
Learning Factored Markov Decision Processes with Unawareness

Craig Innes
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom EH8 9AB

craig.innes@ed.ac.uk

Alex Lascarides
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom EH8 9AB

alex@inf.ed.ac.uk

Abstract

Methods for learning and planning in sequen-
tial decision problems often assume the learner
is aware of all possible states and actions in
advance. This assumption is sometimes un-
tenable. In this paper, we give a method to
learn factored markov decision problems from
both domain exploration and expert assistance,
which guarantees convergence to near-optimal
behaviour, even when the agent begins un-
aware of factors critical to success. Our experi-
ments show our agent learns optimal behaviour
on small and large problems, and that conserv-
ing information on discovering new possibili-
ties results in faster convergence.

1 INTRODUCTION

Factored markov decision processes (FMDPs) are a fun-
damental tool for modelling complex sequential deci-
sion problems. When the transition and reward func-
tions of an FMDP are known, there are tractable meth-
ods to learn its optimal policy via dynamic programming
[Guestrin et al., 2003]. When these components are un-
known, methods exist to jointly learn a structured model
of the transition and reward functions [Degris et al.,
2006, Araya-López et al., 2011]. Yet all such methods
(except Rong [2016]) assume that the actions available
to the agent and the state variables that describe the state
space are completely known in advance of learning. In
many scenarios, this assumption does not hold.

In human discussion for example, answers to a person’s
inquiry may not only provide information about which
of the questioner’s existing hypotheses are likely, but
may also reveal new unconsidered hypotheses [Coenen
et al., 2017]; in medicine, pharmacologists might dis-
cover that the side-effects of a previously tested drug are

radically affected by a newly discovered gene; in robotic
skill-learning, methods like Cakmak and Thomaz [2012]
teach a robot how to perform new actions it was previ-
ously unaware of, but not how to integrate them into an
existing decision model. In all these examples, it may
be infeasible for an agent to gather all relevant factors
of the problem before learning, but relatively easy for
an expert to offer contextually relevant corrective advice
during learning.

In previous work, Innes and Lascarides [2019] provide
a framework for incremental learning under this kind of
unawareness. Their framework uses evidence from both
expert advice and domain trials to gradually expand an
agent’s awareness of the hypothesis space, rather than
to refine a distribution over a fixed hypothesis space.
This work dealt exclusively with simple one-shot deci-
sion tasks, where an agent’s actions in the past do not
have a lasting effect on future states. This paper directly
extends such work to deal with sequential problems of
potentially unbounded horizon.

One could just represent unawareness as an infinite num-
ber of hidden states [Doshi-Velez, 2009], or via a series
of densely connected hidden layers [Mnih et al., 2015].
But these approaches have several drawbacks. First, nei-
ther currently addresses what to do when an unforeseen
action is discovered. More importantly, since the hidden
variables are not tied to grounded concepts with explicit
meaning, it is difficult for an agent to justify its decisions
to a user, or to articulate queries about its current under-
standing of the world so as to solicit help from an expert.

We instead propose a system where an agent makes ex-
plicit attempts to overcome its unawareness, extending
Innes and Lascarides [2019] to handle sequential deci-
sion problems. This paper makes three contributions:
First, an algorithm which incrementally learns all com-
ponents of an FMDP. This includes the transition, reward,
and value functions, but also the set of actions and state
variables themselves (Section 3). Second, an expert-

agent communication protocol (Section 3.1) which inter-
leaves contextual expert advice with learning, and guar-
antees our agent converges to near-optimal behaviour,
despite beginning unaware of factors critical to success.
Third, experiments on small and large sequential deci-
sion problems showing our agent successfully learns op-
timal behaviour in practice (Section 4).

2 THE LEARNING TASK

We focus on learning episodic, finite state FMDPs with
discrete states and actions. We begin with the formalisms
for learning optimal behaviour in FMDPs where the agent
is fully aware of all possible states and actions. We then
extend the task to one where the agent starts unaware of
relevant variables and actions, and show how the agent
overcomes this unawareness with expert aid.

2.1 EPISODIC MPDS

An MDP is a tuple 〈S,Ss,Se, A, T ,R〉, where S and
A are the set of states and actions; Ss,Se ⊆ S are
possible start and end (terminal) states of an episode;
T : S × A × S → [0, 1] is the markovian transition
function P (s′|s, a), and R : S → R is the immediate
reward function.1 A policy π : S × A → [0, 1] gives
the probability π(s, a) that an agent will take action a in
state s. When referring to the local time m in episode
n, we denote the current state and reward by sm,n and
rm,n = R(sm,n). When referring to the global time t
across episodes, we denote them by st and rt.

The discounted return for episode n is: Gn =
∑T
i=0 γ

i ∗
ri,n, where 0 ≤ γ ≤ 1 is the discount factor gov-
erning how strongly the agent prefers immediate re-
wards. The agent’s goal is to learn the optimal policy
π+, which maximizes the expected discounted return in
all states. The value function Vπ(s) defines the expected
return when following a given policy π, while the related
action-value function Qπ(s, a) gives the expected return
of taking action a in state s, and thereafter following π.

