
Coalgebraic Components
in a Many-Sorted Microcosm

Ichiro Hasuo1,4, Chris Heunen2, Bart Jacobs2, and Ana Sokolova3⋆

1 RIMS, Kyoto University, Japan
2 Radboud University Nijmegen, the Netherlands

3 University of Salzburg, Austria
4 PRESTO Research Promotion Program, Japan Science and Technology Agency

Abstract. Themicrocosm principle, advocated by Baez and Dolan and formal-
ized for Lawvere theories lately by three of the authors, has been appliedto coal-
gebras in order to describe compositional behavior systematically. Herewe fur-
ther illustrate the usefulness of the approach by extending it to a many-sorted set-
ting. Then we can show that the coalgebraic component calculi of Barbosa are ex-
amples, with compositionality of behavior following from microcosm structure.
The algebraic structure on these coalgebraic components corresponds to variants
of Hughes’ notion ofarrow, introduced to organize computations in functional
programming.

1 Introduction

Arguably the most effective countermeasure against today’s growing complexity of
computer systems ismodularity: one should be able to derive the behavior of the to-
tal system from that of its constituent parts. Parts that were developed and tested in
isolation can then safely be composed into bigger systems. Likewise, one would like to
be able to prove statements about the compound system based on proofs of substate-
ments about the parts. Therefore, the theoretical models should at the very least be such
that their behavior is compositional.

This is easier said than done, especially in the presence of concurrency, that is,
when systems can be composed in parallel as well as in sequence. Themicrocosm prin-
ciple [1, 14] brings some order to the situation. Roughly speaking, compositionality
means that the behavior of a compound system is the composition of the components’
behaviors. The microcosm principle then observes that the very definition of compo-
sition of behaviors depends on composition of systems, providing an intrinsic link be-
tween the two.

The present article gives a rigorous analysis of compositionality of components
as sketched above. Considering models ascoalgebras, we study Barbosa’s calculi of
components[2,3] as coalgebras with specified input and output interfaces. Explicitly, a
component is a coalgebra for the endofunctor5

FI,J = (T (J × ))I : Set → Set, (1)

⋆ Research funded by the Austrian Science Fund (FWF) Project No. V00125
5 Note that the functorFI,J also depends on the choice of the parameterT , so could have been

denoted e.g. byF T
I,J . We shall not do so for simplicity of presentation.



whereI is the set of possible input, andJ that of output. The computational effect of the
component is modeled by a monadT , as is customary in functional programming [25].
The monadT can capture features such as finite or unbounded non-determinism (T =
Pω,P); possible non-termination (T = 1 + ); global states (T = (S × )S); proba-
bilistic branching or combinations of these.

To accommodate component calculi, the surrounding microcosm needs to bemany-
sorted. After all, composing components sequentially requires that the output of the
first and the input of the second match up. This is elaborated on in §2. The contribution
of the present article is twofold:

– a rigorous development of a many-sorted microcosm principle, in§4;
– an application of the many-sorted microcosm framework to component calculi,

in §5.

It turns out that components asFI,J -coalgebras carry algebraic structure that is a
variant of Hughes’ notion ofarrow [15, 20].6 Arrows, generalizing monads, have been
used to model structured computations in semantics of functional programming. In§5
we will prove that components indeed carry such arrow-like structure; however the
calculation is overwhelming as it is. To aid the calculation, we exploit the fact that
a Kleisli categoryKℓ(T )—where the calculation takes place—also carries the same
arrow-like structure. This allows us to use the axiomatization of the (shared) structure
as an “internal language.”

2 Leading example: sequential composition

We shall exhibit, using the following example, the kind of phenomena in component
calculi that we are interested in.

For simplicity we assume that we have no effect in components(i.e.T = Id, FI,J =
(J× )I ). Coalgebras for this functor are calledMealy machines, see e.g. [8]. A promi-
nent operation in component calculi issequential composition, or pipeline. It attaches
two components with matching I/O interfaces, one after another:

(

I
c

J , J
d

K
)

>>>I,J,K

7−→ I
c

J
d

K (2)

Let X andY be the state spaces of the componentsc andd, respectively. The resulting
componentc >>>I,J,K d has the state spaceX × Y ;7 given inputi ∈ I, first c produces
output j ∈ J that is fed into the input port ofd. More precisely, we can define the
coalgebrac >>>I,J,K d to be the adjoint transposeX × Y → (K × X × Y )I of the
following function.

I × X × Y
ĉ×d
−→ J × X × (K × Y )J X×evJ−→ K × X × Y (3)

Here ĉ : I × X → J × X is the adjoint transpose of the coalgebrac, and evJ :
J × (K × Y )J → K × Y is the obvious evaluation function.

6 Throughout the paper the word “arrow” always refers to Hughes’ notion. An “arrow” in a
category (as opposed to an object) will be always called amorphism.

7 We will use the infix notation for the operation>>>. The symbol>>> is taken from that for
(Hughes’) arrows, whose relevance is explained in§5.
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beh(c)
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∼=final
An important ingredient in the theory of coalgebra is “behavior-

by-coinduction” [19]: when a state-based system is viewed as an
F -coalgebra, then afinal F -coalgebra (which very often exists) con-
sists of all the “behaviors” of systems of typeF . Moreover, the mor-
phism induced by finality is the “behavior map”: it carries a state of a system to its
behavior. This view is also valid in the current example.

