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Abstract

Formal semantics constitutes the framework of the research presented here, and the
aim is to provide a solution to the imperfective paradox; i.e. explain why “Max was
running” entails “Max ran”, but “Max was running home” does not entail “Max ran
home”. This paper is divided into two parts. In Part I we evaluate what I will call
the Eventual Outcome Strategy for solving the imperfective paradox. This strategy is
commonly used (Dowty 1979, Hinrichs 1983, Cooper 1985), and is highly intuitively
motivated. I will show, however, that the formulations of the intuitions give rise to
conflicts and tensions when it comes to explaining the natural language data. In Part II
we offer a new approach to tackle the imperfective paradox that overcomes the problems
with the Eventual Outcome Strategy.

Aims

The research pursued here fits into a programme the aim of which is to supply the for-
mal semantics of natural language. The assumption underlying this venture is that the
meaning of linguistic expressions can be characterised by defining all their possible logical
consequences. Qur aim is to supply a solution to a problem known as the ”imperfective
paradox”. According to intuitions, sentence (1) entails (2), but no entailment holds between

(3) and (4).

(1) Max was running a business
(2) Max ran a business
(3) Max was building a house

*Many thanks are due to Barry Richards, Marc Moens and Jon Oberlander, whose responses to my work
have contributed in no small way to whatever coherence exists here. The research was carried out with the
support of an ESRC studentship and an SERC postdoctoral fellowship award.
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(4) Max built a house

Since (1) and (3) would seem to have similar logical forms, they ought to have similar
entailments. A solution to the imperfective paradox must explain why this is not so.

The imperfective paradox has serious implications for more general questions concerning
natural language, for example the relationship between syntax and semantics. The progres-
sive involves a uniform syntactic operation, and so from the perspective of formal semantics,
one would expect it to be related to a uniform semantic operation. But (1) and (3) have
different semantic import. The problem is: how can the uniformity of the progressive in
syntax be squared with its semantic ‘irregularity’?

To solve the imperfective paradox, two tasks must be achieved. First, we must characterise
the semantic distinction between (2) and (4), which is revealed in natural language by
their different behaviours with the progressive. Second, we must define the semantics of
the progressive so that it is sensitive to this distinction and so results in a solution to the
imperfective paradox.

This paper is divided into two parts. In Part I we evaluate what I will call the Eventual
Outcome Strategy for defining the progressive. This strategy is commonly used; it has been
deployed by Dowty (1979), Hinrichs (1983) and Cooper (1985). The strategy is highly
intuitively motivated. We will show, however, that the formulations of the intuitions give
rise to conflicts and tensions when it comes to explaining the natural language data, and so
it cannot be used as part of a solution to the imperfective paradox. In Part II we offer a new
approach to tackle the imperfective paradox. This new approach overcomes the problems
with the Eventual Outcome Strategy.

Part I
The Eventual Outcome Strategy

1 The Motivation for the Eventual Outcome Strategy

The Eventual Outcome Strategy gives us a way of defining the semantics of the progressive.
To see how the strategy is motivated, let us examine from an intuitive perspective what
criteria are used to decide whether a progressive sentence is true. To start with, are there
any criteria that one may apply directly to the current state of affairs, to discover whether
that state of affairs makes a progressive sentence true? Consider sentence (5).

(5) Max is winning the race

It seems that such criteria would be difficult to describe. The states of affairs which make
sentence (5) true could amount to almost anything. (5) may be true when Max is ahead,
or when he is second but the athlete in first place has just twisted his ankle. If the race is
happening over two days with a period of rest overnight, then (5) may be true even if Max
is asleep.
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What property, if any, do all these states of affairs have, that can be regarded as the property
making the progressive sentence true? The puzzle is: Given the wealth of states of affairs
that can be regarded as an instance of (5), it seems that a search for a common property
among them would prove fruitless. However, there is the following strong intuition: (5) is
true just in case there is something going on now, whatever that is, such that if it were to
continue uninterrupted, then the outcome would be that Max is the winner of the race.

This intuition indicates that the common property of all the progressive states of affairs may
not be found by looking at the state only at the current time; instead one must investigate
the outcome of the state of affairs. This may offer a strategy to yield the formal semantics
of the progressive. The truth conditions placed by the semantic definition of the progressive
on the current state of affairs should not be conditions that concern what is going on now,
but must be conditions on the eventual outcome of what is going on now. I call this strategy
for defining the progressive the Eventual Outcome Strategy.

To get a clearer picture of what the Eventual Outcome Strategy involves, let’s see how it
would relate sentences (6) and (7).

