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Abstract. Themicrocosm principleadvocated by Baez and Dolan and formal-
ized for Lawvere theories lately by three of the authors, has been apploel-
gebras in order to describe compositional behavior systematically. wkefar-
ther illustrate the usefulness of the approach by extending it to a matgdsat-
ting. Then we can show that the coalgebraic component calculi of Bardu@ ex-
amples, with compositionality of behavior following from microcosm strugtur
The algebraic structure on these coalgebraic components corrasjporatiants
of Hughes’ notion ofarrow, introduced to organize computations in functional
programming.

1 Introduction

Arguably the most effective countermeasure against tedgsowing complexity of
computer systems imodularity. one should be able to derive the behavior of the to-
tal system from that of its constituent parts. Parts thatewdgveloped and tested in
isolation can then safely be composed into bigger systeikewlise, one would like to
be able to prove statements about the compound system baggdafs of substate-
ments about the parts. Therefore, the theoretical modelddhat the very least be such
that their behavior is compositional.

This is easier said than done, especially in the presencerafucrency, that is,
when systems can be composed in parallel as well as in segjuEmMeEMicrocosm prin-
ciple [1, 14] brings some order to the situation. Roughly speakamgnpositionality
means that the behavior of a compound system is the compositithe components’
behaviors. The microcosm principle then observes that ¢ing definition of compo-
sition of behaviors depends on composition of systems,igiray an intrinsic link be-
tween the two.

The present article gives a rigorous analysis of compasitity of components
as sketched above. Considering models@algebras we study Barbosa’s calculi of
component§2, 3] as coalgebras with specified input and output intega&xplicitly, a
component is a coalgebra for the endofunttor

Frj=(T(J x_))": Set — Set, 1)

* Research funded by the Austrian Science Fund (FWF) Project NdL2B)0
5 Note that the functoF, ; also depends on the choice of the param@teso could have been
denoted e.g. by ;. We shall not do so for simplicity of presentation.



wherel is the set of possible input, anthat of output. The computational effect of the
component is modeled by a mon@&das is customary in functional programming [25].
The monadl’ can capture features such as finite or unbounded non-deisrm({l” =
P.,, P); possible non-terminatiol{= 1 + _); global states® = (S x _)*); proba-
bilistic branching or combinations of these.

To accommodate component calculi, the surrounding migmateeds to bmany-
sorted After all, composing components sequentially requires the output of the
first and the input of the second match up. This is elaboratdd §2. The contribution
of the present article is twofold:

— arigorous development of a many-sorted microcosm priaciplg4;
— an application of the many-sorted microcosm framework tmponent calculi,
in §5.

It turns out that components &% ;-coalgebras carry algebraic structure that is a
variant of Hughes’ notion aérrow [15, 20]® Arrows, generalizing monads, have been
used to model structured computations in semantics of ifumealt programming. 11§5
we will prove that components indeed carry such arrow-likecsure; however the
calculation is overwhelming as it is. To aid the calculatiore exploit the fact that
a Kleisli categoryK¢(T')—where the calculation takes place—also carries the same
arrow-like structure. This allows us to use the axiomaiirabf the (shared) structure
as an “internal language.”

2 Leading example: sequential composition

We shall exhibit, using the following example, the kind ofeplomena in component
calculi that we are interested in.

For simplicity we assume that we have no effectin compon@ets’ = Id, F; ; =
(J x_)T). Coalgebras for this functor are callstbaly machinessee e.qg. [8]. A promi-
nent operation in component calculisequential compositigror pipeline It attaches
two components with matching I/O interfaces, one after lagrot

(L - g ) T 2)

Let X andY be the state spaces of the componeraadd, respectively. The resulting
component >3 ; i d has the state spacé x Y;’ given inputi € I, firstc produces
outputj € J that is fed into the input port of. More precisely, we can define the
coalgebrac > ; k d to be the adjoint transposg x ¥ — (K x X x Y)! of the
following function.

IxXxY Z I X x (KxY) ¥ Kx X xY ©)
Here¢ : I x X — J x X is the adjoint transpose of the coalgeltaandev; :
J x (K xY)?7 — K x Y is the obvious evaluation function.

8 Throughout the paper the word “arrow” always refers to Hughesion. An “arrow” in a
category (as opposed to an object) will be always calletbgohism

" We will use the infix notation for the operatiass>. The symbolss> is taken from that for
(Hughes’) arrows, whose relevance is explainegbn



An important ingredient in the theory of coalgebra is “beébav px _ _ 5 py
by-coinduction” [19]: when a state-based system is viewedm ct finalt=
F-coalgebra, then final F-coalgebra (which very often exists) con-X 7 - (*c)ﬁ Z
sists of all the “behaviors” of systems of type Moreover, the mor-
phism induced by finality is the “behavior map”: it carriestate of a system to its
behavior. This view is also valid in the current example.

Afinal F; j-coalgebra—wherd; ; = (J x _)!—is carried by the set of stream
functions/¥ — J“ which arecausal meaning that the-th letter of the output stream
only depends on the first letters of the input. It conforms to our intuition: the “be-
havior” of such a component is what we see as an output strd@n an input stream
is fed. The final coalgebra is concretely as follows.