A final FI,J -coalgebra—whereFI,J = (J × )I—is carried by the set of stream
functionsIω → Jω which arecausal, meaning that then-th letter of the output stream
only depends on the firstn letters of the input.8 It conforms to our intuition: the “be-
havior” of such a component is what we see as an output stream when an input stream
is fed. The final coalgebra is concretely as follows.

ζI,J : ZI,J

∼=
−→ FI,J(ZI,J ) = (J × ZI,J )I

( t : Iω → Jω, causal) 7−→ λi.
(

head(t(i ·~i)), λ~i′. tail(t(i · ~i′))
)

.

Herei ·~i is a letteri ∈ I followed by an arbitrary stream~i; the value ofhead(t(i ·~i))
does not depend on~i sincet is causal.

Then there naturally arises a “sequential composition” operation that is different
from (2): it acts onbehaviorsof components, simply composing two behaviors of
matching types.

>>>I,J,K : ZI,J × ZJ,K −→ ZI,K
`

Iω s
→ Jω , Jω t

→ Kω
´

7−→ Iω s
→ Jω t

→ Kω (4)

The following observation—regarding the two operations (2)and (4)—is crucial
for our behavioral view on component calculi. The “inner” operation (4), although
it naturally arises by looking at stream functions, is in fact induced by the “outer”
operation (2). Specifically, it arises as the behavior map for the (outer) composition
ζI,J >>>I,J,K ζJ,K of two final coalgebras.

FI,K(ZI,J × ZJ,K) FI,K(ZI,K)

ZI,J × ZJ,K

ζI,J >>> ζJ,K

>>>I,J,K

ZI,K

ζI,Kfinal i.e.

0

B

B

B

@

I

ζI,J

J

ζJ,K

K

1

C

C

C

A

>>>I,J,K

99K

0

@

I

ζI,K

K

1

A (5)

Here the coalgebraζI,J >>>ζJ,K has a state spaceZI,J ×ZJ,K due to the definition (3).
As to the two operations (2) and (4), we can

ask a further question: are they compatible, in
the sense that the the diagram on the right com-
mutes?9 One can think of this compatibility prop-
erty as a mathematical formulation ofcomposi-
tionality, a fundamental property in the theory of

8 This is how they are formalized in [28]. Equivalent formulations are: asstring functionsI∗ →
J∗ that are length-preserving and prefix-closed [26]; and as functionsI+ → J whereI+ is
the set of strings of length≥ 1.

9 The diagram is simplified for brevity. To be precise, the coalgebrasc andd must have their
states (sayx andy) specified; these states are mapped to the state(x, y) of c >>> d.



processes/components. The characterization of the inner operation by finality (5) is re-
markably useful here; finality immediately yields a positive answer.

In fact, themicrocosm principleis the mathematical structure that has been behind
the story. It refers to the phenomenon that the same algebraic structure is carried by a
categoryC and by an objectX ∈ C, a prototypical example beinga monoid object
in a monoidal category(see e.g. [24,§VII.3]). In [14] we presented another example
eminent in the process theory: parallel composition of two coalgebras for the same
signature functor, as well as parallel composition of theirbehaviors. Our story so far is
yet another example—taken from component calculi—with its new feature being that
the algebraic structure is many-sorted. In the rest of the paper we develop a categorical
language for describing the situation, and proving resultsabout it. Among them is the
one that ensures compositionality for a wide class of component calculi.

3 FP-theory

3.1 Presenting algebraic structure as a category

A component calculus—consisting of operations like>>> and of equations like associa-
tivity of >>>—is an instance ofalgebraic specification. So are (the specifications for)
monoids, groups, as well as process calculi such as CCS. Component calculi are dif-
ferent from the other examples here, in that they aremany-sorted. Such a many-sorted
algebraic specification consists of

– a setS of sorts;
– a setΣ of operations. Each operationσ ∈ Σ is equipped with itsin-arity inar(σ)

given by a finite sequence of sorts (denoted as a formal product S1 × · · · × Sm),
and itsout-arityoutar(σ) that is some sortS ∈ S;

– and a setE of equations.

A straightforward presentation of such is simply as a tuple(S, Σ,E) (see e.g. [18]).
In this paper we prefer a different, categorical presentation of algebraic structure.

The idea is that an algebraic specification induces a category L with:

– all the finite sequences of sortsS1 × · · · × Sm as its objects;
– operationsσ ∈ Σ as morphismsinar(σ)

σ
→ outar(σ). Additionally, projections

(such asπ1 : S1 × S2 → S1) and diagonals (such as〈id, id〉 : S → S × S) are
morphisms. So are (formal) products of two morphisms, equipping the categoryL
with finite products. Besides we can compose morphisms in thecategoryL; that
makes the morphisms inL induced by thetermswith operations taken fromΣ;

– an equation as a commutative diagram, modulo which we
take quotients of terms (as morphisms inL). For example,
whenS = {∗} andm is a binary operation, its associativity
m(x,m(y, z)) = m(m(x, y), z) amounts to the diagram on
the right.

3
m×id

id×m

2
m

2
m

1
(6)

In fact, what is represented byL above is not an algebraic specification itself but its
clone(see e.g. [10]). In categorical terms, the construction is taking a free finite-product



category from the objects inS and the arrows inΣ modulo the equations induced by
E. See [18,§3.3] for details.

In a one-sorted setting—where arities (objects ofL) are identified with natural
numbers by taking their length—such a categoryL is called aLawvere theory(see
e.g. [14,16,22]). In a many-sorted setting, such a categoryL—say a “many-sorted Law-
vere theory”—is usually called afinite-product theory, or anFP-theory, see e.g. [4,5].