Vπ(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s))Vπ(s′) (1)

Qπ(s, a) = R(s) + γ
∑
s′∈S

P (s′|s, a)Vπ(s′) (2)

If T and R are known, we can compute π+ via value
iteration [Sutton and Barto, 1998]. Further, we can mea-

1In this paper, we assume the agent’s preferences depend
only on the current state, and are both deterministic and sta-
tionary. Other works allow R to depend on the action and/or
resulting state (i.e.,R : S ×A× S → R).

sure the expected loss in discounted return of following
policy π versus π+ using (3), which we refer to as the
policy error. If the agent’s policy is unknown, we can
approximate the policy error using (4), where P (s0) is
the probability of starting an episode in s0:

Err(π) =
∑
s0∈Ss

P (s0)(Vπ+
(s0)− Vπ(s0)) (3)

Err(t, t+ k) = (
∑
s0∈Ss

P (s0)Vπ+
(s))−

∑t+k
i=t G

i

k
(4)

If all episodes eventually terminate, then (4) converges to
(3). If our agent is ε-greedy (i.e., in all states, has proba-
bility ε > 0 of executing any action from A at random),
then termination in most MDPs is guaranteed [Sutton and
Barto, 1998]:

Definition 1 (Proper Policy). A policy π is proper if,
from all states s ∈ S , acting according to π guarantees
one eventually reaches some terminal state s′ ∈ Se.
Lemma 1. If an MDP has a proper policy π, then any
policy which is ε-greedy with respect to A is also proper.

2.2 LEARNING FMDPS WHEN FULLY AWARE

If T or R are unknown, the agent must learn them
using the data D0:t = [d0, . . . , dt] gathered from do-
main interactions. At time t, the sequential trial dt =
〈st, at, st+1, rt+1〉 gives the current state st, action at,
resulting state st+1 and the reward rt+1 given on en-
tering st+1. FMDPs allow one to learn T for large
MDPs by representing states as a joint assignment to
a set of variables X = {X1, . . . , Xn} (written S =
v(X)). Similarly, the reward function is defined as a
function R : v(scope(R)) → R, where scope(R) ⊆
X are variables which determine the reward received
in each state. To exploit conditional independence,
T is then represented by a Dynamic Bayesian Net-
work (DBN) [Dean and Kanazawa, 1989] for each ac-
tion. That is, T = {dbna1 , . . . dbnan}, where dbna =
〈Paa, θa〉. Here, Paa is a directed acyclic graph with
nodes {X1, . . . , Xn, X

′
1, . . . X

′
n} where, as is standard,

node Xi denotes the value of variable Xi ∈ X at the
current time, while X ′i denotes the same variable in the
next time step. For each X ′i , Pa

a
X′

i
defines the parents of

X ′i . These are the only variables on which the value of
X ′i depends. We also make the common assumption that
values of variables which occur at exactly the same time
cannot depend on one another. This means our DBNs
contain no synchronic arcs [Degris and Sigaud, 2010],
or formally that ∀X ′i ∀a,Pa

a
X′

i
⊆ {X1, . . . , Xn}.

This structure allows us to write transition probabilities

X = 1

7 Y = 1

9 10

(a) Reward

X = 1

Y = 0 [0.9, 0.1]

[0.5, 0.5] [0.6, 0.4]

(b) Conditional Probability

Figure 1: Example decision trees

as a product of independent parameters: P (s′|s, a) =∏
X∈X θ

a
s′[X],s[Paa

X′]
. Here, s[~Y] is the projection of s

onto the variables in ~Y , and θaX′=i,Paa
X′=j

denotes the
probability of variable X taking on value i given that the
agent performs action a when the variables PaaX′ have
assignment j in the current time step.2

Exploiting independence among state variables doesn’t
guarantee a compact representation of Vπ . We must also
exploit the context-specific independencies between as-
signments by representing T and R as decision trees,
rather than tables of values [Boutilier et al., 1996].

Figure 1 shows an example decision tree for R and
P (X ′|X,Y). The leaves are either rewards, or a dis-
tribution over the values of X ′. The non-leaves are test
nodes, which perform a binary test of the form (X = i?)
to check whether variable X ∈ X takes on the value i
in the current state. Notice that when X = 1 is true, the
distribution over X ′ is conditionally independent of Y .

As in Innes and Lascarides [2019], we estimate the
most likely DBN structure from D0:t using the Bayesian
Dirichlet Score (5), with a prior (6) which penalizes com-
plex DBNs with a cost ρ < 0.5 for each parent:

P (PaaX′)
∏

j∈v(Paa
X′)

β(Na
1,j + αa1,j , . . . , N

a
m,j + αam,j)

β(αa1,j , . . . , α
a
m,j)

(5)

P (PaaX′) = ρ|Paa
X′ |(1− ρ)|X |−|Paa

X′ | (6)

Here,Na
X=i,Paa

X′=j
is the number of trials inD0:t where

action a was taken in a state where the joint assignment
to PaaX′ was j, resulting in a state whereX has the value
i. The α terms are the hyper-parameters from the prior
over the parameters, and act as “pseudo-counts” when
data is sparse. Note, if the space of possible DBNs is too
large, we can restrict the parent sets considered reason-
able by using common pruning heuristics or, for exam-
ple, restricting the maximum in-degree.

Given PaaX′ , we can then compute each variable’s most

2If the context is clear, we condense this notation to θai,j .

likely conditional probability tree structure DTaX , re-
stricting node tests to members of PaaX′ :

P (DTaX |Pa
a
X′ , D0:t) ∝ P (DTaX)P (D0:t|DTaX) (7)

P (D0:t|DTaX) =
∏

`∈Leaves(DTa
X)

β(Na
1|` + αa1|`, . . . , N

a
m|` + αam|`)

β(αa1|`, . . . , α
a
m|`)

(8)

Here, Ni|` is the number of trials where X = i, and its
parents have an assignment which matches against the
branch label `. Rather than evaluating the probabilities
of all possible DT structures at each step, we can incre-
mentally update the most likely DT as new trials arrive
using incremental tree induction (ITI), as described in
Utgoff et al. [1997]. While we lack the space to describe
ITI in detail here, the algorithm broadly works by main-
taining a single most-likely tree structure, with counts
for all potential test assignments cached at intermediate
nodes. As new trials arrive, the counts at relevant nodes
become “stale”, as there might now exist an alternative
test which could replace the current one, resulting in a
higher value for equation (7). If such a superior test ex-
ists, the test at this node is replaced, and the tree structure
is transposed to reflect this change. We can also use ITI
to learn a tree structure for R based on the trials seen so
far. The only difference is that we use an information-
gain metric to decide on the best test nodes, rather than
(7). For example, if our current reward tree looks like
the one in figure 1a, and we receive a new trial where
st+1 = 〈X = 1, Y = 1〉 and rt+1 = 8, then we would
expand the left child of theX = 1 branch into a test node
which tests for the value of Y = 1.