Crg e AN — Fr(Zry) = (JxZrg)!
(t:1° — J¥ causa) +— X (head(t(i-7)), A’ tail(t(i-i'))) .

Herei - 7 is a letteri € I followed by an arbitrary strear the value ofhead(¢(i - 7))
does not depend arsincet is causal.

Then there naturally arises a “sequential compositionraijpen that is different
from (2): it acts onbehaviorsof components, simply composing two behaviors of
matching types.

S>10K AN X 45K — A

s

(1 5ge, J* LK) — ¢S50 LK @)

The following observation—regarding the two operationsd@) (4)—is crucial
for our behavioral view on component calculi. The “inner’epgtion (4), although
it naturally arises by looking at stream functions, is intfamluced by the “outer”
operation (2). Specifically, it arises as the behavior maptHe (outer) composition
Cr,g >>1 5,1 (1,k Of two final coalgebras.

Frx(Zr,g X Zsk) — - Frx(Zrk)

" == I
Cr0>> G| final[¢rx e LK )
21,0 X 23k ——— — > 41K K
=>1,0,K

Here the coalgebrg ;> (; x has a state spacty ; x Z; i due to the definition (3).
As to the two operations (2) and (4), we can

ask a further question: are they compatible, in/ L: , -

the sense that the the diagram on the right com( )

mutes? One can think of this compatibility prop-

erty as a mathematical formulation obmposi- [eh x ben beh|

tionality, a fundamental property in the theory of - = o o & gy 22 oo go t o

8 This is how they are formalized in [28]. Equivalent formulations aresteieg functions’* —
J* that are length-preserving and prefix-closed [26]; and as funcfions- J wherel™ is
the set of strings of lengthk 1.

® The diagram is simplified for brevity. To be precise, the coalgebraisd d must have their
states (say andy) specified; these states are mapped to the &tatg of ¢ > d.



processes/components. The characterization of the inpreaton by finality (5) is re-
markably useful here; finality immediately yields a positanswer.

In fact, themicrocosm principlaés the mathematical structure that has been behind
the story. It refers to the phenomenon that the same algestraicture is carried by a
categoryC and by an objecX € C, a prototypical example being monoid object
in a monoidal categorysee e.g. [24§VI11.3]). In [14] we presented another example
eminent in the process theory: parallel composition of twalgebras for the same
signature functor, as well as parallel composition of theinaviors. Our story so far is
yet another example—taken from component calculi—with its feature being that
the algebraic structure is many-sorted. In the rest of tipepae develop a categorical
language for describing the situation, and proving reaabisut it. Among them is the
one that ensures compositionality for a wide class of corapbaalculi.

3 FP-theory

3.1 Presenting algebraic structure as a category

A component calculus—consisting of operations like and of equations like associa-
tivity of >=s>—is an instance oélgebraic specificationSo are (the specifications for)
monoids, groups, as well as process calculi such as CCS. @wmmpcalculi are dif-
ferent from the other examples here, in that theyraamy-sortedSuch a many-sorted
algebraic specification consists of

— asetS of sorts

— a setX of operations Each operatiom € X' is equipped with itsn-arity inar(o)
given by a finite sequence of sorts (denoted as a formal ptdtjug --- x S,,),
and itsout-arity outar(o) that is some sorf € S;

— and a sef of equations.

A straightforward presentation of such is simply as a tygler, E) (see e.g. [18]).
In this paper we prefer a different, categorical presematif algebraic structure.
The idea is that an algebraic specification induces a catdguiith:

— all the finite sequences of soifs x - -- x S, as its objects;

— operationss € ¥ as morphismsnar(c) % outar(c). Additionally, projections
(such asm : S; x Sy — S7) and diagonals (such g&l,id) : S — S x S) are
morphisms. So are (formal) products of two morphisms, qujogpthe categoriL
with finite products. Besides we can compose morphisms ircabegorylL; that
makes the morphisms ininduced by théermswith operations taken frory’;

— an equation as a commutative diagram, modulo which we
take quotients of terms (as morphismslih For example, 3’%12
whenS = {x} andm is a binary operation, its associativitydxmJ. tm (6)
m(z,m(y,z)) = m(m(z,y),z) amounts to the diagram on 2 "1
the right.

In fact, what is represented ly above is not an algebraic specification itself but its
clone(see e.g. [10]). In categorical terms, the constructioaksg a free finite-product



category from the objects i and the arrows i modulo the equations induced by
E. See [18§3.3] for details.

In a one-sorted setting—where arities (objectdlyfare identified with natural
numbers by taking their length—such a categitwys called aLawvere theory(see
e.g. [14,16,22]). In a many-sorted setting, such a categergay a “many-sorted Law-
vere theory"—is usually called fenite-product theoryor anFP-theory see e.g. [4,5].

Definition 3.1 (FP-theory) An FP-theoryis a category with finite products.

The idea of such categorical presentation of algebraicire originated in [22].
Significant about the approach is that one has a model as #func

Definition 3.2 (Set-theoretic model)Let . be an FP-theory. Aset-theoretic) model
of L is a finite-product-preserving-P-preserving functor X : . — Set into the
categorySet of sets and functions.