(6) Max was winning the race

(7) Max won the race

Intuitively, (7) refers to a process which leads to a culmination. (6) refers to that process,
but it does not assert that the culmination of the process occurred. The idea behind the
Eventual Outcome Strategy is to define the semantics of (6) and (7) so that they do not
place conditions directly on what the process leading to the culmination consists of. For
example, the semantics of these sentences will not talk of whether Max had a good start to
the race, whether he was ahead at the half way stage, and so on. Instead, the process is
characterised in the semantics of the progressive in terms of the culmination: Whatever the
process is, if it were to continue uninterrupted, then it would lead to the culmination. So
the definition of the progressive under the Eventual OQutcome Strategy essentially involves
modality of the ‘counterfactual’ kind.

We have seen that the process (5) refers to is characterised in the Eventual Outcome seman-
tics of the progressive in terms of the culmination, plus some appropriate sense of modality.
Given this semantics, any formulation of the strategy must fulfil two tasks. First, it must
offer a semantic account of the culmination that the process would lead to. Second, it must
offer an account of the modality in the definition of the progressive; i.e. an explanation of
the phrase ”if the process were to continue uninterrupted”.

Our objective is to test whether the Eventual Outcome Strategy can be formulated, and if
so, establish how the formulation would deal with the two tasks at hand.

2 The Consequences of the Eventual Outcome Strategy

In order to have a perspective from which to test the Eventual Outcome Strategy, I will
now set up a question that concerns the consequences of formulating it.

Consider the following situation: suppose that Max is running in a race of four laps. Suppose
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he is ahead at the start of the third lap and running the fastest. Then according to intuitions,
sentence (5) is true at this time.

(5) Max is winning the race

Now suppose that at the start of the fourth lap, Max has fallen behind in the race. He is
now last, and it looks as though only a miracle could bring him victory. So according to
intuitions, sentence (5) is now false. Suppose that, despite everything, Max surges forward
half way through the fourth lap to gain first position again. Then according to intuitions
(5) is true once again. Now suppose that Max crosses the finish line in first place to win
the race. Then, since according to intuitions the above situation is possible, The Scenario
(given in figure 1) must depict a possible state of affairs.

Figure 1: The Scenario

The question now is: when is sentence (8) true in this state of affairs?
(8) Max wins the race

(8) must be true at some time in The Scenario, since Max does actually win the race.
Suppose that (8) is true with respect to a period of time, to reflect the idea that (8) is
about a process that goes on over a period of time which leads to a culmination. Then
our question is: will the formulation of the Eventual Outcome Strategy allow this period
to contain all the times depicted in figure 1, yielding the temporal structure in figure 2,
labelled The Test Structure? Clearly, the state of affairs depicted in figure 1, which any

Figure 2: The Test Structure

satisfactory semantic theory must deem as possible, is related to the state of affairs depicted
in figure 2, and just how they are related in the theory depends on the semantics of the
progressive and the semantics of (8). Our puzzle is: will an Eventual Outcome theory allow
for a semantic interpretation of the progressive and (8) that describes the state of affairs
depicted in figure 2?7 In the rest of this chapter, I will define the state of affairs depicted
in figure 2 as consistent if there is a semantic interpretation of the progressive and (8) that
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describes that state of affairs, and inconsistent if there is no such semantic interpretation.
So our puzzle can be stated in another way: will an Eventual Outcome theory establish the
state of affairs depicted in figure 2: The Test Structure as consistent or as inconsistent?

I will examine whether The Test Structure is consistent in Dowty’s (1979) theory that for-
mulates the Eventual Outcome Strategy. We have seen that an Eventual Outcome semantics
of the progressive defines the semantics of sentence (5) purely in terms of the culmination,
plus some appropriate notion of modality. I will argue that one can obtain an appropriate
notion of modality only if one establishes that the state of affairs depicted in The Test
Structure is inconsistent. On the other hand, I will argue that if one is to characterise
(5) in terms of the culmination, then one must allow The Test Structure to be consistent.
This exposes a tension in the two tasks that must be tackled in formulating the Eventual
Outcome Strategy. I will show in this paper that this argument applies to Dowty’s (1979)
formulation of the Eventual Outcome Strategy, and in Lascarides (1988) I showed that the
argument also carries over to the other two theories that formulate the strategy; that of
Cooper (1985) and Hinrichs (1983). I will conclude from this that even though the Eventual
Outcome Strategy is highly intuitively motivated, it is ultimately untenable.

It is important to realise that our argument against the Eventual Outcome Strategy is inde-
pendent of the intuitions one might have concerning whether The Test Structure should be
consistent or inconsistent. There seems to be something highly counterintuitive in allowing
for a semantic interpretation of (8) and (5) that describes the state of affairs depicted in
figure 2. One feels that sentences (8) and (5) should refer to the same process, and so the
period of time over which (8)’s process goes on should not contain times at which (5) is
false. And yet in The Test Structure, (5) is false in that period. So according to intuitions,
The Test Structure should be inconsistent. However, it must be stressed that our argument
against the Eventual Outcome Strategy is not based on this intuition. The argument is
based on something slightly stronger. Any formulation of the Eventual Outcome Strategy
must account for The Test Structure as consistent or as inconsistent. I will argue that either
way, the formulation fails. In each case, the reasons it fails are independent of the intuition
that The Test Structure should be inconsistent.