Finally, given DTaX , we compute the most likely parame-
ters at each leaf via (9), where Na

.,j =
∑
i∈v(X)N

a
i,j :

E(θaX=i,Paa
X′=j
|D0:t, DTaX) =

Na
i,j + αai,j

Na
.,j + αa.,j

(9)

Once our agent has a transition and reward tree, we can
then use structured value iteration (SVI) [Boutilier et al.,
2000]—a variant of value iteration which works with de-
cision trees instead of tables—to compute a compact rep-
resentation of Vπ+ . Algorithm 1 shows an outline of an
incremental version of SVI (iSVI) [Degris et al., 2006],
which allows the agent to gradually update its beliefs
about the optimal value function in response to incom-
ing trials. The algorithm takes the current estimate of
the reward and transition functions (Rt and Tt), along
with the previous estimate of the optimal value function
(Vt−1), and combines them to produce a new estimate for

each state-action function (Qat), and value function (Vt).
For further details about the merge and regress functions
used in SVI, consult Boutilier et al. [2000].

Algorithm 1 Incremental SVI [Degris et al., 2006]

1: function INCSVI(Rt, Tt, Vt−1)
2: ∀a ∈ A : Qat ← REGRESS(Vt−1, dbna,Rt)
3: Vt ← MERGE({Qat : ∀a ∈ A}) (using maxi-

mization as the combination function)
4: return {Vt, {∀a ∈ A : Qat }}

This section took an encapsulated approach to learn-
ing T (In contrast to a unified one in e.g., Degris et al.
[2006]). This means we separate the task of finding an
optimal DBN structure from the task of learning each
local DT structure. Such an approach significantly re-
duces the space of DTs that must be considered, but
more importantly, provides us with posterior distribu-
tions P (PaaX′ |D0:t) over parent structures. We will use
these posterior distributions in section 3.2 to conserve in-
formation when discovering unforeseen factors.

3 OVERCOMING UNAWARENESS

So far, we’ve assumed our agent was aware of all rel-
evant state variables in X , all actions A, and all mem-
bers of scope(R). We now drop this assumption. From
here onward we denote the true set of state variables,
actions, and reward scope as X+, A+ and scope+(R),
and the learner’s awareness of them at t as X t, At, and
scopet(R)

Suppose X+ = {X1, X2, X3}, X0 = {X1}, A+ =
{a, a′}, A0 = {a}. We assume the agent can’t observe
the value of variables it is unaware of. In the medical
example from before, if X3 corresponds to a particular
gene, then we assume the agent cannot detect the pres-
ence or absence of that gene if it is unaware that it exists.
Similarly, we assume the agent cannot perform an action
it is unaware of.3 As a consequence, at time t = 0, the
agent does not directly observe the true trial d0, but rather
d0[X 0] = 〈s0[X 0], a0, s1[X 0], r0〉. The key point here is
that awareness of those missing factors may be crucial
to successfully learning an optimal policy. For example,
the transition between observed states may not obey the
markov property unless X2 is observed, the best action
may depend upon whether X3 is true, or the optimal pol-
icy may sometimes involve performing a′. The next sec-
tions aims to answer two main questions. First, by what
mechanisms can an agent discover and overcome its own

3This assumption, while reasonable, may always not hold
(E.g., an agent may lean on a button while unaware that the
button is part of the task).

unawareness by asking for help? Second, when an agent
discovers a new state variable or action, how can they in-
tegrate it into their current model while conserving what
they have learned from past experience?

3.1 EXPERT GUIDANCE

Our agent can expand its awareness via advice from an
expert. Teacher-apprentice learning is common in the
real world, as it allows learners to receive contextually
relevant advice which may inform them of new concepts
they would not otherwise encounter.

This paper assumes the expert has full knowledge of the
true MDP, is cooperative, and infallible. Further, we
abstract away the complexity of grounding natural lan-
guage statements in a formal semantics and instead as-
sume that the agent and expert communicate via a pre-
specified formal language (though see e.g., Zettlemoyer
and Collins [2007] for work on this problem). We do
not, however, assume the expert knows the agent’s cur-
rent beliefs about the decision problem.

As in Innes and Lascarides [2019], we use a minimal
set of communicative acts that allow interaction between
the agent and expert to proceed analogously to human
teacher-apprentice interactions. Concretely, this means
we want our system to have two properties. First, the
expert should, for the most part, allow the agent the op-
portunity to learn by themselves, interjecting only when
the agent is performing sufficiently poorly, or when the
agent explicitly asks for advice. Secondly, following the
gricean maxims of conversation [Grice, 1975], the ex-
pert should provide non-exhaustive answers to queries,
giving just enough information to resolve the agent’s cur-
rent query. We want this because in real world tasks with
human experts, it may be impossible to explain all de-
tails of a problem due to the cognitive constraints of the
expert or costs associated with communication.