Later in Def. 4.1 we introduce the notion cdtegorywith IL-structure—this is the kind
of models of our interest—based on this standard definition.

To illustrate Def. 3.2 in a one-sorted setting, think aboubperatior2 — 1 which
satisfies associativity (6). Let the imagg1) of 1 € LL be simply denoted by; then
2 =1 x 1 € L. must be mapped to the s& by FP-preservation. By functoriality the
morphismm is mapped to a morphisiY (m) : X? — X in Set, which we denote
by [m] x. This yields a binary operation on the sét Moreover, the associativity dia-
gram (6) inLL is carried to a commutative diagram$et; this expresses associativity
of the interpretatiorim] x.

WhenL arises from a many-sorted algebraic specification, it isansingle set
X that carriedL-structure; we have a family of sefsX(S)}scs—one for each sort
S—as a carrier. By FP-preservation this extends to interfioetaf products of sorts:
X(S1 X+ x Sp) 2 X(51) x -+ x X(Sy,). In this way an operation is interpreted
with its desired domain and codomain.

Remark 3.3 Lawvere theorieendmonadsare the two major ways to represent alge-
braic structure in category theory (see [16]). Both allovaightforward extension to
the many-sorted setting: the former to FP-theories andatterito monads on functor
categories (mostly presheaf categories). For the purpideeroalizing the microcosm
principle we find the former more useful. Its representatiimdependent from the
domain where the structure is interpreted; hence we carkgfés models in two dif-
ferent domains, as is the case with the microcosm principleontrast, a monad on a
categoryC specifies algebraic structure (i.e. Eilenberg-Moore aig€bthat is neces-
sarily carried by an object .

3.2 The FP-theoryPLTh

We now present a specific FP-theory; this is our working exanvie list its sorts, oper-
ations and equations; these altogether induce an FP-tirethrg way that we sketched
above. We denote the resulting FP-theorylBlyTh. Later in§5 we will see that this



FP-theory represents Hughes' notioraofow, without itsfirst operation. One can think
of PLTh as a basic component calculus modeling pipelines (PL fqrefpie”).

Assumption 3.4 Throughout the rest of the paper we fix a base cateffoty be a
cartesian subcategory (i.e. closed under finite produétSee. Its object/ € B is a
set that can play a role of an interface. Its morphism/ — J—it is a set-theoretic
function—represents a “stateless” computation froito .J that can be realized by a
component with a single state.

— The sortsS = {(I,J) | I, J € B}. Hence an object dPLTh can be written as a
formal product(ly, J1) X - -+ X (I, Jm). We denote the nullary product (i.e. the
terminal object) byi € PLTh;

— the operations:

s>k (I,J)x (LK) — (I,K) sequential composition
arr f 1 — (I,J) pure function

for each object/, J, K € B and each morphisnf : I — J in B. Sequential
composition is illustrated in (2). The component f, intuitively, has a singleton

as its state space and realizes “stateless” processingansniaa :
— the equations:
e associativity:

a:(I,J),b: (J,K),c: (K,L) F a>>(b>>c¢)=(a>>b) >>c¢
(>>-AssoQ
for eachl, J, K, L. € B, omitting the obvious subscripts fors>, i.e.

=>>1.0,K X (K7L)
(Iv‘]) X (']vK) X (KvL) — (IvK) X (KvL)
(I,J) x >>5Kk,0l I>>r1 kL

(1) % (1) (1, L)

e preservation of compositiofior each composable pair of morphists I —
Jandg:J — KinB,

0 arr(gof)=arf>>arg (arr-FUNC1)

arr f Xarrg

wheref) denotes the empty context. On the rightt ———= (I, J) x (J, K)

is the corresponding diagram. m 1>k

(I, K)
o preservation of identitiedor each/, J € B,

a:(I,J) F arridy > 5a=a=a>3>y arridy . (arr-FUNC2)

For this FP-theory, the model of our interest is carried bgraily of categoriesnamely
the categoryCoalg(F7 ;) for each sor{!, J). Formalization of such anuter model
carried by categories, together with that ofianer modelcarried by final coalgebras,
is the main topic of the next section.



4 Microcosm model of an FP-theory

In this section we present our formalizationmicrocosm model®or an FP-theoryL. It
is about nested models bf the outer onel(-category carried by a family{ C(S)} scs
of categories; the inner onkA{objec) carried by a family{ X5 € C(S)} ses of objects.
We shall use the formalization to prove a compositionaktsult (Thm. 4.6).

In fact our formalization is essentially the one in our powd work [14]. Due to
the space limit we cannot afford sufficient illustration afreseemingly complicated
2-categorical definitions. The reader is suggested to hb4e$B] as her companion;
the thesis [13, Chap. 5] of one of the authors has a more détadcount. What is new
here, compared to [14], is the following.

— The algebraic structure of our interest is now many-sodederalizingl. from a
Lawvere theory to an FP-theory.

— Now our framework accommodates categories with “pseudgélaiaic structure,
such as (not strict) monoidal categories. We cannot avasgdighue in the current
paper, because the concrete model that we deal with is inofeseth a kind with
pseudo algebraic structure.

