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page line read should be

ix 20 between sets relations between
sets,

between sets, relations between
sets,

10 29 idD idD

16 5 ⟨a|a⟩ = 0 =⇒ v = 0 ⟨a|a⟩ = 0 =⇒ a = 0

17 -7 ∥u∥U = ∥u∥H ∥u∥U = ∥u∥V
25 -4 mixed state has become mixed state has become ex-

pressed as

39 15 the monoidal dagger category the monoidal category

42 6

idH⊗L 0

0 −idK⊗M

 σH⊗L 0

0 −σK⊗M


42 6

idH⊗M 0

0 idK⊗L

  0 σK⊗L

σH⊗M 0


47 (1.31) γ σ

48 -13 not every monoidal is
monoidally

not every monoidal category is
monoidally

65 17 0C,A 0C,B

71 6 ≡


f11 f21 · · · fM1

f12 f22 · · · fM1

...
...

. . .
...

f1N f2N · · · fMN

 ≡


f11 f21 · · · fM1

f12 f22 · · · fM2

...
...

. . .
...

f1N f2N · · · fMN


71 4 where A1, . . . AM and where A1, . . . , AM and

84 5 =


idI 0I,I · · · 0I,Inn

0I,I idI · · · 0I,I
...

...
. . .

...

0I,I 0I,I · · · idI

 =


idI 0I,I · · · 0I,I

0I,I idI · · · 0I,I
...

...
. . .

...

0I,I 0I,I · · · idI


84 -3 a complete disjoint set effects a complete disjoint set of effects

85 6 a finite complete set of effects a finite complete disjoint set of
effects

90 4 we draw an object L we draw a left-dual L
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91 13 definitions of η and ε given pre-
viously are no good, as they do
not

definition of ε given previously is
no good, as it does not

99 (3.11) (It might be called the snail equation.)

102 7 ∪2× 2 ⊆ 2× 2

103 2
(3.14)
= =

103 12 by Lemma 3.193.19. by Lemma 3.19(b).

108 3 second
(3.9)
= by naturality of π.

114–121 (9 times) dagger pivotal category pivotal dagger category

120 1 for a Hilbert space H for a Hilbert space A

121 -1 in a braided pivotal category. .

124 -3 dagger compact category compact dagger category

125 9 monoidal dagger category braided monoidal dagger cate-
gory

125 10 dim(L)† = dim(R). dim(L)† = dim(R), defined as in
Exercise 3.7.

125 -11 Show that the scalars are the
Boolean semiring.

Show that this is a well-defined
monoidal category under tensor
product of vector spaces, and
that the scalars are the Boolean
semiring.

125 -10, -6 dagger compact category compact dagger category

125 -4 the square of the the

126 -5 Kaufmann Kauffman

128 6 if should not matter it should not matter

129 10 g ∼ (k, k−1g) g ∼ (k−1g, k)

132 -2 correspond bijectively to

statesI
⌜f⌝−−→ A∗ ⊗A.

correspond bijectively to states

I
⌜f⌝−−→ A∗ ⊗A.

132 -1 operators transfers tostates operators transfers to states

134 8
(4.13)
=

R R

(4.13)
=

R R

137 -9 d1(•) = (•, •) = ρ1(•) dI(•) = (•, •) = ρ−1
I (•)

138 11 Associativity (4.4) and commu-
tativity (4.6)

Coassociativity (4.2) and cocom-
mutativity (4.1)
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140 11, 15
f f

143 4 Exercise 4.4 Should move to Chapter 3

152 6 has a canonical involutive
structure. The opposite
monoid arises from the op-
posite groupoid

has a canonical involutive struc-
ture if we additionally define
the opposite monoid to have
multiplication m∗ ◦ σ. Mod-
ulo this change, the opposite
monoid arises from the opposite
groupoid.

154 -2 comultiplication associativity comultiplication, associativity of
the multiplication

155 -1

B

=

B

f (5.14)

B

=

B

f−1
(5.14)

156 1 Proof. Straightforward graphi-
cal manipulation. □

(no proposi-
tion/theorem/lemma to be
proved.)