Parsons (1989) and Vlach (1981) mention some problems with Dowty’s analysis of the
progressive, but the status of their criticisms is unclear as their arguments against Dowty’s
theory are not formalised. It is therefore difficult to see if the criticisms are valid, let alone
evaluate whether they stem from Dowty’s particular formulation of the theory or from his
basic approach. To avoid these problems, we aim for an argument against Dowty’s strategy
for defining the progressive couched in formal terms.

3 Dowty’s Formulation of the Eventual Outcome Strategy

Before we look at Dowty’s Eventual Outcome definition of the progressive, let us look at
how he analyses non-progressive sentences like (8), for the progressive will be defined in
terms of these.

(8) Max wins the race
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Dowty represents the semantics of sentences like (8) by formulating Vendler’s (1967) clas-
sification of aspect into a semantic framework. Vendler divided linguistic expressions into
four aspectual classes, according to their different temporal behaviours, and provided meta-
physical descriptions of these classes which were meant to explain their different temporal
behaviours.

Vendler’s classification consists of four aspectual classes; there are activity sentences like
(2), accomplishment sentences like (4), achievement sentences like (8) and stative sentences
like (9).

(2) Max ran a business
(4) Max built a house
(9) Max is insane

Activities are processes in time, ‘most’ parts of which are themselves a process of the same
type; e.g. most parts of Max running a business are themselves instances of Max running
a business. In contrast, accomplishments are more than processes; they essential involve a
‘culmination’ or ‘conclusion’. Thus any part of an accomplishment which doesn’t include
the culmination cannot be an accomplishment of the same type. Achievements also invoke
a culmination, but they differ from accomplishments in that they do not necessarily invoke
a ‘prior’ process leading to the culmination. States can occur over a period of time, but
they are not processes.

In formulating Vendler’s distinctions between the aspectual classes, Dowty achieves the first
goal in solving the imperfective paradox that we stated earlier; distinguishing the semantics
of (2) and (4).

Dowty proposes his theory of aspect in an interval-based semantics: the truth of a sentence
is defined relative to an interval of time. According to Vendler, an accomplishment occurs
over an interval of time since the process it describes goes on over an extended period. One
can capture this using Dowty’s interval-based framework. If (4) is true at an interval I,
then there is an interval J earlier than I where the tenseless sentence ”Max build a house”
is true; this reflects the idea that the accomplishment occurs over the interval J.

Dowty’s objective is to interpret all non-stative sentences as combinations of statives with
explicitly interpreted operators. To achieve this, he postulates a single class of predicates,
which are the stative predicates such as “is insane”. The logical form of the stative sentence
(9) is the atomic formula (9a).

(9) Max is insane

(9a) insane' (maz')

Dowty’s analysis of statives is homogeneous, i.e. if (9a) is true at an interval I, then it is
true at all subintervals of I. This reflects the intuition that any part of a state is itself a
state of the same type. In other words, every part of Max being insane is itself an instance
of Max being insane. Activities, accomplishments and achievements are all derived from
statives by the application of certain operators and connectives, which yield heterogeneous
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interpretations of these classes: i.e. an activity, achievement or accomplishment sentence
may be true at an interval I and false at subintervals of I. This reflects the intuition that
certain parts of an activity, achievement or accomplishment are not themselves an activity,
achievement or accomplishment of the same type. In other words, not all parts of Max
running are themselves instances of Max running; not all parts of Max building a house are
themselves instances of Max building a house; and so on.

4 Dowty’s Semantic Interpretation of Achievements
We will be testing the Eventual Outcome Strategy using sentence (8).
(8) Max wins the race

(8) denotes an achievement, and Dowty observes, in agreement with Kenny (1963), that
an achievement always involves the coming about of a particular state of affairs. In order
to capture this observation, Dowty represents achievement sentences with the aid of the
operator BECOME. The logical form of tenseless achievement sentences is given by (10),
where ¢ denotes the state of affairs once the achievement is completed.

(10)  [BECOME)

For example, the tenseless achievement sentence (11) will have the logical form (11a), where
winner'(maz', race') represents the state that Max is the winner of the race.!

(11) Max win the race

(11a) [BECOM E(winner!(max', race’))]
The truth conditions for [BECOM E¢], where ¢ is a formula, are given below:

e The Truth Conditions for BECOME
[BECOME@] is true at the interval-world index (I,w) if and only if there is an
interval J containing the initial bound of I such that —¢ is true at (J,w) and there is
an interval K containing the final bound of I such that ¢ is true at (K, w).