We will depend heavily on 2-categorical notions such as gedunctors, lax natural
transformations, etc. For these notions the reader isresféo [9].

4.1 Outer model:L-category

Take the functod; ; = (T'(J x _))*, for which coalgebras are components (§&g
We would like that the categori€@Coalg(F7s,5)}1,7e3 model PLTh, the algebraic
structure for pipelines i§3.2. That is, we need functors

[>1,5k] : Coalg(Fr,;) x Coalg(F; k) — Coalg(Fi k) foreachl,J K € B,
[arr £] : 1 — Coalg(Fr1,5) for each morphisnyf : I — Jin B,

wherel is a (chosen) terminal category. Moreover these functorst satisfy the three
classes of equations ®fLTh in §3.2. One gets pretty close to the desired definition of
such “category witH_-structure” by replacing “sets” by “categories” in Def. 3That
is, by havingCAT—the 2-category of locally small categories, functors antlinaé
transformations—in place &et. In fact we did so in our previous work [14].
However in our coalgebraic modeling of components we wanaggns to be sat-
isfied not up-to identity, but up-to (coherent) isomorplssiror example, consider the
functor[>>>; ; x| above, in particular how it acts on the carrier sets of cdalae By
the definition in§2 it carries(X,Y") to X x Y; and this operation is associative only up-
to isomorphism. This requirement of “satisfaction up-to’ialso applies to monoidal
categories; below is how associativity (on the left) is extpd to be interpreted, in a
monoid and in a monoidal category.

inL,  gldX®, inSet 3 [m( X2 in CAT (s M C2
mxid] 7 lm  [mxidlx] »  |Imlx Imxidlel Z  |Imlc
2——1 X2 —— X c2——C

[mlx [m]
T (z2-23) = (T1-22) 23 X1 @ (X2 X3) S (X1 ® X2) ® X3
)

IR a




Our approach to such “pseudo algebras” is to relax fundteemantics (Def. 3.2)
into pseudo functorial semanticge. replacing functor byseudo functorThe idea
has been previously mentioned in [18.3] and [13,55.3.3]; now it has been made
rigorous.

Definition 4.1 (L-category) An LL-categoryis a pseudo functof : L. — CAT which
is “FP-preserving” in the following sengé:

1. the canonical mafCry, Cmra) : C(A; x Ay) — C(A;1) xC(As) is anisomorphism
foreachA4,, A; € L;

2. the canonical ma@(1) — 1 is an isomorphism;

3. it preserves identities up-to identit§{id) = id;

4. it preserves pre- and post-composition of identitiesaifentity: C(id o a) =
C(a) = C(a oid);

5. it preserves composition of the form o a up-to identity:C(r; o a) = C(m;) o
C(a). Herer; : Ay x Ay — A; is a projection.

We shall often denot€’s actionC(a) on a morphisna by [a]c.

In the definition, what it means exactly to be “FP-preserVia@ delicate issue; for the
current purpose of representing pseudo algebras, we fdwndonditions above to be
the right ones. It is justified by the following result.

Proposition 4.2 Let us denote bMonTh the Lawvere theory for monoids. The 2-
categoryMonCAT of monoidal categories, strong monoidal functors and mdaloi
transformations is equivalent to the 2-categonhibnTh-categories with suitable 1-
and 2-cells.

Proof. The proof involves overwhelming details. It is deferred1@]} where a general
result—not only for the specification for monoids but for afyedraic specification—
is proved. ad

What the last proposition asserts is stronger than merefpkstiing abiequivalence
between the two 2-categories, a claim one would expect frgmtiee coherence result
for monoidal categories. See [12] for more details about Bef and Prop. 4.2; and
see [1355.3.3] how pseudo functoriality yields the mediating isoeltin (7).

Remark 4.3 There have been different approaches to formalization sétipo alge-

bra.” A traditional one (e.g. in [7]) is to find a suitable 2-naml which already takes
pseudo satisfaction of equations into account. Anotherietyy a Lawvere 2-theory,

which also includes explicitly the isomorphism up-to whiefuations are satisfied
(see [21]). Neither of them looks quite suitable for the mémsm principle: we want
a single representation of algebraic structure interdratéce; with only the outer one
satisfying equations up-to isomorphisms.

10 To be precise, each of the conditions 3-5 means that the corresponelitigting isomorphism
(as part of the definition of a pseudo functor) is actually the identity.



The same idea as ours has been pursued by a few other autbgas[29] defines
pseudo algebras as pseudo functors,mamnoidaltheories (as opposed tartesian
theories in our case), with applications to conformal figlelary. Fiore’s definition [11]
is equivalent to ours, but its aspect as a pseudo functottismphasized there.

