PBML

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 57-66

Adding Multi-threaded Decoding to Moses

Barry Haddow

School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, Scotland, EH8 9AB

Abstract

The phrase-based translation system Moses has been extended to take advantage of multi-
core systems by using multi-threaded decoding. This paper describes how these extensions
were implemented and how they can be used, as well as offering some experimental measure-
ments of the potential speed-ups available. Details are also provided of how the multi-threaded
Moses library is used to create the Moses server, a platform for building online translation sys-
tems.

1. Introduction

A recent trend in computing has been the growth in popularity of multi-core pro-
cessors, able to execute several processes simultaneously. Ordinary desktop and lap-
top machines are frequently equipped with dual-core processors while servers may
have one or more 8-core processors. In order to take advantage of this parallel com-
puting capability, software can be developed to execute with multiple threads. Whilst
both threads and processes are units of execution, the difference between the two is
that threads share the same address space, meaning that multiple threads can access
the same in-memory data structures. The consequence is that threads can cooperate
more tightly to accomplish a task, but also that the developer must take more care to
ensure that common data structures are not damaged by interleaved instructions.

The aim of this paper is to describe some recent modifications to the Moses! de-
coder (Koehn et al., 2007) which enable it to take advantage of this parallel computing
capability by decoding several sentences simultaneously in separate threads. Within
the typical machine translation (MT) research environment, the main advantage of a

1 Available under the LGPL from http: //sourceforge. net/projects/mosesdecoder /

© 2010 PBML. All rights reserved. Corresponding author: bhaddow@inf. ed. ac. uk
Cite as: Barry Haddow. Adding Multi-threaded Decoding to Moses. The Prague Bulletin of Mathematical
Linguistics No. 93, 2010, pp. 57-66. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0006-6.

PBML 93 JANUARY 2010

multi-threaded decoder is that it can make more efficient use of the available hard-
ware, enabling quicker decoding. Since the most widespread method for optimis-
ing statistical machine translation systems, minimum error rate training (mert) (Och,
2003), involves decoding the tuning set multiple times, improvements in decoding
speed lead to faster experimental turnarounds.

The traditional method of parallelising decoding (as implemented in Moses by
the moses- parallel. pl script) was to split the input file into equal sized segments
and send each segment to a separate process, probably running on a separate ma-
chine. This method requires a cluster of machines running some kind of job schedul-
ing software (such as Sun grid engine), requiring specialist knowledge to install and
administer. It also requires each machine to have access to the translation, language
and reordering models, and to have sufficient RAM for the decoder to be able to load
them into memory. With the increasing size of the models that are used in MT re-
search, copying these across a network and providing sufficient RAM are non-trivial
tasks. The advantage of using threads for parallel decoding is that, since all the par-
allel execution takes place in the same process, only one copy of each of the models
needs to be loaded into memory. Furthermore, it is easier to balance the decoding
load between threads than between different processes, as they can cooperate more
closely.

Parallel decoding is also essential for the provision of on-line translation services.
In this setting, it is clearly undesirable for one user to be blocked whilst another user’s
translation job is running, and for translating larger blocks of text (such as web pages)
it would be useful if some of the sentences could be translated in parallel. Adding
multi-threading to the Moses library meant that the decoder could be embedded
within a server which is able to process multiple simultaneous requests. Of course,
to create a truly scalable online translation system, it is also necessary to allow trans-
lation to be spread across multiple machines (Sanchez-Cartagena and Pérez-Ortiz,
2009), as adding more machines an easier way of scaling hardware if the current
server’s capacity has been reached. Nevertheless, a multi-threaded moses server is
an important component in a moses-based online translation system, since it can take
advantage of multi-core servers.

The main disadvantage of multi-threaded software is that it can be more compli-
cated to develop, and leads to a new types of bugs which may be difficult to diagnose.
In this paper, the techniques used to add thread safety to an existing decoder (namely,
Moses) will be discussed, with the aim of providing guidance to others working on
similar engineering problems.

The paper is organised as follows: in the following section, techniques for safe
multi-threaded programming are described, while Sections 3 and 4 explain the de-
sign of multi-threaded Moses and the Moses server, respectively. In Section 6 some
experimental results are presented showing the speed-ups possible when decoding
with multi-threaded Moses, whilst Section 7 offers some conclusions and suggestions
for future developments.

