefits to
using them: namely, experimental realisation, as discussed below.

Next Step: continuous measurement

A weak measurement is a natural procedure in a laboratory. How-
ever, our weak measurements are applied at discrete points in
time, while the simplest experimental realisation would have the
probe under continuous measurement.
We intend to study whether our algorithm can be adapted to the
continuous-time setting while maintaining the quantum speed-up.
The main obstacle may be the quantum Zeno effect.
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