4.2 Inner model: L-object

Once we have an outer modél of I, we can define the notion
of inner model inC. It is a family of objects{ Xs € C(S)}ses
which carriedL-structure in the same way as a monoid in a monoig: Ux CAT
category does [24VI1.3]. We have seen i§2 that final coalgebras C

carry such an inner model and realize composition of belhgwvio

1

Definition 4.4 (L-object) Let C : . — CAT be anlL-category. AnL-objectin C is
a lax natural transformatioX as in the diagram above, which is “FP-preserving” in
the sense that: it is strictly natural with regard to prdjsts (see [14, Def. 3.4]). Here
1: L — CAT denotes the constant functor into a (chosen) terminal oatdg

An LL-object is also called mnicrocosm modebf I, emphasizing that it is a model
that resides in another modegl

The definition is abstract and it is hard to grasp how it worka glance. While the
reader is referred to [13, 14] for its illustration, we shadint out its highlights.
An L-object X, as a lax natural transformation, iy,  in CAT

X ) ] X
consists of the following data: 4 1 AL A

— its componentsX4 : 1 — C(A), identified with la 7 x, Yl
; . B 1———C(B)
objectsX 4 € C(A), for eachd € L; X5
— mediating 2-cellsX,, as shown on the right, for each morphisrim L.

Generalizing the illustration in [13, 14] one immediatedes that

— X's components are determined by thds€s}scs on sorts. They extend to an
objectS; x --- x S, by:

C(Sl XX Sm) = XS1><---><S,” — (XS17~ .. ,Xsm) S (C(Sl) XX (C(Sm) ;

— an operation is interpreted onX by means of the mediating 2-cetl, ;

— equations hold due to the coherence condition on the medidtcells: X}, must
be given by a suitable composition &f, and X,,. In [14, Expl. 3.5] we demonstrate
how this coherence condition derives associativity of iplittation for a monoid
object (in a monoidal category).

4.3 Categorical compositionality

Here we shall present a main technical result, namely thepositionality theorem
(Thm. 4.6). It is a straightforward many-sorted adaptatibfii4, Thm. 3.9]; to which
refer for more illustration of the result.



Definition 4.5 (L-functor) LetC, D belL-categories. Aax L-functorF : C — Disa
lax natural transformatiof’ : C = D : . — CAT that is FP-preserving in the same
sense as in Def. 4.4. Similarlystrict L-functoris a strict natural transformation of the
same type.

A lax/strictL-functor determines, as its components, a family of furscsféty : C(A) —
D(A)} acL. Much like the case for afi-object, it is determined by the components
{Fs : C(S) — D(S)}ses on sorts.

Theorem 4.6 (Compositionality) Let C be anlL-category, andF’ : C — C be a lax
L-functor. Assume that there is a final coalgelra: Z, = Fy(Z4) foreachA € L.

1. The family{ Coalg(F 1)} ac1. carries anlL-category.

2. The family{¢4 € Coalg(F4)} ac1. carries a microcosm model &f.
3. The family{C(A)/Z 4} acL of slice categories carries dh-category.
4

. The family of functorgbehy : Coalg(F4) — FaX — — > Fa(Za)
C(A)/Z A} acL, Wherebeh 4 is defined by coinduc- cT finatf-=
tion (see on the right), carries a striét-functor. Y (;)% Za

Proof. The proof is an adaptation of that of [14, Thm. 3.9]; howevénvolves addi-
tional coherence requirements due to the relaxed definitidricategories. A detailed
proof is found in [12]. O

An informal reading of the theorem is as follows. To get a &iinterpretation of a
component calculuk by F-coalgebras, it suffices to check that

— the base categorg modelsL, and
— the functorF is “lax-compatible” withL.

These data interprét on the category of coalgebras, yielding composition of comp
nents (Point 1.). Final coalgebras acquire canonical ifinstructure, yielding com-

position of behaviors (2.). Finally, relating the two imegtations, compositionality is
guaranteed (4.).

5 Taxonomy of FP-theories for component calculi

Up to now we have kept an FP-thedtyas a parameter and have developed a uniform
framework. Now we turn to: concrete models (components afgebras); and three
concrete FP-theoridBLTh, ArrTh andM ArrTh that express basic component cal-
culi. The latter two are equipped with different “parallensposition” operations.

Notably the algebraic structure expressed\awyTh is that of (Hughes arrow [15],
equivalently that ofreyd categorie$23], the notions introduced for modeling struc-
tured computations in functional programming.

The main result in this section is that the categofi€®alg(Fr ;)}r,,—modeling
components—carnArrTh-structure. If additionally the effect monad is commu-
tative, then{Coalg(F; )} s a forteriori carries the strongévIArrTh-structure.
These results parallel classic results in categorical s&osaof functional program-
ming, investigating (pre)monoidal structure of a Kleisiegory.



5.1 The FP-theoriesArrTh, MArrTh

We shall add, to the FP-theo®LTh in §3.2, a suitable “parallel composition” op-
eration and equational axioms to obtain the FP-thebryTh. By imposing stronger
equational axioms we get the FP-the®ArrTh.