58

Barry Haddow Multi-threaded Moses (57-66)

2. Techniques for Multi-threaded Programming

The aim of this section is to briefly introduce some of the concepts and techniques
used in multi-threaded programming. It is not meant to be a comprehensive treat-
ment of the topic, merely to provide sufficient background for the design description
in the following section.

In most operating systems, programs are executed as processes which are separate
units of execution (as seen by the scheduler) and have separate address spaces, so
they cannot normally access each other’s data. A process may, however, have one or
more separate threads, which are also units of execution with their own call stack, but
share the same address space. On a single-processor, single-core machine, threads
are mainly used so that the process can continue doing work whilst it is waiting on
another task (typically input/output) to complete. However on today’s multi-core
and multi-processor machines, genuine parallelism is possible.

Allowing multiple threads of execution to access the same memory space is poten-
tially dangerous and can easily lead to memory corruption. To allow safe concurrent
access to data structures, a device called a mutex (mutual exclusion), or a lock, is used
to protect critical sections of code so that only one thread is allowed to execute it at
any one time. One particularly useful type of mutex is a reader-writer lock, which has
two modes of locking; one for reading which allows many threads to access the crit-
ical section simultaneously, and one for writing where only one thread is allowed to
access it.

If mutexes are not used correctly then performance can suffer due to either lock
contention or deadlock. The former is where threads hold on to mutexes for longer
than is necessary, thus reducing performance because many other threads may be
waiting on the mutex to continue performing their tasks. The latter situation can arise,
for example, where a first thread acquires lock A and then lock B, whilst a second
thread attempts to acquire the same locks in the opposite order. Depending on the
timing of lock acquisition, each thread can be left waiting for the lock that the other
one holds, and so neither will be able to continue executing.

As an alternative to the coordinated sharing of data using mutexes, it is sometimes
appropriate for each thread to have its own data, for example to provide a thread-
specific cache. On many platforms developers implement this using a construct called
thread local storage. Conceptually, this can be thought of as a common pointer, which
when dereferenced returns a block of memory which is unique to the calling thread.

It is possible to create and destroy threads whenever needed, however, creating
and destroying threads can be expensive (if they use a lot of thread specific data)
and it may be necessary to limit the number of threads active at any time. To avoid
constant creation and destruction, threads are often organised into a thread pool, whose
size may be fixed or subject to upper and lower bounds. A work queue can be used
in conjunction with a thread pool to allocate work to the threads, by queueing up the
tasks and allocating them to the next available thread.

59

PBML 93 JANUARY 2010

Programming languages and operating systems differ in the amount of support
they offer for multi-threaded programming. In general, Java has very good multi-
threaded support, having been created as a multi-thread enabled platform right from
the start, and possessing a broad range of thread synchronisation primitives, as well
as thread-safe data structures and classes for implementing typical threaded pro-
gramming patterns. In C++ the multi-threaded support is not as good, with no sin-
gle standard library for multi-threaded programming, and many platform specific
thread libraries. However, there are some mature cross-platform libraries for C++
which include all the appropriate multi-threaded programming primitives, such as
ACE? (Adaptive Communications Environment) and boost’. In addition, there is
OpenMP?, a cross-platform API supported by many leading software vendors which
is implemented mainly using compiler directives. In multi-threaded Moses, the boost
libraries were used since they offer the required primitives in a cross-platform library
which is steadily being incorporated into the C++ standard.

3. Multi-threaded Moses

The aim of this section is to explain the changes that were made to Moses in order
for it to support multi-threaded decoding. The threading model adopted for multi-
threaded Moses assigns each sentence to a distinct thread so that each thread works
on its own decoding task, but shares models with the other threads. This design was
chosen to minimise the data sharing between threads.

In making the required changes for multi-threading, one of the considerations was
to cause as little disruption to the existing codebase as possible, so the design decisions
are not necessarily the same as those that would be employed when building a new
piece of software. It was important not to introduce extra dependencies to the Moses
build, except where necessary, so the thread-safe version of the Moses library is only
built when the appropriate compiler directives are switched on. The work involved in
adding multi-threaded decoding to Moses can be divided into two parts; updating the
Moses libraries to be thread-safe, and adding the thread creation and management to
the Moses mainline.