The next sections identify three types of advice whose
combination guarantee the agent behaves optimally in
the long run, regardless of initial awareness.4

3.1.1 BETTER ACTION ADVICE

If the expert sees the agent perform a sub-optimal action,
it can tell the agent a better action it could have taken
instead. For example: “When it is raining, take your um-
brella instead of your sun hat”. Our goal is to avoid in-
cessantly interrupting the agent each time it makes a mis-
take, so we specify the following conditions for when the
agent is performing sufficiently poorly to warrant correc-

4Full details of the syntax/semantics used by the agent and
expert to communicate is in the technical supplement.

tion: Let t be the current (global) time step correspond-
ing to the mth step in the nth episode. Similarly, let t′,
m′, n′ be the time the expert last uttered advice. When
(10-12) hold, the expert utters advice of the form (13):

t− t′ > µ (10)
Err(n ′,n) > β ∨m > κ (11)

∃a′ ∈ A+, Qπ+
(sm,n, a

′) > Qπ+
(sm,n, am,n) (12)

Qπ+
(wsm,n, a

′) > Qπ+
(wsm,n, am,n) (13)

Equation (10) ensures some minimum time µ has passed
since the expert last gave advice. Equation (11) en-
sures the expert won’t interrupt unless its estimate of the
agent’s policy error is above some threshold β, or if the
agent is unable to reach a terminal state after some rea-
sonable bound κ (which is required because the agent’s
unawareness of A+ may mean its current ε-greedy pol-
icy is not proper). If episode n is unfinished, the ex-
pert estimates the expected return via the heuristic Gn ≈∑m−1
i=0 γiri,n+γ

mVπ+
(sm,n), i.e., we optimistically as-

sume the agent will follow π+ from now on. Taken to-
gether, µ, κ and β describe the expert’s tolerance towards
the agent’s mistakes. Finally, (12) ensures a better action
a′ actually exists at this time step.

Equation (13) is the expert’s utterance, and the term
wsm,n in it requires explanation. On first thought, the
expert should utter Qπ+

(sm,n, a
′) > Qπ+

(sm,n, am,n),
explicitly stating the full description of sm,n. How-
ever, remember that the agent’s awareness, X t, may be a
tiny subset of X+. Uttering such advice may involve
enumerating a huge number of variables the agent is
currently unaware of. This is exactly the type of ex-
haustive explanation we wish to avoid, since such an
explanation may place a cognitive burden on the ex-
pert, or confuse a learner. Conversely, we could in-
stead have our expert project its intended utterance onto
only those variables X e for which the expert has ex-
plicit evidence the agent is aware of them (i.e., utter:
Qπ+

(sm,n[X e], a′) > Qπ+
(sm,n[X e], am,n)). This can

be understood by the agent without being made aware
of any new variables, but might violate our assumption
that the expert is truthful. For example, if ∃s′, s′[X e] =
sm,n[X e], but Qπ+(s

′, a) > Qπ+(s
′, a′).

The solution is to use a sense ambiguous term ws,
whose intended denotation is the true state s (i.e JwsK ∈
v(X+)), but whose default interpretation by the agent is
s[X t]. In words, it is as if the expert says “In the last
step, it would have been better to do a′ than am,n”.

Thus, by introducing ambiguity, the agent can interpret
the advice in two ways. The first is as a partial descrip-
tion of the true problem, which is monotonically true re-

gardless of what it learns in future. On hearing (13), the
agent adds (14-15) to its knowledge:

a′ ∈ A+ (14)

∃s, s[X t] = sm,n[X t] ∧Qπ+(s, a
′) > Qπ+(s, am,n)

(15)

Additionally however, the agent can choose to add its
current default interpretation of the advice to its accu-
mulated knowledge:

Qπ+(s[X t], a′) > Qπ+(s[X t], a) (16)

The agent can then act on the expert’s advice directly by
choosing a′ whenever s[X t] = sm,n[X t], regardless of
what seems likely fromD0:t. We can see that even with a
cooperative and infallible expert, even abstracting away
issues of grounding natural language, misunderstandings
can still happen due to differences in agent and expert
awareness. As the next section shows, such misunder-
standings can reveal gaps in the agent’s awareness and
help to articulate queries whose answers guarantee the
agent expands its awareness.

Lemma 2 guarantees the expert’s advice strategy reveals
unforeseen actions to the agent so long as its perfor-
mance in trials exceeds the expert’s tolerance.5

Lemma 2. Consider an FMDP where π+ is proper, an
agent with awareness X t ⊆ X+, At ⊂ A+, and expert
acting with respect to (10-13). If ∃a ∈ image(π+), a /∈
At then as k →∞, either Err(t, t+ k)→ c with c ≤ β
or the expert utters (12) such that a′ /∈ At.

3.1.2 RESOLVING MISUNDERSTANDINGS

We noted before that the agent’s defeasible interpretation
of expert advice could result in misunderstandings. To
illustrate, suppose the agent receives advice (17) and (18)
at times t− k and t:

Qπ+
(wst−k, a) > Qπ+

(wst−k, a
′) (17)

Qπ+
(wst , a) < Qπ+

(wst , a
′) (18)

While the intended meaning of each statement is true,
the agent’s default interpretations of wst−k and wst may
be identical. That is, st−k[X t] = st[X t]. From the
agent’s perspective, (17) and (18) conflict, and thus give
the agent a clue that its current awareness of X+ is de-
ficient. To resolve this conflict, the agent asks (19) (in

5Proofs of lemmas/theorems are in the technical supplement

words, “which X has distinct values in st−k and st?”)
and receives an answer of the form (20):

?λX(X ∈ X+ ∧ st−k[X] 6= st[X]) (19)

X ∈ X+ (20)

Notice there may be multiple variables in X+ \ X t
whose assignments differ in st−k and st. Thus, the ex-
pert’s answer can be non-exhaustive, providing the min-
imum amount of information to resolve the agent’s con-
flict without necessarily explaining all components of the
task. This means the agent must abandon its previous
defeasible interpretation of (16), but can keep (14-15),
as these are true regardless of known variables. Lemma
3 guarantees the expert will reveal new state variables,
provided such misunderstandings can still arise.