In Arr'Th one has additionaidelineoperations

I I K
firstLJ’K : (I, J) — (I X K,J X K) s graphically @ flrMK <@ l )
7 J | K

for eachl, J, K € B. The equations regarding these are:
first; y1a > arrm = arrm 3> a (
firstz, g,k @ >> arr(idy x f) = arr(idr X f) >> firsty s a (arr-CENTR)
(firstr, gk xr a) > (arrag x,r) = (arr ar,k, ) > first(firsta) (a-NAT)
firstr, g,k (arr f) = arr(f X idk) (arr-PREMON)
firstI,K,L(a = b) = (firSt[“],L CL) = (firstJ,K,L b) (firSt-FUNC)
In the equationsf denotes a morphism in the base categdrin (o-NAT), thew on the
left is the projectionr : Jx1 = .JinB. In (a-NAT), o’s are associativity isomorphisms
like I x (J x K) = (I x J) x KinB.

Remark 5.1 In fact the equationg-NAT) can be derived for any projection: J x

K — J without requiring Xk’ = 1. However, the special case above has a clearer
role in the corresponding premonoidal structure §®&). Namely, it is the naturality
requirement of the right-unit isomorphismy = arr 7y with 7y : J x 1 = J.

In M ArrTh, instead of the operatiorigst, one has
lroxr: (I,J)x (K,L)— (I x K,J x L) synchronous composition
for eachl, J, K, L. € B. The equations are:
(a]|b)>=>(c||d)=(a=>¢) ] (b>>d) (|I-Funcl)

arridy || arridy = arridrx s (I-Func2)
all (| c)=>arra=arra>=s>(a|b) | c (a-NAT)
(a ]l arridi) 3> arrr = arrm >>a (p-NAT)
arr(f x g) =arrf | arrg (arr-MON)
(a]|b) =>arry=arry>> (b a) (v-NAT)

Herea’s are associativity isomorphisms, ants are projections like/ x 1 = J, as in
ArrTh. The morphisms in (y-NAT) are symmetry isomorphisms likex I = I x.J
in B. One readily derives, fronp(NAT) and ¢-NAT), the equation

(arridy || @) > arrn’ = arr’ >>a (A-NAT)

wheren’’s are (second) projections likex I = 1.

The theoryM ArrTh is stronger thatArr'Th. Indeed, théirst operator inArrTh
can be defined iMArrTh, asifirst; yx a :=a || idk.

The reason that we have tfisst operation inArrTh, instead of| as inMArrTh,
should be noted. Thigrst operation inArrTh yields the operation

secondr sk : (I,J) — (K xI,KxJ) byseconda = arrvy>sfirsta>>arrvy ,



first a > second b; that is, the two systems on the righ

should not be identified. There are indeed many situa-

tions where they are distinct. Assume that we have the gkiatd monad™ = (S'x_

as effect inf7 ;. One can think of a global statec S as residing in the ambience of
components, unlike local/internal states that are insmwhlaponents (i.e. coalgebras).
When a component executes, it changes the current globalasatell as its internal
state; hence the order of executionacdindb does matter. In contrast, when one inter-
pretsMArrTh in {Coalg(Fy, ;)}1.s, the natural axiom|(-FuNc1) requires the two
systems above to be equal.

where~’s are symmetry isomorphisms. But the equ K I
tions in ArrTh do not derivesecond b > firsta = ! ” x
L J
J L
(Sx_)*

5.2 Set-theoretic models: arrows, Freyd categories

The FP-theoriePLTh, ArrTh and MArrTh and their set-theoretic models are
closely related with some notions in semantics of functigmmagramming. Here we
elaborate on the relationship; it will be used for calculasi later ing5.3.

To start with,ArrTh is almost exactly the axiomatization of Hughestow [15]
(specifically the one in [20]), with the only gap explainedRiem. 5.1. The notion of ar-
row generalizes that shonad(modeling effects, i.e. structured output [25,31]) and tha
of comonad(modeling structured input [30]); the notion of arrow magédtructured
computations” in general. See e.g. [20,3].

Definition 5.2 An arrow is a set-theoretic model (Def. 3.2) Afrr'Th.

It had been folklore, and was proved in [20], that an arrowhis $ame thing as
a Freyd category[23, 27]. A Freyd category is a symmetric premonoidal catgdd
together with a cartesian categdiyembedded via an identity-on-object strict pre-
monoidal functofB — K, subject to a condition on center morphisms. In this sense
ArrTh is an axiomatization of Freyd categories. There is a simdtaresponding
structure for the stronger FP-thed§ArrTh, which derives its name (M fononoida).

Definition 5.3 LetB be a cartesian (hence monoidal) categorynénoidal Freyd cat-
egoryon B is a symmetric monoidal categof§f together with a strictly monoidal,
identity-on-object functoB — K.

Proposition 5.4 1. A set-theoretic model KrrTh is the same as a Freyd category.
2. Aset-theoretic model & ArrTh is the same thing as a monoidal Freyd category.

Proof. The first point is simply the correspondence result [20, T8t} restated, using
Def. 4.4. The proof of the second point goes similar. ad

The notions of (monoidal) Freyd category were introducef@ij, prior to arrows,
as axiomatizations of the structure possessed by a KlaitdgoryX¢(T") for a monad
T'. Here a Kleisli category is the category of types and eftectbmputations [25]. The
results [27, Cor. 4.2 & 4.3]—showing th&¥(T) indeed possesses such structure—now
read as follows. For the notions of strong/commutative ndpeae e.g. [1%3].



