A Unified Approach to Minimum Risk Training and Decoding

Abhishek Arun, Barry Haddow and Philipp Koehn

University of Edinburgh

Fifth Workshop on Machine Translation, Uppsala, July 16th 2010

- Current Approaches to Minimum Risk Decoding
- A Unified Approach
- Markov Chain Monte Carlo for Phrase-based MT
- Minimum risk training
- Optimising corpus **BLEU**
- Experiments
- Conclusions and Future work

Minimum Risk Decoding in MT

Optimal Decision Rule?

- Find the target sentence which minimises expected risk
 - Equivalently: Maximises expected gain
- Summarised by the following equation

$$e^* = \arg \max_{e} \sum_{e'} p(e'|f) Gain(e', e)$$

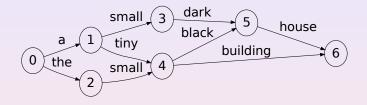
f - source, e - target

- We use **BLEU** as the gain function
- Referred to as Minimum Bayes Risk (MBR) Decoding.

Current Approaches to MBR Decoding

- First-pass decoder scores translations with linear model
- The scores must be scaled and normalised to give probabilities
 - Scaling requires hyper-parameter search
 - Normalisation requires intractable sum
- MBR Decoding Implemented as a list re-ranker
- Feature weights in linear model trained with MERT
 - Non-probabilistic training algorithm
 - Aims to maximise 1-best (MAP) performance

Lattice-Based Approaches



- Represent many hypotheses compactly
- State-of-the-art performance from Lattice MBR
- But
 - Feature weights trained with MERT
 - Biased pruning May be bad for sparse features
 - Need to approximate BLEU- more hyperparameters

A Unified Approach

Training

Optimise Expected BLEU

Decoding

Maximise Expected BLEU

- Objective is differentiable
 - Can use gradient-based optimisation
- Use Markov Chain Monte Carlo (MCMC) to estimate:
 - Feature expectations during training for gradient
 - Expected **BLEU** during decoding

- Maintains a probabilistic formulation throughout
 - Theoretically sound
 - Unbiased estimates
- Avoids dynamic programming so non-local features easier
- Compared to MERT:
 - More stable
 - Generalises better
 - Gives better performance

MCMC Sampler for Phrase-based MT

$$\begin{array}{c} T_{i-1} \\ \hline (e_i, a_i) \\ \hline \end{array} \\ \hline \begin{array}{c} T_i \\ \hline (e_{i+1}, a_{i+1}) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} T_{i+1} \\ \hline (e_{i+2}, a_{i+2}) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} T_{i+2} \\ \hline \end{array} \\ \hline \end{array}$$

- Used to draw samples $\{(e_i, a_i)\}$ from p(e, a|f)
 - Use the samples to estimate expectations

$$E(h) \approx \frac{1}{N} \sum_{(e_i, a_i)} h(e_i, a_i, f)$$

- Transitions T_i defined by Transition Operators
 - Make small local changes to hypothesis
 - Apply all operators in sequence before collecting sample

MCMC Operators

RETRANS

Retranslates one source-target phrase pair

MERGE-SPLIT

Operates at an inter-word position. May merge or split segments as appropriate, and retranslate.

REORDER

Swaps target position of two source-target phrase pairs

MCMC Example

(a)
$$c'est \circ un \circ résultat \circ remarquable$$

Initial $\frac{1}{it is}$ some result remarkable
(b) $c'est \circ un \circ résultat \circ remarquable$
RETRANS but some result remarkable
(c) $c'est \circ un \circ résultat \circ remarquable$
MERGE $\frac{1}{it is a}$ $résultat \circ remarquable$
(d) $c'est \circ un \circ résultat \circ remarquable$
REORDER $it is a$ $remarkable$ result $remarquable$

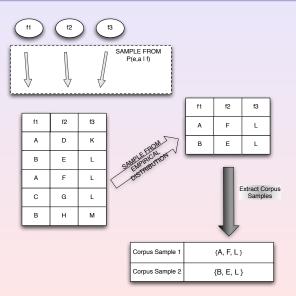
Our objective is the expected gain plus an entropic prior

$$\hat{\mathcal{G}} = \sum_{\langle \hat{e}, f \rangle \in \mathcal{D}} \left[\left(\sum_{e, a} p(e, a | f)_{\text{BLEU}_{\hat{e}}}(e) \right) + T.H(p) \right]$$