Lemma 3. Consider an FMDP where π+ is proper and
an agent with awareness X t ⊂ X+, image(π+) ⊆
At ⊆ A+. If ∃s∃s′ 6= s, s[X t] = s′[X t], and π+(s) 6=
π+(s

′), then as k → ∞, either Err(t, t + k) → c
(c ≤ β), or the expert utters (20) such that X /∈ X t

3.1.3 “IMPOSSIBLE” REWARDS

In typical FMDPs (where the agent is assumed fully aware
of X+, A+, and scope+(R)), we tend only to think of
the trials as providing counts, but for an unaware agent,
a trial dt = 〈st, at, st+1, rt+1〉 also encodes monotonic
information:

∃s, s[X t] = st+1 ∧R+(s) = rt+1 (21)

This constrains the form of R the agent must learn. Re-
call that scopet(R), may be only a subset scope+(R),
so it might be impossible to construct an R :
v(scopet(R))→ R satisfying all descriptions (21) gath-
ered so far. Further, those extra variables in scope+(R)\
scopet(R) may not be in X t. To resolve this, if the agent
fails to construct a valid reward function, it asks (22) (in
words, “which variable X (that I don’t already know) is
in scope(R)?”), receiving an answer (23):

?λX(X ∈ scope+(R)
∧

X′∈scopet(R)

X 6= X ′) (22)

X ∈ scope+(R) ∧X ∈ X+ (23)

Again, the agent may be unaware of many variables in
scope+(R), so (23) may be non exhaustive. Even so, we
can guarantee that the agent’s learned reward function
eventually equalsR+:

Lemma 4. Consider an FMDP where π+ is proper
and an agent with awareness At ⊆ A+, X t ⊆ X+,
scopet(R) ⊆ scope+(R). As k → ∞, there exists a
K such that for all k ≥ K, Rt+k(s) = R+(s) for all
states s reachable using At.

3.2 ADAPTING THE TRANSITION FUNCTION

Section 3.1 showed three ways the agent could expand
its awareness of X , A, and scope(R). If we wish to im-
prove on the naive approach of restarting learning when
faced with such expansions, we must now specify how
the agent adapts T andR to such discoveries.

Adapting T upon discovering a new action a′ at time t
is simple: Since the agent hasn’t performed a′ in any
previous trial, it can just create a new DBN, dbna′ , using
the priors outlined in section 2.2. Our new model at time
t then becomes T = {dbnta1 , . . . dbn

t
an} ∪ {dbna′}.

The more difficult issue is adapting T upon discovering
a new state variable Z. The main problem is that the
agent’s current distributions over DBNs no longer cover
all possible parent sets for each variable, nor all DTs. For
example, the current distribution over PaaX′ does not in-
clude the possibility that Z is a parent of X ′. Worse,
since we assume in general that the agent cannot observe
Z’s past values in D0:t, it cannot observe the true value
of Na

Z=i|j , nor Na
X=i|Paa

X′=j
when Z ∈ PaaX′ . The α-

parameters involving Z are also undefined, yet we need
them to calculate structure probabilities (5, 7) and pa-
rameters via (9).

The problem is that new variables make the size of each
(observed) state dynamic, in contrast to standard prob-
lems where they are static (e.g., 〈X1 = 0, X2 = 1〉 be-
comes 〈X1 = 0, X2 = 1, Z =?〉) . We could phrase
this as a missing data problem: Z was hidden in the
past but visible in future states, so treat the problem as a
POMDP and estimate missing values via e.g., expectation
maximization [Friedman, 1998]. However, such methods
commit us to costly passes over the full state-action his-
tory, and make it hard to learn DT structures with enough
sparseness to ensure a compact value function. Alterna-
tively, we could ignore states with missing information
when counts involving Z are required. For example, we
could use P (PaaX′ |Dt:n) to score PaaX′ whenZ ∈ PaaX′

but use P (PaaX′ |D0:n) when Z /∈ PaaX′ . However, as
Friedman and Goldszmidt [1997] points out, most struc-
ture scores, including (5), assume we evaluate models
with respect to the same data. If two models are com-
pared using different data sets (even if they come from
the same underlying distribution), the learner tends to
favour the model evaluated with the smaller amount of
data. Instead, our method discards the data gathered dur-

ing the learner’s previous deficient view of the hypothe-
sis space, but conserves the relative posterior probabili-
ties learned from past data to construct new priors for the
Paa, DTa and θa in the expanded state space.

3.2.1 PARENT SET PRIORS

On discovering Z, the agent must update P (PaaX′) for
each X 6= Z and a ∈ At to include parent sets contain-
ing Z. In (24) we construct a new prior P ′(PaaX′) using
the old posterior:

P ′(PaaX′) =

{
(1− ρ)P (PaaX′ |D0:t) if Z /∈ PaaX′

ρP ((PaaX′ \ Z)|D0:t) otherwise
(24)

This preserves the likelihoods among the parent sets that
do not include Z. Also, since ρ < 0.5, (24) still main-
tains our bias towards structures with fewer parents by
initially making parent sets which do include Z less
probable than those that don’t. To define P (PaaZ′)—
the distribution over parent sets for the newly discovered
variable Z—we default to (6), since the agent has no ev-
idence (yet) concerning Z’s parents.