Definition 3.1 (FP-theory) An FP-theoryis a category with finite products.

The idea of such categorical presentation of algebraic structure originated in [22].
Significant about the approach is that one has a model as a functor.

Definition 3.2 (Set-theoretic model)Let L be an FP-theory. A(set-theoretic) model
of L is a finite-product-preserving (FP-preserving) functor X : L → Set into the
categorySet of sets and functions.

Later in Def. 4.1 we introduce the notion ofcategorywith L-structure—this is the kind
of models of our interest—based on this standard definition.

To illustrate Def. 3.2 in a one-sorted setting, think about an operation2
m
→ 1 which

satisfies associativity (6). Let the imageX(1) of 1 ∈ L be simply denoted byX; then
2 = 1 × 1 ∈ L must be mapped to the setX2 by FP-preservation. By functoriality the
morphismm is mapped to a morphismX(m) : X2 → X in Set, which we denote
by JmKX . This yields a binary operation on the setX. Moreover, the associativity dia-
gram (6) inL is carried to a commutative diagram inSet; this expresses associativity
of the interpretationJmKX .

When L arises from a many-sorted algebraic specification, it is nota single set
X that carriesL-structure; we have a family of sets{X(S)}S∈S—one for each sort
S—as a carrier. By FP-preservation this extends to interpretation of products of sorts:
X(S1 × · · · × Sm) ∼= X(S1) × · · · × X(Sm). In this way an operation is interpreted
with its desired domain and codomain.

Remark 3.3 Lawvere theoriesandmonadsare the two major ways to represent alge-
braic structure in category theory (see [16]). Both allow straightforward extension to
the many-sorted setting: the former to FP-theories and the latter to monads on functor
categories (mostly presheaf categories). For the purpose of formalizing the microcosm
principle we find the former more useful. Its representationis independent from the
domain where the structure is interpreted; hence we can speak of its models in two dif-
ferent domains, as is the case with the microcosm principle.In contrast, a monad on a
categoryC specifies algebraic structure (i.e. Eilenberg-Moore algebras) that is neces-
sarily carried by an object ofC.

3.2 The FP-theoryPLTh

We now present a specific FP-theory; this is our working example. We list its sorts, oper-
ations and equations; these altogether induce an FP-theoryin the way that we sketched
above. We denote the resulting FP-theory byPLTh. Later in§5 we will see that this



FP-theory represents Hughes’ notion ofarrow, without itsfirst operation. One can think
of PLTh as a basic component calculus modeling pipelines (PL for “pipeline”).

Assumption 3.4 Throughout the rest of the paper we fix a base categoryB to be a
cartesian subcategory (i.e. closed under finite products) of Set. Its objectI ∈ B is a
set that can play a role of an interface. Its morphismf : I → J—it is a set-theoretic
function—represents a “stateless” computation fromI to J that can be realized by a
component with a single state.

– The sortsS = {(I, J) | I, J ∈ B}. Hence an object ofPLTh can be written as a
formal product(I1, J1) × · · · × (Im, Jm). We denote the nullary product (i.e. the
terminal object) by1 ∈ PLTh;

– the operations:

>>>I,J,K : (I, J) × (J,K) −→ (I,K) sequential composition
arr f : 1 −→ (I, J) pure function

for each objectI, J,K ∈ B and each morphismf : I → J in B. Sequential
composition is illustrated in (2). The componentarr f , intuitively, has a singleton

as its state space and realizes “stateless” processing of data streamI
arr f

J ;
– the equations:

• associativity:

a : (I, J), b : (J,K), c : (K,L) ⊢ a >>> (b >>> c) = (a >>> b) >>> c
(>>>-ASSOC)

for eachI, J,K,L ∈ B, omitting the obvious subscripts for>>>, i.e.

(I, J) × (J, K) × (K, L)
>>>I,J,K × (K, L)

(I, J) × >>>J,K,L

(I, K) × (K, L)
>>>I,K,L

(I, J) × (J, L)
>>>I,J,L

(I, L)

• preservation of composition:for each composable pair of morphismsf : I →
J andg : J → K in B,

∅ ⊢ arr (g ◦ f) = arr f >>> arr g (arr-FUNC1)

where∅ denotes the empty context. On the right
is the corresponding diagram.

1

arr (g◦f)

arr f×arr g
(I, J) × (J, K)

>>>I,J,K

(I, K)

• preservation of identities:for eachI, J ∈ B,

a : (I, J) ⊢ arr idI >>>I,I,J a = a = a >>>I,J,J arr idJ . (arr-FUNC2)

For this FP-theory, the model of our interest is carried by a family of categories, namely
the categoryCoalg(FI,J ) for each sort(I, J). Formalization of such anouter model
carried by categories, together with that of aninner modelcarried by final coalgebras,
is the main topic of the next section.



4 Microcosm model of an FP-theory

In this section we present our formalization ofmicrocosm modelsfor an FP-theoryL. It
is about nested models ofL: the outer one (L-category) carried by a family{C(S)}S∈S

of categories; the inner one (L-object) carried by a family{XS ∈ C(S)}S∈S of objects.
We shall use the formalization to prove a compositionality result (Thm. 4.6).

In fact our formalization is essentially the one in our previous work [14]. Due to
the space limit we cannot afford sufficient illustration of our seemingly complicated
2-categorical definitions. The reader is suggested to have [14, §3] as her companion;
the thesis [13, Chap. 5] of one of the authors has a more detailed account. What is new
here, compared to [14], is the following.

– The algebraic structure of our interest is now many-sorted,generalizingL from a
Lawvere theory to an FP-theory.