The truth of the sentence [BECOM E¢] requires the temporal structure in figure 3. Note
that achievement sentences are false at all minimal intervals (i.e. intervals with no proper
subintervals), where a minimal interval is a singleton set {¢t} (for Dowty views intervals as
connected sets over the reals). For if [BECOME@] is true at {t}, then both ¢ and —¢
must be true at {t}. Therefore [BECOME¢] is false at all minimal intervals for all ¢.
Vendler claims that achievements are punctual, and yet Dowty’s achievements are false at
all minimal intervals. Therefore Dowty’s analysis of achievement sentences does not conform

'For the sake of simplicity, nouns such as house and race will be represented by name constants. This
simplification does not have any bearing on our purposes here.
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Figure 3: The Temporal Structure for BECOME

exactly to Vendler’s metaphysical description of them.? The truth value of [BECOM E¢]
at the interval I is determined solely by what goes on at the endpoints of 7. No conditions
are placed on what goes on during the interval I. Thus Dowty avoids defining directly in
the semantics of (8) what constitutes the process that leads to Max being the winner of the
race. This is an essential part of the Eventual Outcome Strategy. There is an abundance
of states of affairs that may correspond to the coming about of the target ¢, and Dowty
avoids describing these.

Clearly, it is not just any state of affairs that deserves to be regarded as the process that
leads to the goal. The innovation in the Eventual Outcome Strategy is that the definition
of the progressive in modal terms will reveal when the process goes on.

4.1 Dowty’s Analysis of the Progressive

Dowty interprets the progressive as a mixed modal-temporal operator. Its definition is the
following;:

e [PROGY)] is true at an index (I,w) if and only if there is an interval I’ such that
I is contained in I' and I is not a final subinterval of I’, and for all the worlds
w' € Inr({I,w)), ¢ is true at (I',w').

The primitive function I'nr is defined as part of the model. It is a two-placed function, taking
an interval and a world as its arguments. The evaluation of Inr((I,w)) gives the inertia
worlds at (I, w), and these characterise the ‘natural course of events’ at (I, w). Intuitively,
Inr({I,w)) contains all worlds w' that (a) are like the world w up to and including the
interval I, and (b) include the natural course of events with respect to the situation in w at
1. In other words, an inertia world can be thought of as a world in which nothing unezpected
happens. So the above definition of PROG states that [PROG¢] is true only if ¢ is true in
every world where nothing unexpected happens.

The logical form of (5) is (5a).

(5) Max is winning the race

(5a) [PROG[BECOM Ewinner'(maz',race')]]

In fact, the progressive forms of all achievement sentences are represented by a for-
mula of the form [PROG[BECOM E¢]], which receives the following truth conditions.

2Dowty himself observes some undesirable consequences of his definition for the operator BECOME, but
his criticisms are not relevant for our purposes here.




Alex Lascarides 9

[PROG[BECOME@]] is true in a model M at (I, w) just in case there is an interval I
containing I such that I is not a final subinterval of I', and for all w’ € Inr({I,w)),
[BECOMEG)] is true at (I';w'). This is the case if and only if there is an interval J
containing the initial bound of I’ such that —¢ is true in M at (J,w'), and there is an
interval K containing the final bound of I’ such that ¢ is true in M at (K,w'). So the truth
of [PROG[BECOM E¢]] requires the temporal structure depicted in figure 4 These truth

Figure 4: The Temporal Structure for [PROGBECOM E¢]]

conditions capture the following intuition: if [PROG[BECOME¢]] is true then whatever
the current state of affairs is, that state of affairs must lead to the target ¢ in the ‘natural
course of events’.

According to Dowty, the actual world w is not necessarily a member of the set Inr({I,w));
this captures the intuition that unexpected things can happen in the actual world. Therefore
the truth of [PROG[BECOM E¢|] at (I, w) does not guarantee the truth of [BECOM E¢|
in w. Hence there is no entailment from sentence (6) to (7), which is just as required in
order to solve the imperfective paradox.

(6) Max was winning the race

(7) Max won the race

Suppose that [BECOM E¢] is true at an interval I'. Then even though no conditions are
placed in the truth conditions of [BECOM E¢] on what goes on during the interval I, it is
possible to evaluate the truth value of [PROG[BECOM E¢]] in terms of [ BECOME¢] at
all times during I’. In this way, the definition of the progressive in terms of inertia worlds
reveals the structure of the interval I’ at which [BECOM E¢] is true; i.e. one reveals at
what times in I’ the process that leads to the target ¢ goes on.

Dowty invokes inertia worlds in the analysis of the progressive to specify when the current
state of affairs leads to the target. It is the target happening inertially that is crucial to
the analysis of the progressive of achievements. It doesn’t matter in evaluating (5) whether
Max is ahead or in second place at the time in question.