Proposition 5.5 LetB be our base category (see Assumption 3.4).

1. A monadl’ on Set induces a modek¢(T") : ArrTh — Set. Specifically, its
carrier setKC{(T')(1, J) for a sort([1, J) is the homseHomyy 7y (1, J); arr is in-
terpreted by the Kleisli inclusion functorgs> is by composition inC¢(T"); and
first is obtained usin@™s canonical strengtlst. Note that every monad det is

strong.
2. Furthermore, ifl" is commutative then it induces a mod#|(7") of MArrTh. The
operation|| is interpreted using™’s double strength. O

Thanks to the proposition we know that all the equationAirTh or in MArrTh
hold in C¢(T"). This will be heavily exploited in the equational reasoniaigr in§5.3.
ForPLTh—the parallel-free part cArrTh andM ArrTh—a set-theoretic model
is an arrow withoufirst, or equivalently, a categoiig with an identity-on-object func-
tor B — K. Yet another characterization of this structure, disceddn [20], is as a
monoid object in the monoidal category of bifunct@@s? x B, Set]. Equivalently it is
a monad o in the bicategory of profunctors (also called distribui@ee e.qg. [6, 9]).

5.3 PLTh, ArrTh and M ArrTh as component calculi

We now show that our coalgebraic modeling of componentseddaodels the cal-
culi PLTh, ArrTh andMArrTh, depending on the monal. The result parallels
Prop. 5.5. Throughout the rest of the section we denoté&.&y any one of PLTh,
ArrTh andMArrTh (CC for “component calculus”).

In view of Thm. 4.6, we only need to establish that: 1) the étant) maf7, J) —
Set extends to arLcc-category; and 2YFr ; : Set — Set}; ; extends to a lax
Lcce-functor. Then Thm 4.6 ensures that the components (asawag) and their be-
haviors (as elements of final coalgebras) carry a microcosmeinof L, and that
compositionality holds between the two levels.

For 1), we interpret the operations in the following way. Ttheding question is:
what is the state space of the resulting component.

Definition 5.6 We denote bySet the Loo-category defined as follows. It maps each
sort(I, J) to Set € CAT; and it interprets operations by

1 farr /] Set, Set Lfrs:] Set, Set x Set =»] Set, Set x Set i, Set.

x — 1 X — X (X,Y) — X XY (X)Y) — XxY

We shall use the same notatiBet for models of three different FP-theories.

Lemma 5.7 The data in Def. 5.6 indeed determine an FP-preserving pséuakctor.
In particular, all the equations ifPLTh, ArrTh and MArrTh are satisfied up-to
coherent isomorphisms. ad

The equations hold only up-to isomorphisms because, fomple the associativity
X x (Y xU)=(X xY)xUin Set is only an isomorphism.

The requirement 2)—thdtF; ; : Set — Set}; jep extends to alakcc-functor—
puts additional demands on a moriaevhich appears as a parametefin; = (T'(J x



_))L. This is parallel to Prop. 5.5. Still the actual calculatismverwhelming. We no-
tice that all the operations that appear throughout theutation can be described as
morphisms in the Kleisli categoki¢(T). Therefore, by Prop. 5.5, they are themselves
subject to the equations Inc¢. This substantially simplifies the calculation.

Lemma 5.8 For the endofunctor$’; ; = (T(J x _))?, the following hold.

1. The family{ F; ; : Set — Set}; ; extends to a laArrTh-functorSet — Set.
Therefore so it does to a I@&RLTh-functor.

2. If T'is commutative{ F'; ; : Set — Set}; ; extends to a laM ArrTh-functor
Set — Set.

Proof. What we need to do is: first to “interpret operations” o s}, s; second to
check if these interpreted operations “satisfy equations.

More specifically, to makd Fy ;}; s into a laxLgoc-functor, we need to have a
mediating 2-cell corresponding to each operation (sucksas For example:

. . Fr ;g x F.
inLoe  (1,J) x (J,K) INCAT St x Set —7 7" get x Set
> [>>]=x] Z gy I>>l=x (8
(I7 K) Set Set
Fr i

In the diagram, we have denoted the binary produ@&éh by the boldfacex to dis-
tinguish it from the binary product in CAT. The needed 2-celfs;. is nothing but a
natural transformation

F>>> : F[’JXXFJ’KY%FI’K(XXY) . (9)

Finding suchFss. is essentially what we did in the beginning§#; this time we shall
do that for a general monad (especially involvingl”s multiplication ).

After that we have to show that these mediating 2-cells fyatie coherence con-
dition. In the current setting where the domain catedagy; is syntactically generated
from (S, X, E), it amounts to checking if the mediating 2-cells “satisfg #guations.”
Taking (ss>-Ass0qQ as an example, it means that the following 2-cells are equal

3F1,J><FJ,K><FK,L 3 3FI,J><FJ,K><FK,L 3
. Set® —————— Set Set® —————— Set .
TE idx x idX Fss Jidxx x xidl- Fss xid dxxid )X
x| & Set? —FrxxFxr— Set? =  Set? —FrxxFxi— Set? 4|z (10)
M x| ”F>>> % x| L//F>>> +x M
Set ———— > Set Set —————— Set
Fr,L Frp

Herea denotes the associativity isomorphism. See [13, Rem.]5@r. Inore illustra-
tion. One readily sees that (10) boils down to commutatigftthe following diagram.