– Now our framework accommodates categories with “pseudo” algebraic structure,
such as (not strict) monoidal categories. We cannot avoid this issue in the current
paper, because the concrete model that we deal with is indeedof such a kind with
pseudo algebraic structure.

We will depend heavily on 2-categorical notions such as pseudo functors, lax natural
transformations, etc. For these notions the reader is referred to [9].

4.1 Outer model:L-category

Take the functorFI,J = (T (J × ))I , for which coalgebras are components (see§1).
We would like that the categories{Coalg(FI,J )}I,J∈B modelPLTh, the algebraic
structure for pipelines in§3.2. That is, we need functors

J>>>I,J,KK : Coalg(FI,J) × Coalg(FJ,K) → Coalg(FI,K) for eachI, J, K ∈ B,
Jarr fK : 1 → Coalg(FI,J) for each morphismf : I → J in B,

where1 is a (chosen) terminal category. Moreover these functors must satisfy the three
classes of equations ofPLTh in §3.2. One gets pretty close to the desired definition of
such “category withL-structure” by replacing “sets” by “categories” in Def. 3.2. That
is, by havingCAT—the 2-category of locally small categories, functors and natural
transformations—in place ofSet. In fact we did so in our previous work [14].

However in our coalgebraic modeling of components we want equations to be sat-
isfied not up-to identity, but up-to (coherent) isomorphisms. For example, consider the
functorJ>>>I,J,KK above, in particular how it acts on the carrier sets of coalgebras. By
the definition in§2 it carries(X,Y ) to X×Y ; and this operation is associative only up-
to isomorphism. This requirement of “satisfaction up-to iso” also applies to monoidal
categories; below is how associativity (on the left) is expected to be interpreted, in a
monoid and in a monoidal category.

3in L
id×m

m×id
= 2

m

2
m

1

X3in Set
Jid×mKX

Jm×idKX

= X2

JmKX

X2
JmKX

X

x1 · (x2 · x3) = (x1 · x2) · x3

C
3in CAT

Jid×mKC

Jm×idKC

C
2

JmKC⇐
=

∼=

C
2

JmKC

C

X1 ⊗ (X2 ⊗ X3)
∼=→ (X1 ⊗ X2) ⊗ X3

(7)



Our approach to such “pseudo algebras” is to relax functorial semantics (Def. 3.2)
into pseudo functorial semantics, i.e. replacing functor bypseudo functor. The idea
has been previously mentioned in [14,§3.3] and [13,§5.3.3]; now it has been made
rigorous.

Definition 4.1 (L-category) An L-categoryis a pseudo functorC : L → CAT which
is “FP-preserving” in the following sense:10

1. the canonical map〈Cπ1, Cπ2〉 : C(A1×A2) → C(A1)×C(A2) is an isomorphism
for eachA1, A2 ∈ L;

2. the canonical mapC(1) → 1 is an isomorphism;
3. it preserves identities up-to identity:C(id) = id;
4. it preserves pre- and post-composition of identities up-to identity: C(id ◦ a) =

C(a) = C(a ◦ id);
5. it preserves composition of the formπi ◦ a up-to identity:C(πi ◦ a) = C(πi) ◦

C(a). Hereπi : A1 × A2 → Ai is a projection.

We shall often denoteC’s actionC(a) on a morphisma by JaKC.

In the definition, what it means exactly to be “FP-preserving” is a delicate issue; for the
current purpose of representing pseudo algebras, we found the conditions above to be
the right ones. It is justified by the following result.

Proposition 4.2 Let us denote byMonTh the Lawvere theory for monoids. The 2-
categoryMonCAT of monoidal categories, strong monoidal functors and monoidal
transformations is equivalent to the 2-category ofMonTh-categories with suitable 1-
and 2-cells.

Proof. The proof involves overwhelming details. It is deferred to [12], where a general
result—not only for the specification for monoids but for any algebraic specification—
is proved. ⊓⊔

What the last proposition asserts is stronger than merely establishing abiequivalence
between the two 2-categories, a claim one would expect from e.g. the coherence result
for monoidal categories. See [12] for more details about Def. 4.1 and Prop. 4.2; and
see [13,§5.3.3] how pseudo functoriality yields the mediating iso 2-cell in (7).

Remark 4.3 There have been different approaches to formalization of “pseudo alge-
bra.” A traditional one (e.g. in [7]) is to find a suitable 2-monad which already takes
pseudo satisfaction of equations into account. Another oneis by a Lawvere 2-theory,
which also includes explicitly the isomorphism up-to whichequations are satisfied
(see [21]). Neither of them looks quite suitable for the microcosm principle: we want
a single representation of algebraic structure interpreted twice; with only the outer one
satisfying equations up-to isomorphisms.

10 To be precise, each of the conditions 3–5 means that the correspondingmediating isomorphism
(as part of the definition of a pseudo functor) is actually the identity.



The same idea as ours has been pursued by a few other authors. Segal [29] defines
pseudo algebras as pseudo functors, formonoidal theories (as opposed tocartesian
theories in our case), with applications to conformal field theory. Fiore’s definition [11]
is equivalent to ours, but its aspect as a pseudo functor is not emphasized there.

4.2 Inner model: L-object

L

1

C

⇓X
CAT

Once we have an outer modelC of L, we can define the notion
of inner model inC. It is a family of objects{XS ∈ C(S)}S∈S

which carriesL-structure in the same way as a monoid in a monoidal
category does [24,§VII.3]. We have seen in§2 that final coalgebras
carry such an inner model and realize composition of behaviors.