3.2.2 TREE AND PARAMETER PRIORS

We must also update P (DTaX |Pa
a
X′) and

P (θaX,Paa
X′
|PaaX′) to accommodate Z. Here, we

return to the issue of the counts Na
i|j and the associated

α-parameters. As mentioned earlier, we wish to avoid
the complexity of estimating Z’s past values. Instead,
we throw away the past counts of Na

i|j , but retain the
relative likelihoods they gave rise to by packing these
into new α-parameters, as shown in (25-26):

αaX=i|Y=j :=

{
K

|v(Z∪Y)| if X = Z
K
|v(Y)|P (i, j[Y \ Z]|dbn

t
a) else

(25)

P ′(DTaX′ |PaaX′) ∝
∏

`∈leaves(DTa
X′)

β(αaX′=1|`, . . . , α
a
X′=n|`) (26)

Equation (25) summarizes D0:t via inferences on the
old best DBNs, then encodes these inferences in the
new α-parameters. The revised α-parameters ensure the
new tree structure prior and expected parameters defined
via (26) and (9) bias towards models the agent previ-
ously thought were likely. Indeed, the larger the (user-
specified) K parameter is, the more the distributions
learned before discovering Z influence the agent’s rea-
soning after discovering Z.

3.3 ADAPTING REWARD AND VALUE TREES

On becoming aware that Z is part of scope+(R), the
agent may wish to restructure its reward tree. This is
because awareness that Z ∈ scope+(R) means there are
tests of the form Z = i that the agent has not yet tried
which may produce a more compact tree. In the language
of ITI, the current test nodes are “stale”, and must be re-
checked to see if a replacement test would yield a tree
with better information gain. If the agent was unaware
of Z (i.e, Z /∈ X t), we can still test on assignments to Z
by following the ITI convention that any state where Z is
missing automatically fails any test on Z.

Once we have updated T andR, there is no need to make
further changes to Vt in response to a new action a′ or
variable Z. In effect, this encodes our conservative in-
tuition that the true Vπ+

is more likely to be closer to
the agent’s current estimate Vt than some arbitrary value
function. The agent essentially assumes (in absence of
further information) that the value of a state is indiffer-
ent to this newly discovered factor. In subsequent trials
where the agent performs a′ or observes Z, Algorithm 1
ensures information about this new factor is incorporated
into the agent’s value function.

Algorithm 2 Learning FMDPs with Unawareness

1: function LEARNFMDPU(A0, X 0, T0, Q0, V0, s0)
2: for t = 1 . . .maxTrials do
3: 〈st, rt〉 ← ε-GREEDY(st−1, Qt−1, adv0:t−1)
4: 〈Tt,Rt〉 ← Add 〈st, rt〉 via (5-9) & ITI
5: if Update toRt fails then
6: Z ← Ask expert (19)
7: 〈scopet(R),X t〉 ← Append Z to each
8: Rt ← Update via ITI

9: if (10-12) are true then
10: adv t ← Expert advice of form (13)
11: if advt mentions action a′ /∈ At−1 then
12: At ← At−1 ∪ {a′}
13: Tt ← Tt−1 ∪ {dbna′} made via (6)
14: if adv0:t−1 conflicts with advt then
15: Z ← Ask expert (19)
16: X t ← X t−1 ∪ {Z}
17: if X t−1 6= X t then
18: Tt ← Update via (25, 5, 26, 7, 9)
19: 〈Vt, Qt〉 ← INCSVI(Rt, Tt,Vt−1)

Algorithm 2 outlines how the agent updates T ,R, and V
in response to new data and expert advice. Given Algo-
rithm 2, Theorem 1 guarantees our agent behaves indis-
tinguishably from a near-optimal policy in the long run,
regardless of initial awareness (provided allX ∈ X+ are
relevant to expressing the optimal policy).

Theorem 1. Consider an FMDP where π+ is proper and
an agent with initial awareness X 0 ⊆ X+, A0 ⊆ A+,
and scope0(R) ⊆ scope+(R) acts according to Algo-
rithm 2. If for all X ∈ X+, there exists a pair of states
s, s′ such that s[X+ \X] = s′[X+ \X], s[X] 6= s′[X],
and π+(s) 6= π+(s

′), then as t → ∞, Err(0, t) → c
such that c ≤ β.

4 EXPERIMENTS AND RESULTS

Our experiments show that agents following Algorithm
2 converge to near-optimal behaviour in both theory and
practice. Further, we show that conserving information
on T and V gathered before each new discovery allows
our agent learn faster than one which abandons this infor-
mation. We do not investigate assigning an explicit bud-
get to agent-expert communication, leaving this to future
work. However we do show how varying the expert’s
tolerance affects the agent’s performance.

We test agents on two well-known problems: Coffee-
Robot and Factory.6 In each, our agent begins with only
partial awareness of X+, A+ and scope+(R). The agent
takes actions for T time steps, using an ε-greedy policy
(ε = 0.1). When the agent enters a terminal state, we re-
set it to one of the initial states randomly. We use the cu-
mulative reward across all trials as our evaluation metric,
which acts as a proxy for the quality of the agent’s policy
over time. To make the results more readable, we apply
a discount of 0.99 at each step, resulting in the metric
Rdisct = rt + 0.99 ∗Rdisct−1 .

We test several variants of our agent to show the effec-
tiveness of our approach. The default agent follows Al-
gorithm 2 as is, with parameters ρ = 0.1, K = 5.0,
µ = 10, β = 0.1, κ = 50 in equations (6), (24), (25),
and (10-12) respectively. The nonConservative agent
does not conserve information about V , nor T via (24-
26) when a new factor is discovered. Instead, it resets
V and T to their initial values. This agent is included
to show the value of conserving past information as X
and A expand. The truePolicy and random agents start
with full knowledge of the true FMDP, and execute an ε-
greedy version of π+, or a choose random action respec-
tively. These agents provide an upper/lower bound on
performance. The lowTolerance / highTolerance agents
change the expert’s tolerance to β = 0.01 and β = 0.5.