- The temperature (*T*) starts off high and is gradually reduced.
- This moves from high entropy to low entropy, and helps avoid local maxima
- Known as Deterministic Annealing (DA)
- The gradient is calculated using the sampler, and optimisation is by stochastic gradient descent

- But we're optimising sentence BLEU
 - And testing with corpus **BLEU**
- To eradicate this mismatch, we propose Corpus Sampling
- Each sample is an aligned translation of the whole corpus
 - Sentence samples are collected for all sentences
 - These are resampled to give corpus samples
 - Now we can optimise corpus **BLEU**

Corpus Sampling Illustration



Experimental Setup

NIST Arabic-English

300k Sents Train In-Domain Test

Europarl French-English

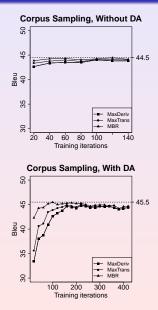
1.4M Sents Train In-Domain Test Out-of-domain Test Europarl German-English

1.4M Sents Train In-Domain Test Out-of-domain Test

Moses Setup

- Standard phrase extraction pipeline
- Standard features (no lexicalised reordering)
- MERT/Moses for baselines

Effect of deterministic Annealing



- Graphs show heldout performance
- Converges much quicker without DA
- Maximum is lower
- At high entropy, MBR much better than max-derivation
- Advantage reduces with temperature
- We use early stopping to find best weights

Corpus Sampling vs Sentence Sampling

Test Set	Sentence	Corpus
AR-EN MT05	44.6 (0.990)	44.5 (0.989)
FR-EN In-domain	32.9 (1.003)	33.2 (0.997)
FR-EN Out-domain	19.7 (1.049)	19.8 (1.041)
DE-EN In-domain	26.9 (0.987)	27.8 (0.993)
DE-EN Out-domain	16.6 (0.975)	16.6 (0.980)

- Expected **BLEU** training, MBR decoding
- Table shows **BLEU** and length penalty
- Corpus sampling slightly better

	MERT/Moses		Expected BLEU	
Test set	Best	σ	MBR	σ
AR-EN MT05	44.5 (IMBR)	0.12	44.5	0.14
FR-EN In	33.4 (nMBR)	0.12	33.2	0.06
FR-EN Out	19.5 (nMBR)	0.12	19.8	0.05
DE-EN In	27.8 (MAP)	0.10	27.8	0.11
DE-EN Out	16.0 (IMBR)	0.30	16.6	0.12

Compare corpus sampler with best MERT/moses result

- For sampler, decode with n-best MBR
- For Moses, best out of MAP, n-best MBR and lattice MBR
- Five runs of expected BLEU, ten runs of MERT, averaged.

Expected Bleu Training, Moses Decoding

Test Set	MAP	nMBR	IMBR	Sampler
				MBR
AR-EN MT05	44.2	44.4	44.8	44.8
FR-EN In	33.1	33.2	33.3	33.3
FR-EN Out	19.6	19.8	19.9	19.9
DE-EN In	27.7	27.9	28.0	28.0
DE-EN Out	16.0	16.3	16.6	16.6

- We use the best expected **BLEU** trained weights
- Decoding with Moses (first three columns) or sampler
- Suggests that expected **BLEU** weights better for IMBR

Conclusions

- Unified Training and Decoding beats or equals MERT/Moses
- Deterministic Annealing (entropic prior) provides better performance
- Corpus sampling provides small gains over sentence sampling
- Expected bleu trained weights more suited to lattice MBR decoding, than MERT weights
- MBR and maximum-translation decoding better than maximum-derivation

Future Work

- Supplement dense features with many sparse features
 - eg. discriminative language models
- Incorporate non-local features
 - eg. long-distance agreement
- Metropolis-Hastings step to efficiently incorporate slow features
 - eg. higher-order language model

Thank you! Questions?

Code:

https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/branches/josiah