(5) Max is winning the race
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Even though there are endless possible actions corresponding to (5), they all have one thing
in common, and that is that they inertially lead to the target state.

Dowty’s approach seems fruitful, but one cannot adopt it until one fully understands the
notion of modality invoked in the definition of the progressive. In Dowty’s theory, this
amounts to solving the following problem. Can the function Inr be uniquely defined with
respect to a given model M, so that the resulting interpretation of the progressive agrees
with intuitions? It is inertia specification that gives the analysis of the progressive its
“eventual outcome” properties. The question remains as to whether inertia specification is
sufficient for describing what is going on at the time of (5) in a way that squares with our
intuitions.

5 Inr and Why Figure 1 (The Test Structure) is Inconsistent

In order to explore the nature of Dowty’s function Inr we will now ask, relative to Dowty’s
theory, the question that was posed in section 3. In section 3, I argued that according to
intuitions, it is possible for sentence (5) to be true, and then false, and then true, and then
Max may go on to win the race. i.e. the situation depicted in figure 1 is a possible state of
affairs. The question we ask is: when is sentence (8) true in this scenario?

(8) Max wins the race

Can the period with respect to which (8) is true contain the time at which (5) is false? That
is, can we have a semantic interpretation of the progressive and (8) that describes the state
of affairs depicted in figure 2 (i.e. in our terminology is The Test Structure consistent)?

This question amounts to the following in Dowty’s theory: can [PROG[BECOME¢]]
(where ¢ is the formula winner'(maz’,race’)) be true at an index (I,w), and then false
at (J,w) and then true at (K, w), where I, J and K are contained in an interval I’ and
[BECOME¢] is true at (I',w)? In other words, is Dowty’s version of the temporal structure
in figure 2 consistent, as depicted in figure 57

Figure 5: Dowty’s Version of The Test Structure

Given that Dowty places no restrictions on what goes on during the interval I’ in the truth
definition of [BECOME¢@] at I', this seems like a legitimate question to ask. Whether
or not The Test Structure is consistent will depend on the semantics of PROG, and in
particular on how the function I'nr is defined. The object of this section is to demonstrate
that in order for the function Inr to be well-defined, we must ensure that The Test Structure
depicts a state of affairs that is inconsistent.
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To show this, I will assume the hypothesis that The Test Structure, as depicted in figure 5,
is consistent, and show that Inr cannot be well-defined under this hypothesis. Suppose that
a model M describes the state of affairs depicted in figure 5: i.e. [PROG[BECOMEJ]] is
true in M at (I,w), false in M at (J,w) and true in M at (K,w), and [BECOME¢)] is
true in M at (I',w), where I < J < K, and I, J and K are all contained in I’. Then the
question we ask is: should w be a member of the inertia worlds at (I,w) with respect to
M? In exploring this question, we will reveal that the function Inr cannot be well-defined.
We first examine the consequences of the assumption that w is a member of Inr((I,w)) in
the model M.

5.1 Why the Assumption that w is Inertial is Inadequate

Suppose we assume that w is a member of Inr((I,w)) in the model M that describes the
state of affairs corresponding to figure 5. Then the resulting interpretation of inertia worlds
does not square with intuitions concerning the progressive. It will be shown that this follows
from the fact that for any model M’ where, like the model M, [PROG|[BECOM E¢]] is
true at (I, w) and false at (J,w) where I < J and I and J are both contained in an interval
I' where Max is running in a race, it is not possible to maintain the supposition that w is
inertial at (I, w) in M.

I now argue for this conclusion by considering such a model M’; it will be shown that w
cannot be a member of Inr((I,w)) in M'. Consider the following model M': suppose that
Max is running in a race at (I',w), and suppose that he falls over at (J,w), where J is
contained in I’. Since Max is lying flat on his face on the track at (J,w), according to
intuitions, (12), whose logical form is (12a), is true at (J, w) with respect to M.

(12) It is not the case that Max is winning the race

(12a)  —=[PROG[BECOM Ewinner'(max',race')]]

Suppose in the model M’ that before Max fell over at (J, w), he was winning the race. i.e.
(5a) is true with respect to M’ at (I, w), where I < J and I is contained in I".

(5a) [PROG[BECOM Ewinner'(maz',race')]]

Then given these assumptions on M’, is w inertial at (I,w) in M'?

According to intuitions, after the progressive action has been interrupted, anything can
happen. But the progressive action is interrupted in the model M’ at (J, w) because Max
falls over at (J,w), and so anything that happens after J in w should be consistent with
the truth of (5a) at (I, w) where I < J. In particular, the truth of (5a) in the model M’ at
(I, w) should be consistent with Maz wins the race being false in w. But if w is inertial at
(I,w) in M’, then by the definition of PROG, the truth of (5a) at (I, w) requires that Max
wins the race in w. This is contrary to intuitions, and therefore one cannot assume that w
is inertial at (I,w) in the model M’ if the definition of the progressive is to agree with its
actual use.