4.1 COFFEE ROBOT

Coffee-Robot is a small sequential problem where a
robot must purchase coffee from a cafe, then return it

6Full specifications at https://cs.uwaterloo.ca/
˜jhoey/research/spudd/index.php

(a) Coffee Robot (T = 1000. Average of 50 experiments)

(b) Factory (T = 10000. Average of 20 experiments)

Figure 2: Cumulative Rewards. Shaded areas represent
standard error from the mean.

to their owner. Also, the robot gets wet if it has no
umbrella when it rains. The problem has 6 boolean
variables—HUC (user has coffee), HRC (robot has cof-
fee), R (raining), W (wet), L (location), U (umbrella)—
and 4 actions—MOVE, DELC, BUYC and GETU— mak-
ing 256 state/action pairs. The terminal states are those
where HUC = 1; initial states are all non-terminal ones.
Our agent has initial awareness A0 = {MOVE}, X 0 =
scope0(R) = {HUC} and discount factor γ = 0.8.7

Figure 2a shows each agent’s (discounted) cumulative
reward. Despite starting unaware of factors critical to
success, the default agent quickly discovers the relevant
actions and states with the expert’s aid, and converges
on the optimal policy. The non-conservative agent also
learns the optimal policy, but takes longer. This shows
the value of conserving T and V on discovering new
state variables. We also see how expert tolerance af-
fects performance. The agent paired with high tolerance
expert learns a (marginally) worse final policy, but this
makes little difference to cumulative reward. Figure 3
shows why: The agent learned a “good enough” policy,
so the expert doesn’t reveal the “get umbrella” (GETU)
action, which yields only a minor increase in reward.
Figure 4 supports this explanation, showing how more
tolerant experts reveals less variables over time.

4.2 FACTORY

Factory is a larger problem (|A+| = 14, X+ = 14,
774144 state/action pairs), which shows our method
works on more realistically sized tasks. Here, an agent

7Original setting was γ = 0.9. Changed to make π+ proper.

https://cs.uwaterloo.ca/~jhoey/research/spudd/index.php
https://cs.uwaterloo.ca/~jhoey/research/spudd/index.php

HUC=yes

getu L=office

HRC=no HRC=yes

W=no delc move buyc

R=yes move

U=yes move

move getu

(a) Default Tolerance

HUC=yes

delc L=office

HRC=no HRC=yes

move delc move buyc

(b) High Tolerance

Figure 3: Typical final policy depending on tolerance

(a) Coffee Robot task (b) Factory task

Figure 4: Awareness of |X+| and |A+|

must shape, paint and connect two widgets to create
products of varying quality. Some actions (like bolting)
produce high quality products, whereas others (like glu-
ing) produce low quality products. The agent receives a
higher reward for producing goods which match the de-
manded quality.8. The terminal states are those where
CONNECTED = 1; initial states are non-terminals where
it is possible to connect two components. Our agent’s ini-
tial awareness is X 0 = scope0(R) = {CONNECTED},
A0 = {BOLT, GLUE, DRILLA, DRILLB}, with γ = 0.9.
This represents a simplified task where the agent thinks
the only goal is connecting the widgets.

Figure 2b shows results similar to previous experiments.
The default agent converges on optimal behaviour, and
does so quicker than the non-conservative agent. Vary-
ing the expert’s tolerance now has a larger effect on
the rate at which factors are discovered and on conver-
gence towards the optimal policy, because there are now
many more unforeseen variables/actions the agent can
discover. A full breakdown of which expert messages
were sent when is available in the technical supplement.

5 RELATED WORK

A related notion to unawareness is imprecise probability
[Delgado et al., 2011]. Such work allows you to do infer-
ence even when you are unable to learn a unique proba-

8Rewards were scaled to range 0.0-1.0 and, to make π+

proper, terminal states were given a reward of at least 0.01.

bility distribution from the available evidence. However,
such methods still rely on knowing which distributions
are possible and thus cannot handle the notion of unfore-
seen concepts as outlined in this paper.

Rong [2016] define markov decision processes with un-
awareness (MDPUs) to learn optimal behaviour when
starting unaware of some actions. They apply MDPUs to
a robotic-motion problem with around 1000 discretised
atomic states. The agent uses an abstract explore move,
which randomly reveals useful motions they were previ-
ously unaware of. Our work differs from theirs in sev-
eral ways. First, we provide a concrete mechanism for
discovering unforeseen factors via expert advice. Sec-
ond, our agent discovers explicit state variables rather
than atomic states, and focusses on exploiting the inher-
ent structure in problems with many features. This en-
ables us to scale up to complex decision problems, where
the agent converges on an optimal policies in a (true)
state space around a million atomic states, as opposed to
around 1000. McCallum and Ballard [1996] also learn
an increasingly complex representation of the state space
by gradually distinguishing between states which yield
different rewards. Rather than dealing with unaware-
ness, their approach focusses on refining an existing state
space. They do not support introducing unforeseen states
or actions the learner was unaware of before learning.

Many works use expert interventions to improve per-
formance via reward shaping [Knox and Stone, 2009],
corrections [Torrey and Taylor, 2013], preferences [Ku-
napuli et al., 2013], and probabilistic logic [Odom and
Natarajan, 2016]. Yet all such methods assume the ex-
pert’s intended meaning can be understood without ex-
panding the agent’s current state and action space. Our
work allows experts to utter advice where ambiguity
arises from their greater awareness of the problem.