3.1. Moses Library

To enable the multi-threaded decoding, the Moses libraries need to ensure that,
when two different threads are processing their respective sentences, they do not at-
tempt to modify data structures potentially being used by the other threads. The
principal shared data structures used in decoding are language models, translation

2nttp: //www. cse. wustl. edu/~schmidt/ACE. html
Shttp:: /www. boost. org
4http: //openmp. org/wp/

60

Barry Haddow Multi-threaded Moses (57-66)

models and reordering models, and at first sight one might think that all the decoder
needs to do is read from these data structures, in which case there would be no is-
sue with simultaneous access. However the extensive use of caching within Moses,
necessary to reduce levels of disk access during decoding, meant that the data struc-
tures representing the models were not necessarily read only. Furthermore, Moses
tended to rely on the global singleton object StaticData to store data connected with
the translation process, even if it was only relevant for one sentence.

The first strategy employed to ensure the thread-safety of the Moses libraries was
to use the Manager object to store sentence specific data, rather than StaticData. An
instance of the Manager is created for each sentence to be translated, and only contains
data relevant to that particular sentence. So in the ‘thread per sentence’ model em-
ployed in multi-threaded Moses, these objects can only be accessed by one thread at
a time. The disadvantage of using the Manager object to store sentence-specific data
is that it must be made available at all points at which this data is needed, thus clut-
tering up interfaces. In the thread-safe Moses, the Manager is now responsible for the
pre-loaded portion of the translation table pertaining to its sentence, as well as certain
debug data such as timing information.

The translation table (phrase dictionary) in Moses can either be loaded it to mem-
ory or utilised in a ‘binarised” (on-disk) mode. The former presents no thread-safety
issues since it is just loaded into memory at decoder start-up, and is used in a read-
only fashion. However, with large translation models it is usual to compile them into
a binary format and use them in the on-disk mode, which means that some caching
is necessary to reduce the amount of disk access. The system-wide disk cache would
be of some help here, but a cache that works at the phrase level is more effective.

The binarised translation model is controlled by the PhraseDictionaryTree class
which is really just a wrapper for the PDTImp1 class, the actual implementation. Since
the latter is is a read-write data structure, it needed modification to allow concurrent
access, and in order to minimise the code changes involved it was decided to use
thread specific data to make sure that there was only ever one PDTImpl object per
thread. The thread specific data class in the boost library has the advantage that it
has the same interface as an auto_ptr, making it easy to switch between two using
compiler directives.

A third solution to the problem of allowing multiple threads to simultaneously
access data structures was to use mutexes. For example, the FactorCollection object
(essentially a vocabulary cache) is now protected by a reader-writer lock so that mul-
tiple threads can read from it at any one time, but if a thread wishes to write to it then
it must obtain an exclusive lock. For the translation options cache held in the global
StaticData object, a single mutex is used to synchronise access to the cache. As this
is an LRU (least recently used) cache, it must update a timestamp every time an item
in the cache is accessed, so a reader-writer lock is not appropriate here.

61

PBML 93 JANUARY 2010

3.2. Mainline

In order to run multi-threaded decoding, the Moses mainline must create threads
and organise the assignment of decoding work to threads. Due to the multiplicity of
input/output options in the existing mainline, it was decided that it would be easier
to create a new multi-threaded mainline (MosesMT. cpp) rather than updating the old
one. This has resulted in some undesirable duplication of code, complicating regres-
sion testing, which hopefully will be resolved in a future refactoring.

A UML sequence diagram for the important parts of the new Moses mainline is
shown in Figure 1. The mainline creates a ThreadPool object whose job it is to manage
a pool of worker threads. The specified number of threads is created on construction
and then jobs are submitted to the pool using the Submit () method until the Stop ()
method is called which causes the pool to stop accepting new work, flush the queue
and stop all the threads. The unit of work processed by the thread pool is represented
by a Task object, which in the multi-threaded decoder contains a single sentence to
be translated. The tasks are queued up in the pool and as threads become available,
they pop a task off the queue and execute it.