This model M' describes a state of affairs that is like the state of affairs depicted in figure 5,
in that the formula [PROG[BECOME¢]] is true at (I,w) and then false at (J, w), where



12 The Progressive and the Imperfective Paradoz

I is earlier than J and I and J are both contained in the interval I’ where Max is running
in the race. Therefore, the argument presented here that w must not be inertial at (I, w)
in M’ supports the claim that w must not be inertial at (I, w) in the model M with respect
to which the state of affairs in figure 5 is true. What are the consequences of this?

5.2 Circularity

In light of the above, I will now show that the two-place function Inr is not well-defined.
Furthermore, if one were to try to modify the function to make it well-defined, then the
analysis of the progressive would be reduced to circularity.

In order to show that Inr is not well-defined, we must establish in more depth how to inter-
pret the phrase “an inertia world is one where the state of affairs continues uninterrupted”.
In the semantic evaluation of a progressive sentence, say (5),

(5) Max is winning the race

do we assume (a) that a world w' is inertial at (I, w) with respect to a model M if and only
if all the states of affairs at (I, w) ‘continue uninterrupted’ in w’, or (b) that a world w' is in-
ertial at (I, w) with respect to M if and only if the ‘winning’ event ‘continues uninterrupted’
in w'? The difference between assumptions (a) and (b) is clear. Assumption (a) entails that
absolutely nothing can be interrupted in an inertial world, and (b) entails that in the seman-
tic evaluation of (5), only the winning event has to remain uninterrupted. Furthermore, (a)
and (b) are the only two possible assumptions, since there are no other plausible ways of
picking the inertia worlds if they are to capture a notion of events continuing uninterrupted.

We will now show that assumption (a) is not sustainable, and so inertia worlds must be
chosen according to assumption (b). We will demonstrate that assumption (a) is inadequate
by means of the following example: suppose that sentences (5) and (13) are both true at
(I, w) with respect to a model M.

(13) John is sabotaging the race
(by planting a bomb on the race track that is due to blow up Max before the race
is completed).

Let us consider what will happen if the two corresponding events ‘continue uninterrupted’. If
John succeeds in sabotaging the race, i.e. the bomb goes off and the race is never completed,
then Max will not win the race, i.e. Max’s winning will be interrupted. On the other hand,
if Max’s winning the race continues uninterrupted so that he becomes the winner of the
race, then John did not succeed in sabotaging the race. So there is no world where both the
state of affairs corresponding to (5) and the state of affairs corresponding to (13) continue
uninterrupted to the target. Therefore, if assumption (a) is correct, then the set of inertia
worlds at (I, w) with respect to this model M’ will be empty. But this is clearly undesirable,
since it follows from this by the definition of PROG that any progressive sentence is true
at (I, w) with respect to M'. Hence assumption (a) is not satisfactory and assumption (b)
must hold.

We will now show Inr is not well-defined due to the combination of assumption (b) and
the fact that w cannot be inertial at (I, w) with respect to M (section 4.1). Suppose that
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the model M is as described above. That is, M corresponds to the state of affairs in
figure 5. Suppose furthermore that in M, [BECOM E%] is true at (I',w) for some state
1 (where 1 is not related to ¢), and [PROG[BECOM Ex)]] is true in w at every interval
contained in I’. So the model M corresponds to the temporal structure in figure 6 in w
as well as that of figure 5. The state of affairs in figure 6 ‘continues uninterrupted’, since

Figure 6:

the progressive action continues in w from the interval I to the time when the target ¢ is
true. Therefore according to assumption (b), w must be a member of the inertia worlds
at (I,w) with respect to the model M in order to obtain the right truth conditions of
[PROG[BECOM E7%)]. But we concluded in the previous section that w cannot be inertial
at (I,w) if we are to gain the right truth conditions for [PROG[BECOME¢|]. Therefore
we have a situation where w is in Inr((I,w)) with respect to M and w is not in Inr((I,w))
with respect to M. Hence the two-place function Inr that takes an interval and a world as
its arguments is not well-defined.

How may one modify the function Inr, in order to make it well-defined? If Inr is to be
well-defined, then it must be defined relative to the semantic interpretation of formulae,
as well as intervals and worlds, so that inertia specification in the model M can distin-
guish the inertial status of w in the semantic evaluations of [PROG|BECOM E¢]] and
[PROG[BECOM E7))|. But which formulae are appropriate, and at which indices are their
truth values relevant for determining whether w is inertial at (I, w) with respect to M?