162–188 (6 times) dagger pivotal category pivotal dagger category

163 -15 with |ij⟩ ∈ (A⊗B)∗. with ⟨ij| ∈ (A⊗B)∗.

168 -11 A ≃
∑

i B(C, ki) A ≃
⊕

i B(C, ki)

170 -17 is special and. is special and,

170 -2 classical structure Frobenius structure

173 13 dagger speciality condition (5.5) speciality condition (5.5)

176 -3

f

f

=

f

f

f

f

=

f

f

184 6 Thes conditions These conditions
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184 12 if a ∼ b and a ∼ b′ then if (g, a) ∼ b and (g, a) ∼ b′ then

184 13 if a ∼ b and a′ ∼ b then if (g, a) ∼ b and (g, a′) ∼ b then

184 13 to a ∼ b and a ∼ b′ to get to (g, a) ∼ b and (g, a) ∼ b′ to
get

186 -3 dagger monoidal category monoidal dagger category

188 -11 expression (5.53) expression (5.52)

188 -10 for some invertible scalar k for some invertible scalar k′

188 -4 we see that (5.53) is unitary we see that (5.52) is unitary

188 -3 makes (5.53) unitary makes (5.52) unitary

188 -2 scalar factor k. scalar factor k′.

188 -2 as the adjoint of (5.53), as the adjoint of (5.52),

189 -1
(5.43)
= k′−1

k′

k′†

u

m

m

m

(5.43)
= k′−1

k′

k′†

u

m

m

m

190 2 the fact that (5.53) is unitary. the fact that (5.52) is unitary.

198 1 (6.8) (6.8)

199 -2 the set of A morphisms of G the set A of morphisms of G

200 4 then a = φ′
g(h) for then a = φg′(h) for

205 5 classical structures FHilb are classical structures in FHilb are

219 10 without ado without further ado

232 -3 dagger ribbon category ribbon dagger category
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236 -8

A

A

B

B C D

DC

f g

A

A

C

C B D

DB

f g

236 -8

DA

A D

B

B C

C

√
f

√
f

√
g

√
g

DA

A D

C

C B

B

√
f

√
f

√
g

√
g

237 -9 Putting a cap on the top left and
a cup on the bottom right, we
see that this is equivalent to

Unfolding Theorem 7.18, we see
that this is equivalent to

240 -4 = : L⊗R I = : R⊗ L I

240 -4 = : R⊗ L I = : I L⊗R

245 5 = s−1 • = s−1 •

247 1 f f

248 3 epimorhic monomorphic

250 -1

A⊗B

(A⊗B)

=

A

A

A

A

A⊗B

(A⊗B)

=

A

A

B

B

255 4 in C in C are in C are

261 -11

X
B∗ B

A∗ A

ff

X
B∗ B

A∗ A

ff
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267 -7 idB in the last displayed equa-
tion

idA

270 1 Q(C) T (C)

277 9 πB,A ◦ idσA⊠B
= idσB⊠A

◦ πA,B πB,A ◦ idσA,B
= idσB,A

◦ πA,B

286 -10 Equivalent to FHilbn Equivalent to FHilb[n]

288 -15 Tj ≃ Sτ(j) Ti ≃ Sτ(j)

288 -4 full subcategory category full subcategory

289 16 ft(t
′) = 0 St(t

′) = 0

290 8 FHilbn FHilb[n]

299 -18 oriented duality on 2FHilb[n] in oriented duality on FHilb[n] in

299 -15 of an orthonormal basis for of an orthogonal basis for

299 -1 dagger duality on 2FHilb in-
duces

dagger duality on FHilb[n] in-
duces

304 -13 if the fifth is the fifth

305 (8.42)

M

C

M

M

C

M

310 2 H H

313 [14], [15] duplicated

317 [89], [90] Kaufmann Kauffman
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