When multi-threaded Moses is processing a file, the file is read in, split into lines,
and placed in the ThreadPool’s queue as a series of Task objects. Since these may be
executed out of order, it is necessary to put the translated sentences into the appro-
priate order before outputting them. This reordering is performed by the OutputCol-
lector class which uses the input line number to order the sentences correctly.

main ThreadPool TranslationTask OutputCollector

|
<<creafe>! :
|

T
|
|
|
<<depte>> 4>D !
I
I
I
I
I
I

ubmi |
un

Figure 1. UML Sequence diagram for multi-threaded Moses mainline

62

Barry Haddow Multi-threaded Moses (57-66)

4. Moses Server

The main purpose of the Moses server is to enable network access to a Moses-based
translation system, for example to build an on-line demo. Making the server multi-
threaded offers the advantage that it can process translation requests from more than
one user simultaneously, and also it can decode multiple sentences in batches, for
example when translating a web page.

The Moses server use the xmlrpc® protocol to communicate with its clients. This
protocol has the advantage of having mature implementations available in many pro-
gramming languages; the Moses server has been used with clients written in java,
perl, python and php. The specific implementation used in Moses is xmlrpc-c®.

Since the xmlrpc implementation takes care of managing the server infrastructure,
for example listening for client requests and running a thread pool to deal with these
requests, the Moses server code only has to implement the remote procedure calls
(rpc). Currently the only call that the Moses server implements is the translate()
call, which receives an input sentence in its text field, and returns the translated text
in the same field. If the align flag is switched on in the method call then the phrase
alignment is returned as a sequence of (target-start, source-start, source-end)
index triples, in target order.

5. Usage

Using multi-threaded Moses is straightforward. The new mainline (mosesmt) is
intended as a drop-in replacement for the existing mainline. It responds to exactly
the same arguments as moses and adds a - threads n argument to specify the number
of threads. Increasing the verbosity of multi-threaded Moses is not recommended as
some of the debug code uses non-threadsafe global variables, and the debug messages
will be interleaved and difficult to read anyway.

The Moses server mainline (mosesserver) also accepts all the usual Moses argu-
ments and adds two of its own. The argument - - server-port nis used to specify the
port on which the server listens, and the - - ser ver - log can be used to specify a log file
for the server to write to. For extra diagnostic information, set the XMLRPC_TRACE _XML
environment variable before launching the server.

6. Experiments

In this section the results of some timing experiments are presented, comparing
multi-threaded and single-threaded Moses. The experiments were run on a Dell Pow-
erEdge server with 4 Intel Xeon Quad Core processors (so it has 16 cores), and 32GB
RAM.

Shttp: //www. xmlrpc. com/
bhttp: //xmlrpc- c. sourceforge. net/

63

PBML 93 JANUARY 2010

For the first set of experiments, decoding speed of single and multi-threaded Moses
was directly compared, using a translation model similar to the Edinburgh French-
English submission for the WMT2009 shared task (Callison-Burch et al., 2009; Koehn
and Haddow, 2009). This includes translation models and reordering models trained
on all the shared task parallel data, plus a language model trained on the English
side of this data, interpolated with the monolingual news data. The translation and
reordering models were used in binarised (on-disk) format, but the language model
was loaded into memory:.

The experiment consisted of decoding the news test set from this shared task (3027
sentences) using plain (single-threaded) Moses, and using multi-threaded Moses whilst
varying the number of threads from 2 to 6. In order to account for the fixed costs of
loading the models into memory and initialising other data structures, a decoding
run was also done for one sentence. Decoding was repeated five times for each type
of decoder. The mean times (in seconds) are shown in Table 1.

| Decoder | Full corpus | One sentence | Difference | sd(Difference) |
Plain Moses 4677 282 4395 623
Moses MT 2 threads 3292 283 3009 505
Moses MT 3 threads 2024 284 1740 154
Moses MT 4 threads 1781 283 1498 100
Moses MT 5 threads 1591 278 1313 37
Moses MT 6 threads 1492 278 1214 45

Table 1. Decoding time (in seconds) for single and multi-threaded decoders, averaged

over five runs. The second last column is the difference between the first two, in other

words the time to decode 3026 sentences not including start-up and shut-down times.
The final column shows the standard deviation of this 3026 sentence time.