The semantic values of the formulae ¢ and % in the world w cannot be the appropriate
arguments to Inr, because they may have identical truth values at all intervals in w with
respect to M. This would make the sets of inertia worlds relative to ¢ and v identical, and
in particular, there would be no means for distinguishing the inertial status of w in the two
cases. This, as we have indicated, is contrary to our requirements. A similar argument also
demontrates that the truth values of [ BECOM E¢| and [BECOM E%)] in the world w are
not appropriate input to Inr.

In light of the above, one might choose to define Inr so that the truth values of ¢ in
worlds other than w play a crucial part in determining whether w is inertial at (I, w) in the
semantic evaluation of [PROG[BECOM E¢]]. In doing this, we would enable the inertial
status of w to be different for the two cases we are considering. We could add semantic
values of the formulae 1 ¢ and 1 1, which represent the intension of ¢ and the intension
of ¢, as an argument to the function Inr in the truth conditions of [PROG[BECOM E¢|]
and [PROG[BECOME?1]] respectively. In our example, T ¢ and 1 1 denote different
propositions. Hence the sets Inr({(I,w),T ¢) and Inr({I,w),1 ¢) may be different, which
is just as we require.

But although following this course is technically satisfactory, it results in a departure from
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the intuitions behind the Eventual Outcome Strategy for defining the progressive. The
function Inr is supposed to represent the appropriate notion of modality in the Eventual
Outcome Strategy, i.e. it must capture the intuitions behind the phrase “if the current
state of affairs continues uninterrupted”. According to intuitions, whether or not the state
of affairs at (I, w) continues uninterrupted in w must be determined solely by what happens
in w. For example, the fact that Max falls over in some world other than w should not
effect our judgement about whether anything unexpected happens to Max’s winning in w;
one should merely wait and see what happens to Max in w. The assumption we entertain
here is that in determining whether w is inertial (“nothing unexpected happens”) at (I, w)
in the semantic evaluation of [PROG[BECOM E¢]], the truth values of ¢ in worlds other
than w must play a central role. In other words, the inertial status of w at (I,w) is not
determined by what happens to Max in w alone. This is contrary to our intuitions about the
phrase “the state of affairs in w continues uninterrupted”, and so if we were to determine
the inertial status of w at (I, w) with respect to the value of ¢ in worlds other than w, we
would be undermining the Eventual Outcome Strategy. A similar argument demonstrates
that if 1 [BECOME¢] is added as an argument to Inr, then we would undermine the
Eventual Outcome Strategy.

To see what formula must be added as an argument to the function Inr, let’s look more
closely at our example that shows the current function Inr to be ill-defined. We argued
that [PROG[BECOM E+]| requires w to be inertial at (I,w) in the model M on the basis
that [PROG[BECOM E%]] is true at (J', w) in the model M for every interval J' contained
in I'. On the other hand, [PROG[BECOM E¢]] requires w not to be inertial at (I, w) in
the model M because [PROG[BECOME¢]] is false in the model M at some (J, w) where
I < J and J is contained in I’ (cf. section 4.1). Therefore, in order for Inr to predict that
w is inertial at (I,w) in M in the semantic evaluation of [PROG[BECOM E1]] but not
in the semantic evaluation of [PROG[BECOM E¢|], Inr must be defined relative to the
truth value of the progressive sentence at the intervals contained in I'. i.e. Inr must be a
function whose arguments for the semantic evaluation of [PROG[BECOME¢]] are I, w,
and the truth values of [PROG[BECOM E¢]] at times contained in I'.

This leaves us with the following problem in defining Inr. The function Inr is well-defined
only if it includes as arguments the truth values of [PROG[BECOM E¢]|. But one cannot
know the truth values of [PROG[BECOM E¢|] until one has defined Inr. Defining inertia
is thus reduced to circularity.

We have shown that in the model M that describes the state of affairs depicted in figure
5 (The Test Structure), the two-place function Inr that takes an interval and a world as
its arguments is not well-defined. Furthermore, if one were to try and make it well-defined,
then the analysis of the progressive would be reduced to circularity. Therefore, the function
Inr cannot be defined with respect to the model M. In other words, if The Test Structure
is consistent, then one cannot successfully specify Inr.

But specifying Inr is crucial to defining the progressive in terms of eventual outcome in
Dowty’s theory. Therefore, to preserve the Eventual Outcome Strategy, one must place
conditions on the semantics of PROG and BECOME to ensure that The Test Structure
is inconsistent. In other words, the semantics of PROG and BECOM E must ensure that
if [ BECOME@] is true at an interval I, then [PROG[BECOM E¢)] is true at all intervals
contained in I: i.e. the state of affairs must be that depicted in figure 7 below.
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Figure 7: The Required Relation between PROG and BECOME

6 How to Ensure that The Test Structure is Inconsistent

How may one guarantee that if [ BECOM E¢| is true at an interval I, then [PROG[BECOM E¢|]
is true at all subintervals of I? I will argue that this temporal structure cannot be satisfac-
torally derived from Dowty’s current semantics for BECOM E. Furthermore, it cannot be
derived by revising the semantics of BECOM E without undermining the Eventual Out-
come Strategy.