Definition 4.4 (L-object) Let C : L → CAT be anL-category. AnL-object in C is
a lax natural transformationX as in the diagram above, which is “FP-preserving” in
the sense that: it is strictly natural with regard to projections (see [14, Def. 3.4]). Here
1 : L → CAT denotes the constant functor into a (chosen) terminal category 1.

An L-object is also called amicrocosm modelof L, emphasizing that it is a model
that resides in another modelC.

The definition is abstract and it is hard to grasp how it works at a glance. While the
reader is referred to [13,14] for its illustration, we shallpoint out its highlights.

A

in L

a

B

1

in CAT
XA

⇒

Xa

C(A)
JaK

1
XB

C(B)

An L-object X, as a lax natural transformation,
consists of the following data:

– its componentsXA : 1 → C(A), identified with
objectsXA ∈ C(A), for eachA ∈ L;

– mediating 2-cellsXa, as shown on the right, for each morphisma in L.

Generalizing the illustration in [13,14] one immediately sees that

– X ’s components are determined by those{XS}S∈S on sorts. They extend to an
objectS1 × · · · × Sm by:

C(S1 ×· · ·×Sm) ∋ XS1×···×Sm

∼=
7−→ (XS1

, . . . ,XSm
) ∈ C(S1)×· · ·×C(Sm) ;

– an operationσ is interpreted onX by means of the mediating 2-cellXσ;
– equations hold due to the coherence condition on the mediating 2-cells:Xb◦a must

be given by a suitable composition ofXa andXb. In [14, Expl. 3.5] we demonstrate
how this coherence condition derives associativity of multiplication for a monoid
object (in a monoidal category).

4.3 Categorical compositionality

Here we shall present a main technical result, namely the compositionality theorem
(Thm. 4.6). It is a straightforward many-sorted adaptationof [14, Thm. 3.9]; to which
refer for more illustration of the result.



Definition 4.5 (L-functor) Let C, D beL-categories. Alax L-functorF : C → D is a
lax natural transformationF : C ⇒ D : L → CAT that is FP-preserving in the same
sense as in Def. 4.4. Similarly, astrict L-functor is a strict natural transformation of the
same type.

A lax/strictL-functor determines, as its components, a family of functors{FA : C(A) →
D(A)}A∈L. Much like the case for anL-object, it is determined by the components
{FS : C(S) → D(S)}S∈S on sorts.

Theorem 4.6 (Compositionality) Let C be anL-category, andF : C → C be a lax
L-functor. Assume that there is a final coalgebraζA : ZA

∼=→ FA(ZA) for eachA ∈ L.

1. The family{Coalg(FA)}A∈L carries anL-category.
2. The family{ζA ∈ Coalg(FA)}A∈L carries a microcosm model ofL.
3. The family{C(A)/ZA}A∈L of slice categories carries anL-category.
4. The family of functors{behA : Coalg(FA) →

C(A)/ZA}A∈L, wherebehA is defined by coinduc-
tion (see on the right), carries a strictL-functor.

FAX FA(ZA)

X

c

behA(c)
ZA

∼=final

Proof. The proof is an adaptation of that of [14, Thm. 3.9]; however it involves addi-
tional coherence requirements due to the relaxed definitionof L-categories. A detailed
proof is found in [12]. ⊓⊔

An informal reading of the theorem is as follows. To get a “nice” interpretation of a
component calculusL by F -coalgebras, it suffices to check that

– the base categoryC modelsL, and
– the functorF is “lax-compatible” withL.

These data interpretL on the category of coalgebras, yielding composition of compo-
nents (Point 1.). Final coalgebras acquire canonical innerL-structure, yielding com-
position of behaviors (2.). Finally, relating the two interpretations, compositionality is
guaranteed (4.).

5 Taxonomy of FP-theories for component calculi

Up to now we have kept an FP-theoryL as a parameter and have developed a uniform
framework. Now we turn to: concrete models (components as coalgebras); and three
concrete FP-theoriesPLTh, ArrTh andMArrTh that express basic component cal-
culi. The latter two are equipped with different “parallel composition” operations.

Notably the algebraic structure expressed byArrTh is that of (Hughes’)arrow [15],
equivalently that ofFreyd categories[23], the notions introduced for modeling struc-
tured computations in functional programming.

The main result in this section is that the categories{Coalg(FI,J )}I,J—modeling
components—carryArrTh-structure. If additionally the effect monadT is commu-
tative, then{Coalg(FI,J )}I,J a forteriori carries the strongerMArrTh-structure.
These results parallel classic results in categorical semantics of functional program-
ming, investigating (pre)monoidal structure of a Kleisli category.



5.1 The FP-theoriesArrTh, MArrTh

We shall add, to the FP-theoryPLTh in §3.2, a suitable “parallel composition” op-
eration and equational axioms to obtain the FP-theoryArrTh. By imposing stronger
equational axioms we get the FP-theoryMArrTh.

In ArrTh one has additionalsidelineoperations

firstI,J,K : (I, J) −→ (I × K,J × K) , graphically
I

a
J

firstI,J,K

7−→

(

I K

K

a
J

)

for eachI, J,K ∈ B. The equations regarding these are:

firstI,J,1 a >>> arr π = arr π >>> a (ρ-NAT)
firstI,J,K a >>> arr(idJ × f) = arr(idI × f) >>> firstI,J,L a (arr-CENTR)

(firstI,J,K×L a) >>> (arr αJ,K,L) = (arr αI,K,L) >>> first(first a) (α-NAT)
firstI,J,K(arr f) = arr(f × idK) (arr-PREMON)

firstI,K,L(a >>> b) = (firstI,J,L a) >>> (firstJ,K,L b) (first-FUNC)

In the equations,f denotes a morphism in the base categoryB. In (ρ-NAT), theπ on the
left is the projectionπ : J×1

∼=→ J in B. In (α-NAT), α’s are associativity isomorphisms
like I × (J × K)

∼=→ (I × J) × K in B.