From Table 1 it can be seen that there is around a speed increase of around 3.5
going from single-threaded Moses to multi-threaded Moses with 6 threads. Whilst
this speed-up is clearly useful, the question arises of why there isn’t a six-fold in-
crease in speed. The most likely answer to this question is some sort of resource con-
tention; in other words the six threads are not spending all their time decoding but
spending some time waiting for other threads to release a resource. One possible type
of resource contention is lock contention, where threads spend time in a block state
waiting for other threads to release locks, however the only locks used during the de-
coding are those on the translation options cache, and running experiments with this
cache removed results in similar timing behaviour. It is also possible, depending on
the hardware architecture, that there is resource contention at the RAM or disk level,

64

Barry Haddow Multi-threaded Moses (57-66)

since decoding requires a substantial amount of data to be accessed from the different
models employed.

The next timing experiment compares minimum error rate training (mert) runs
using single-threaded and multi-threaded Moses. This experiment uses the French-
English europarl corpus (Callison-Burch et al., 2009) for training the translation model
and 5-gram language model, with the 2000 sentence dev2006 corpus for tuning, and
the test2007 and test2008 corpora for testing. The tuning runs were done on the same
machine as the first set of experiments, although because of the length of these exper-
iments it was not possible to ensure that the machine remained unloaded throughout
this time. Table 2 shows the timings for single-threaded Moses, and Table 3 shows the
corresponding timings for multi-threaded Moses, demonstrating around a two-fold
speed-up in mert when using 4 threads.

Run \ Iterations \ Time \ Time per Iteration \ Bleu ‘

1 17 2054 120.8 334
2 12 1258 104.8 33.3
3 14 1362 97.3 33.3
4 14 1172 83.7 33.3
5 16 1283 80.2 33.3
mean 14.6 1425 97.4 33.3

Table 2. MERT times for single-threaded Moses, in minutes

| Run | Iterations | Time | Time per Iteration | Bleu |
1 15 735 49.0 33.3
2 23 1320 57.4 33.3
3 8 319 39.9 33.5
4 15 615 47.7 334
5 10 456 45.6 334
mean 14.2 689 46.6 33.4

Table 3. MERT times for multi-threaded Moses (4 threads), in minutes

7. Conclusions and Future Work

This article has described extensions to the Moses decoder which permit multi-
threaded decoding, and also allow Moses to be used as a server to run an online

65

PBML 93 JANUARY 2010

translation system. Experimental results demonstrated that using 6 threads can speed
up decoding by 3.5 times, and a two-fold speed-up in mert was demonstrated, when
using a multi-threaded decoder with 4 threads. Further investigation is required to
determine why the speed of decoding is not linear in the number of threads. The other
outstanding task in multi-threaded Moses is to make the generation tables (used in
some factored models) thread-safe; these can be addressed using the same techniques
as the translation tables.

The Moses server is already being used successfully in the University of Edin-
burgh’s demo site’. A limitation of the current server is that a separate server is
required for each language pair so, for instance, to deploy both French-English and
German-English systems, each server must load its own copy of the English language
model. A proposed update to the Moses server would be to allow configuration switch-
ing, where one server would be able to run more than one translation system, with
the choice of translation system to translate a given sentence would be selected by an
rpc argument. This arrangement would save on the RAM used to run multiple Moses
servers on the same host with the same target language.

Bibliography

Callison-Burch, Chris, Philipp Koehn, Christoph Monz, and Josh Schroeder, editors. Proceed-
ings of the Workshop on Statistical Machine Translation, 2009.

Koehn, Philipp and Barry Haddow. Edinburgh’s submission to all tracks of the WMT 2009
shared task with reordering and speed improvements to Moses. In Proceedings of the Work-
shop on Statistical Machine Translation, pages 160-164, 2009.

Koehn, P, H. Hoang, A. Birch Mayne, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open
source toolkit for statistical machine translation. In Proceedings of ACL Demonstration Session,
pages 177-180, 2007.

Och, Franz]J. Minimum error rate training in statistical machine translation. In Proceedings of
ACL, 2003.

Sanchez-Cartagena, Victor M. and Juan Antonio Pérez-Ortiz. An open-source highly scalable
web service architecture for the Apertium machine translation engine. In Proceedings of the
First International Workshop on Free/Open-Source Rule-Based Machine Translation, pages 51-58,
2009.

“http: //demo. statmt. org

66