X Fss, Fss

Fr X x (FrxY x FrpU) SFr X x Fro(Y x U) 23 Frp(X x (Y x U))
ad JFr Lo (12)
(FI,JX X FJ,KY) X FK’L[{JHEI’K(X X Y) X FK’LUFH FLL((X X Y) X U)

> X1 e



To summarize: we shall introduce a natural transformatipnfor each operation
o, like in (9); and check if they satisfy all the equations like(11). While the first
task is straightforward, the second is painfully compkchas it is. We shall only do the
aforementioned examplesiin-¢ for demonstration.

In the sequel, let us denote the set-theoretic modél@f induced by the Kleisli
category (in Prop. 5.5) byt/(T). In particular, we havéC/(T) (I, J) = (TJ)!. Hence
the natural transformatioRss. in (9) is of the type

KUT)I,J x X) x KUT)(J, K xY) — KAT)I, K x (X xY)) .

We define it to be the following composition of morphismsligc, interpreted in
Ke(T).

(I,J x X) x (K x V) “ZE5 (17 % X) x (J x X, (K xY) x X)

arra ™! (12)
22 (1 (K x V) x X) 972 (1K < (X x V)

One can readily come up with such a morphisriift; for each of the other operations.
Let us prove thats,. thus defined satisfies (11). The morphisms in the diagram (11)

can be also written as morphismsligc, interpreted inkC¢(T"). Hence we can use the

equational axioms of.q¢ (§5.1); in fact they are enough to show commutativity of

(11). In the calculation below, we denote the interpretafies>[ ;) simply by >>;

the same for the other operatioist andarr. To reduce the number of parentheses, the

terms are presented modulo the associativity-(ASSOQ.

(F>>> o (Fss xid) o 04) (c,(d,e))
= F>>>(F>>>(c,d), 5)

=¢>3> firstd >> arra™! >35> firste 3> arra™ !

= ¢ > firstd > firstfirste 3> arra™! >3 arra™? (a-NAT)
= ¢ > firstd >> firstfirste 3> arr ("t o™ 1) (arr-Funcl)
= ¢ >> firstd > firstfirste 3> arr (L x @) o™ o (a™' x U)) ©)

= ¢ > firstd > firstfirste 3> arr (a7 x U) 3> arra™! 3> arr (L x o) (arr-FUNC1)
= ¢ >3 firstd > first first e >> first (arra™") > arra™"' 3> arr (L x a) (first-PREMON)
= c>> first((d > firste) >>arra™") 3> arra™" 3> arr(L X a) (first-FUNC)
= (Fao F>>>)(C: Fss (d, e))

= (Fa o Fss o (id x F>>>)) (¢, (d,e))

Here the equalityf) is because of the “pentagon” coherencedan Set. Naturality
of I in X, Y, as well as satisfaction of the other equations, can beetkhy similar
calculation. O

Let us summarize our approach. In the categorical mé@elalg(F; ;)} of Lcc
that we are interested in, operations are interpreted galetoy {F; ;}'s lax com-
patibility with Lcc (Thm. 4.6). Furthermore we notice that the latter can berdust
usingLcc’s specific set-theoretic mod&l¢(T"), which we exploit (the above proof).
Note that we can employ/(T) specifically because of the sha@@®(.J x _))! of Fy ;.

For obtaining a microcosm model we need final coalgebras d@pends on the
“size” of the monadl’ (see e.g. [26]); all the examples ?flisted in §1, except for
probabilistic branching and unbounded non-deterministisfy this size requirement.



Theorem 5.9 Assume that, for each J < B, we have a final coalgebrg ; : Z; 5 N
Fr.;(Z1.1).

1. The family{Coalg(F; ;)}1,s carries anArrTh-category, so &@LTh-category.

2. The family{Z;; € Set}; ; carries an ArrTh-object, hence &LTh-object.
Compositionality holds in the sense of Thm. 4.6.4.

3. If T'is commutative, then the above two are alsoMm\ rrTh-category and an
MArrTh-object, respectively.

Proof. By Thm. 4.6, Lem. 5.7 and Lem. 5.8. O

6 Conclusions and Future Work

We have extended our previous formalization of the microtgsinciple [14] to a
many-sorted setting. This allowed to include Barbosa’s poment calculi [2] as ex-
amples. We studied three concrete calculi that are varigintee axiomatization of
arrows, demonstrating similarity between components &mdtsired computations.

As future work, we are interested in further extensions efdbmponent calculi that
allow modeling of further interesting examples like wiringd merging components,
queues, stacks, and folders of stacks with feedback, stpresented in [2]. The proof
methods that we derived from the microcosm framework wilubeful in its course.

On the more abstract side, it is interesting to elevate tgaraents inS5 further,
to the bicategoryDIST of distributors, withCAT embedded in it via the Yoneda
embedding. Such a higher level view on the matter might tefegther microcosm
instances in our proof methods.
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