Remark 5.1 In fact the equation (ρ-NAT) can be derived for any projectionπ : J ×
K → J without requiringK = 1. However, the special case above has a clearer
role in the corresponding premonoidal structure (see§5.2). Namely, it is the naturality
requirement of the right-unit isomorphismρJ = arr πJ with πJ : J × 1

∼=→ J .

In MArrTh, instead of the operationsfirst, one has

‖I,J,K,L : (I, J) × (K,L) −→ (I × K,J × L) synchronous composition

for eachI, J,K,L ∈ B. The equations are:

(a ‖ b) >>> (c ‖ d) = (a >>> c) ‖ (b >>> d) (‖-FUNC1)
arr idI ‖ arr idJ = arr idI×J (‖-FUNC2)

a ‖ (b ‖ c) >>> arr α = arr α >>> (a ‖ b) ‖ c (α-NAT)
(a ‖ arr id1) >>> arr π = arr π >>> a (ρ-NAT)

arr(f × g) = arr f ‖ arr g (arr-MON)
(a ‖ b) >>> arr γ = arr γ >>> (b ‖ a) (γ-NAT)

Hereα’s are associativity isomorphisms, andπ’s are projections likeJ × 1
∼=→ J , as in

ArrTh. The morphismsγ in (γ-NAT) are symmetry isomorphisms likeJ ×I
∼=→ I×J

in B. One readily derives, from (ρ-NAT) and (γ-NAT), the equation

(arr id1 ‖ a) >>> arr π′ = arr π′ >>> a (λ-NAT)

whereπ′’s are (second) projections like1 × I
∼=→ I.

The theoryMArrTh is stronger thanArrTh. Indeed, thefirst operator inArrTh

can be defined inMArrTh, as:firstI,J,K a := a ‖ idK .
The reason that we have thefirst operation inArrTh, instead of‖ as inMArrTh,

should be noted. Thefirst operation inArrTh yields the operation

secondI,J,K : (I, J) −→ (K×I,K×J) by second a = arr γ >>>first a>>>arr γ ,
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whereγ’s are symmetry isomorphisms. But the equa-
tions in ArrTh do not derivesecond b >>> first a =
first a >>> second b; that is, the two systems on the right
should not be identified. There are indeed many situa-
tions where they are distinct. Assume that we have the globalstate monadT = (S× )S

as effect inFI,J . One can think of a global states ∈ S as residing in the ambience of
components, unlike local/internal states that are inside components (i.e. coalgebras).
When a component executes, it changes the current global state as well as its internal
state; hence the order of execution ofa andb does matter. In contrast, when one inter-
pretsMArrTh in {Coalg(FI,J )}I,J , the natural axiom (‖-FUNC1) requires the two
systems above to be equal.

5.2 Set-theoretic models: arrows, Freyd categories

The FP-theoriesPLTh,ArrTh and MArrTh and their set-theoretic models are
closely related with some notions in semantics of functional programming. Here we
elaborate on the relationship; it will be used for calculations later in§5.3.

To start with,ArrTh is almost exactly the axiomatization of Hughes’arrow [15]
(specifically the one in [20]), with the only gap explained inRem. 5.1. The notion of ar-
row generalizes that ofmonad(modeling effects, i.e. structured output [25,31]) and that
of comonad(modeling structured input [30]); the notion of arrow models “structured
computations” in general. See e.g. [20,§2.3].

Definition 5.2 An arrow is a set-theoretic model (Def. 3.2) ofArrTh.

It had been folklore, and was proved in [20], that an arrow is the same thing as
a Freyd category[23, 27]. A Freyd category is a symmetric premonoidal category K

together with a cartesian categoryB embedded via an identity-on-object strict pre-
monoidal functorB → K, subject to a condition on center morphisms. In this sense
ArrTh is an axiomatization of Freyd categories. There is a similarcorresponding
structure for the stronger FP-theoryMArrTh, which derives its name (M formonoidal).

Definition 5.3 Let B be a cartesian (hence monoidal) category. Amonoidal Freyd cat-
egory on B is a symmetric monoidal categoryK together with a strictly monoidal,
identity-on-object functorB → K.

Proposition 5.4 1. A set-theoretic model ofArrTh is the same as a Freyd category.
2. A set-theoretic model ofMArrTh is the same thing as a monoidal Freyd category.

Proof. The first point is simply the correspondence result [20, Thm.6.1] restated, using
Def. 4.4. The proof of the second point goes similar. ⊓⊔

The notions of (monoidal) Freyd category were introduced in[27], prior to arrows,
as axiomatizations of the structure possessed by a Kleisli categoryKℓ(T ) for a monad
T . Here a Kleisli category is the category of types and effectful computations [25]. The
results [27, Cor. 4.2 & 4.3]—showing thatKℓ(T ) indeed possesses such structure—now
read as follows. For the notions of strong/commutative monad, see e.g. [17,§3].



Proposition 5.5 LetB be our base category (see Assumption 3.4).