6 CONCLUSION

We have presented an agent-expert framework for learn-
ing optimal behaviour in both small and large FMDPs,
even when one starts unaware of factors critical to suc-
cess. Further, we showed that conserving one’s beliefs
improves the quality of learning. In future work, we aim
to lift some assumptions imposed on the expert, and ex-
pand the expressiveness of its advice. For instance, we
could let the expert be fallible, or allow questions on the
structure of T [Masegosa and Moral, 2013].

ACKNOWLEDGEMENTS

This work is supported by EPSRC (UK) and the Alan
Turing Institute.

References
M. Araya-López, O. Buffet, V. Thomas, and F. Charpil-

let. Active learning of MDP models. In European
Workshop on Reinforcement Learning, pages 42–53.
Springer, 2011.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks.
In Proceedings of the Twelfth international conference
on Uncertainty in artificial intelligence, pages 115–
123. Morgan Kaufmann Publishers Inc., 1996.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic
dynamic programming with factored representations.
Artificial Intelligence, 121(1):49–107, Aug. 2000.
ISSN 0004-3702. doi: 10.1016/S0004-3702(00)
00033-3.

M. Cakmak and A. Thomaz. Designing robot learners
that ask good questions. Proceedings of the 7th An-
nual ACM/IEEE International Conference on Human-
Robot Interaction, 2012.

A. Coenen, J. D. Nelson, and T. M. Gureckis. Ask-
ing the right questions about human inquiry. Open-
Coenen, Anna, Jonathan D Nelson, and Todd M
Gureckis.“Asking the Right Questions About Human
Inquiry”. PsyArXiv, 13, 2017.

T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Computational in-
telligence, 5(2):142–150, 1989.

T. Degris and O. Sigaud. Factored markov decision pro-
cesses. Markov Decision Processes in Artificial Intel-
ligence, pages 99–126, 2010.

T. Degris, O. Sigaud, and P.-H. Wuillemin. Learning the
structure of factored markov decision processes in re-
inforcement learning problems. In Proceedings of the
23rd international conference on Machine learning,
pages 257–264. ACM, 2006.

K. V. Delgado, S. Sanner, and L. N. De Barros. Efficient
solutions to factored MDPs with imprecise transition
probabilities. Artificial Intelligence, 175(9-10):1498–
1527, 2011.

F. Doshi-Velez. The infinite partially observable Markov
decision process. In Advances in neural information
processing systems, pages 477–485, 2009.

N. Friedman. The Bayesian structural EM algorithm. In
Proceedings of the Fourteenth conference on Uncer-
tainty in artificial intelligence, pages 129–138. Mor-
gan Kaufmann Publishers Inc., 1998.

N. Friedman and M. Goldszmidt. Sequential update of
Bayesian network structure. In Proceedings of the
Thirteenth conference on Uncertainty in artificial in-
telligence, pages 165–174. Morgan Kaufmann Pub-
lishers Inc., 1997.

H. P. Grice. Logic and conversation. 1975, pages 41–58,
1975.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Ef-
ficient solution algorithms for factored MDPs. Journal
of Artificial Intelligence Research, 19:399–468, 2003.

C. Innes and A. Lascarides. Learning Structured De-
cision Problems with Unawareness. In International
Conference on Machine Learning, pages 2941–2950,
2019.

W. B. Knox and P. Stone. Interactively shaping agents
via human reinforcement: The TAMER framework.
In Proceedings of the fifth international conference on
Knowledge capture, pages 9–16. ACM, 2009.

G. Kunapuli, P. Odom, J. W. Shavlik, and S. Natara-
jan. Guiding autonomous agents to better behaviors
through human advice. In 2013 IEEE 13th Interna-
tional Conference on Data Mining, pages 409–418.
IEEE, 2013.

A. R. Masegosa and S. Moral. An interactive approach
for Bayesian network learning using domain/expert
knowledge. International Journal of Approximate
Reasoning, 54(8):1168–1181, Oct. 2013. ISSN 0888-
613X. doi: 10.1016/j.ijar.2013.03.009.

A. K. McCallum and D. Ballard. Reinforcement learning
with selective perception and hidden state. PhD The-
sis, University of Rochester. Dept. of Computer Sci-
ence, 1996.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, and others. Human-
level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, 2015.

P. Odom and S. Natarajan. Actively interacting with ex-
perts: A probabilistic logic approach. In Joint Eu-
ropean conference on machine learning and knowl-
edge discovery in databases, pages 527–542. Springer,
2016.

N. Rong. Learning in the Presence of Unawareness. PhD
Thesis, Cornell University, 2016.

R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

L. Torrey and M. Taylor. Teaching on a budget: Agents
advising agents in reinforcement learning. In Pro-
ceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages
1053–1060. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Deci-
sion tree induction based on efficient tree restructur-
ing. Machine Learning, 29(1):5–44, 1997.

L. Zettlemoyer and M. Collins. Online learning of re-
laxed CCG grammars for parsing to logical form. In
Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), 2007.

	INTRODUCTION
	THE LEARNING TASK
	EPISODIC MPDS
	LEARNING FMDPS WHEN FULLY AWARE

	OVERCOMING UNAWARENESS
	EXPERT GUIDANCE
	BETTER ACTION ADVICE
	RESOLVING MISUNDERSTANDINGS
	``IMPOSSIBLE'' REWARDS

	ADAPTING THE TRANSITION FUNCTION
	PARENT SET PRIORS
	TREE AND PARAMETER PRIORS

	ADAPTING REWARD AND VALUE TREES

	EXPERIMENTS AND RESULTS
	COFFEE ROBOT
	FACTORY

	RELATED WORK
	CONCLUSION