1. A monadT on Set induces a modelKℓ(T ) : ArrTh → Set. Specifically, its
carrier setKℓ(T )(I, J) for a sort (I, J) is the homsetHomKℓ(T )(I, J); arr is in-
terpreted by the Kleisli inclusion functor;>>> is by composition inKℓ(T ); and
first is obtained usingT ’s canonical strengthst. Note that every monad onSet is
strong.

2. Furthermore, ifT is commutative then it induces a modelKℓ(T ) ofMArrTh. The
operation‖ is interpreted usingT ’s double strength. ⊓⊔

Thanks to the proposition we know that all the equations inArrTh or in MArrTh

hold inKℓ(T ). This will be heavily exploited in the equational reasoninglater in§5.3.
ForPLTh—the parallel-free part ofArrTh andMArrTh—a set-theoretic model

is an arrow withoutfirst, or equivalently, a categoryK with an identity-on-object func-
tor B → K. Yet another characterization of this structure, discovered in [20], is as a
monoid object in the monoidal category of bifunctors[Bop ×B,Set]. Equivalently it is
a monad onB in the bicategory of profunctors (also called distributors, see e.g. [6,9]).

5.3 PLTh, ArrTh and MArrTh as component calculi

We now show that our coalgebraic modeling of components indeed models the cal-
culi PLTh, ArrTh andMArrTh, depending on the monadT . The result parallels
Prop. 5.5. Throughout the rest of the section we denote byLCC any one ofPLTh,
ArrTh andMArrTh (CC for “component calculus”).

In view of Thm. 4.6, we only need to establish that: 1) the (constant) map(I, J) 7→
Set extends to anLCC-category; and 2){FI,J : Set → Set}I,J extends to a lax
LCC-functor. Then Thm 4.6 ensures that the components (as coalgebras) and their be-
haviors (as elements of final coalgebras) carry a microcosm model of LCC, and that
compositionality holds between the two levels.

For 1), we interpret the operations in the following way. Theguiding question is:
what is the state space of the resulting component.

Definition 5.6 We denote bySet the LCC-category defined as follows. It maps each
sort(I, J) to Set ∈ CAT; and it interprets operations by

1
Jarr fK
−→ Set, Set

JfirstK
−→ Set, Set × Set

J>>>K
−→ Set, Set × Set

J‖K
−→ Set.

∗ 7−→ 1 X 7−→ X (X, Y ) 7−→ X × Y (X, Y ) 7−→ X × Y

We shall use the same notationSet for models of three different FP-theories.

Lemma 5.7 The data in Def. 5.6 indeed determine an FP-preserving pseudo functor.
In particular, all the equations inPLTh, ArrTh andMArrTh are satisfied up-to
coherent isomorphisms. ⊓⊔

The equations hold only up-to isomorphisms because, for example, the associativity
X × (Y × U) ∼= (X × Y ) × U in Set is only an isomorphism.

The requirement 2)—that{FI,J : Set → Set}I,J∈B extends to a laxLCC-functor—
puts additional demands on a monadT which appears as a parameter inFI,J = (T (J×



))I . This is parallel to Prop. 5.5. Still the actual calculationis overwhelming. We no-
tice that all the operations that appear throughout the calculation can be described as
morphisms in the Kleisli categoryKℓ(T ). Therefore, by Prop. 5.5, they are themselves
subject to the equations inLCC. This substantially simplifies the calculation.

Lemma 5.8 For the endofunctorsFI,J = (T (J × ))I , the following hold.

1. The family{FI,J : Set → Set}I,J extends to a laxArrTh-functorSet → Set.
Therefore so it does to a laxPLTh-functor.

2. If T is commutative,{FI,J : Set → Set}I,J extends to a laxMArrTh-functor
Set → Set.

Proof. What we need to do is: first to “interpret operations” on{FI,J}I,J ; second to
check if these interpreted operations “satisfy equations.”

More specifically, to make{FI,J}I,J into a laxLCC-functor, we need to have a
mediating 2-cell corresponding to each operation (such as>>>). For example:

(I, J) × (J, K)in LCC

>>>
Set × Setin CAT

FI,J × FJ,K

J>>>K = ××× ⇓
F>>>

Set × Set

J>>>K = ×××
(I, K) Set

FI,K

Set

(8)

In the diagram, we have denoted the binary product inSet by the boldface××× to dis-
tinguish it from the binary product× in CAT. The needed 2-cellF>>> is nothing but a
natural transformation

F>>> : FI,JX × FJ,KY −→ FI,K(X × Y ) . (9)

Finding suchF>>> is essentially what we did in the beginning of§2; this time we shall
do that for a general monadT (especially involvingT ’s multiplicationµ).

After that we have to show that these mediating 2-cells satisfy the coherence con-
dition. In the current setting where the domain categoryLCC is syntactically generated
from (S, Σ,E), it amounts to checking if the mediating 2-cells “satisfy the equations.”
Taking (>>>-ASSOC) as an example, it means that the following 2-cells are equal.

Set3
FI,J×FJ,K×FK,L

id××××
⇓

id×F>>>

⇐
α

×× ×
◦
(×× ×

×
id

) Set3

id××××

Set2 FI,K×FK,L

××× ⇓
F>>>

Set2

×××

Set
FI,L

Set

=

Set3
FI,J×FJ,K×FK,L

××××id
⇓

F>>>×id

Set3

××××id

⇐
α

×× ×
◦
(i

d
×
×× ×

)

Set2 FI,K×FK,L

××× ⇓
F>>>

Set2

×××

Set
FI,L

Set

(10)

Hereα denotes the associativity isomorphism. See [13, Rem. 5.4.1] for more illustra-
tion. One readily sees that (10) boils down to commutativityof the following diagram.

FI,JX × (FJ,KY × FK,LU)
id×F>>>

α

FI,JX × FJ,L(Y × U)
F>>>

FI,L(X × (Y × U))
FI,Lα

(FI,JX × FJ,KY ) × FK,LU
F>>>×id

FI,K(X × Y ) × FK,LU
F>>>

FI,L((X × Y ) × U)
(11)



To summarize: we shall introduce a natural transformationFσ, for each operation
σ, like in (9); and check if they satisfy all the equations likein (11). While the first
task is straightforward, the second is painfully complicated as it is. We shall only do the
aforementioned examples inLCC for demonstration.

In the sequel, let us denote the set-theoretic model ofLCC induced by the Kleisli
category (in Prop. 5.5) byKℓ(T ). In particular, we haveKℓ(T )(I, J) = (TJ)I . Hence
the natural transformationF>>> in (9) is of the type

Kℓ(T )(I, J × X) ×Kℓ(T )(J,K × Y ) → Kℓ(T )(I,K × (X × Y )) .

We define it to be the following composition of morphisms inLCC, interpreted in
Kℓ(T ).

(I, J × X) × (J, K × Y )
id×first
−→ (I, J × X) ×

`

J × X, (K × Y ) × X
´

>>>
−→

`

I, (K × Y ) × X
´ ( )>>>(arr α−1)

−→ (I, K × (X × Y ))
(12)

One can readily come up with such a morphism inLCC for each of the other operations.
Let us prove thatF>>> thus defined satisfies (11). The morphisms in the diagram (11)

can be also written as morphisms inLCC, interpreted inKℓ(T ). Hence we can use the
equational axioms ofLCC (§5.1); in fact they are enough to show commutativity of
(11). In the calculation below, we denote the interpretation J>>>KKℓ(T ) simply by>>>;
the same for the other operationsfirst andarr. To reduce the number of parentheses, the
terms are presented modulo the associativity (>>>-ASSOC).
`

F>>> ◦ (F>>> × id) ◦ α
´

(c, (d, e))
= F>>>( F>>>(c, d), e )
= c >>> first d >>> arr α−1 >>> first e >>> arr α−1

= c >>> first d >>> first first e >>> arr α−1 >>> arr α−1 (α-NAT)
= c >>> first d >>> first first e >>> arr (α−1 ◦ α−1) (arr-FUNC1)
= c >>> first d >>> first first e >>> arr

`

(L × α) ◦ α−1 ◦ (α−1 × U)
´

(†)
= c >>> first d >>> first first e >>> arr (α−1 × U) >>> arr α−1 >>> arr (L × α) (arr-FUNC1)
= c >>> first d >>> first first e >>> first (arr α−1) >>> arr α−1 >>> arr (L × α) (first-PREMON)
= c >>> first

`

(d >>> first e) >>> arr α−1
´

>>> arr α−1 >>> arr(L × α) (first-FUNC)
= (Fα ◦ F>>>)

`

c, F>>>(d, e)
´

=
`

Fα ◦ F>>> ◦ (id × F>>>)
´

(c, (d, e))

Here the equality(†) is because of the “pentagon” coherence forα in Set. Naturality
of F>>> in X,Y , as well as satisfaction of the other equations, can be derived by similar
calculation. ⊓⊔

Let us summarize our approach. In the categorical model{Coalg(FI,J )} of LCC

that we are interested in, operations are interpreted essentially by {FI,J}’s lax com-
patibility with LCC (Thm. 4.6). Furthermore we notice that the latter can be described
usingLCC’s specific set-theoretic modelKℓ(T ), which we exploit (the above proof).
Note that we can employKℓ(T ) specifically because of the shape(T (J × ))I of FI,J .

For obtaining a microcosm model we need final coalgebras. This depends on the
“size” of the monadT (see e.g. [26]); all the examples ofT listed in §1, except for
probabilistic branching and unbounded non-determinism, satisfy this size requirement.



Theorem 5.9 Assume that, for eachI, J ∈ B, we have a final coalgebraζI,J : ZI,J
∼=→

FI,J(ZI,J ).

1. The family{Coalg(FI,J )}I,J carries anArrTh-category, so aPLTh-category.
2. The family{ZI,J ∈ Set}I,J carries anArrTh-object, hence aPLTh-object.

Compositionality holds in the sense of Thm. 4.6.4.
3. If T is commutative, then the above two are also anMArrTh-category and an

MArrTh-object, respectively.

Proof. By Thm. 4.6, Lem. 5.7 and Lem. 5.8. ⊓⊔

6 Conclusions and Future Work

We have extended our previous formalization of the microcosm principle [14] to a
many-sorted setting. This allowed to include Barbosa’s component calculi [2] as ex-
amples. We studied three concrete calculi that are variantsof the axiomatization of
arrows, demonstrating similarity between components and structured computations.

As future work, we are interested in further extensions of the component calculi that
allow modeling of further interesting examples like wiringand merging components,
queues, stacks, and folders of stacks with feedback, etc., as presented in [2]. The proof
methods that we derived from the microcosm framework will beuseful in its course.

On the more abstract side, it is interesting to elevate the arguments in§5 further,
to the bicategoryDIST of distributors, withCAT embedded in it via the Yoneda
embedding. Such a higher level view on the matter might reveal further microcosm
instances in our proof methods.

Acknowledgments Thanks are due to Kazuyuki Asada, Masahito Hasegawa, Paul-
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