6.1 The Current Semantics for BECOME

Suppose one fixes Dowty’s semantics for BECOM E, and suppose that the function Inr
is defined so that if [ BECOME¢] is true at the interval I, then [PROG[BECOME]] is
true at every interval contained in I (i.e. the state of affairs is that in figure 7). Then
although placing conditions on inertia specification to guarantee this temporal structure
may be technically viable, it is materially inadequate, given the current truth conditions
for BECOME. To show this, I will construct a model M” where the truth of (5) in M"
does not agree with it actual use.

Consider the model M"” where Max is born at (N, w), and (8a), which is the representation
of (8), is true at (I',w) where I' spans twenty years and contains N.

(8) Max wins the race

(8a) [BECOM Ewinner'(maz',race')]

Such a model is admissible with the current truth conditions for BECOM E.? If inertia

3Dowty offers alternative truth conditions for BECOME (call the new operator BECOME;), where
[BECOM E, ¢] identifies the smallest interval over which the change of state from —¢ to ¢ takes place. The
definition of BECOM E; requires Dowty to assume that there are truth value gaps; i.e. the truth value of
¢ must be undefined at all intervals properly contained in the interval I at which [BECOME;¢] is true.
The idea is that ¢ is undefined at exactly those intervals where the process leading to ¢ goes on. But Dowty
does not characterise when the truth value of a sentence like Maz is the winner of the race (whose formal
representation is winner' (maz’, race')) is undefined. Indeed, if he did then he would undermine the Eventual
Outcome Strategy, for he would be characterising the process that leads to Max being the winner of the race
directly (note that it couldn’t be done in terms of inertia worlds because this presupposes the semantics of
BECOME is fixed), and he could simply define the progressive sentence as true at exactly those intervals
where the truth value of winner’(maz’, race’) is undefined. There would thus be no need for inertia worlds.
Since Dowty does not characterise when the truth value of winner’'(maz’, race') is undefined, there is still
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is specified so that (5a), which is the representation of (5), is true at all times during the
interval I', then (5a) is true in M" at (IV,w), the time when Max is born.

(5) Max is winning the race

(5a) [PROG[BECOM Ewinner'(maz',race')]]

This does not accord with the actual use of the progressive. The discrepancy between the
truth value of the progressive and its actual use is a direct result of the fact that BECOME
does not place conditions in the interpretation of (8) on what goes on during I', and so there
is no guarantee that the state of affairs during I’ is one where the winning process is going
on.

The required relationship between [BECOME¢] and [PROG[BECOME¢]|] cannot be
obtained with the current semantics of BECOME. The question now is: how should the
semantics of BECOM E be modified?

6.2 A Change to BECOMFE

How should Dowty’s definition of BECOME be revised to ensure that The Test Struc-
ture is inconsistent? In other words, how should BECOME be modified so that
[PROG[BECOME¢]| is true throughout any interval I at which [BECOME¢] is true,
in such a way that the truth values assigned by the theory to [PROG[BECOM E ¢|] square
with the actual use of the progressive? To obtain such a semantics for BECOME the
following must hold: if (8a), which represents (8), is true at an interval I, then the semantic
definition of BECOM E must ensure that the state of affairs during I is one where we would
naturally assert (5) as true, e.g. Max is ahead in the race, or he is second but the athlete
in first place has just twisted his ankle, etc. In other words, the semantics of BECOME
must ensure that all the intervals contained in I are ones where the process that leads to
the target is going on, and to achieve this, the semantics of BECOMFE must characterise
the process that leads to the target.

The Eventual Outcome Strategy is an attempt to characterise the process that leads
to the target in terms of eventual outcome. This is given in the semantics of
[PROG[BECOM E¢]|, which invokes the semantics of BECOME. So one cannot use
this Eventual Qutcome Strategy to define BECOME, or the analysis is reduced to circu-
larity. Instead, the definition of BECOM E must characterise the process that leads to the
target by placing conditions directly on what the process consists of, i.e. it must assert in
the case of (8) that the process goes on only if Max is ahead, or second but the athlete in
first place has just twisted his ankle, etc.

This goes against the grain of the Eventual Outcome strategy. The aim is to characterise
the process purely in terms of eventual outcome. Therefore, one undermines the Eventual
Outcome Strategy if the semantics for (8) places conditions directly on what the process
consists of. But we have argued that having such a semantics for (8) is the only way to

the possibility of constructing a model where the interval I', which spans twenty years and contains IV,
is the shortest interval where the change from winner' (maz’', race’) being false to being true takes place;
winner’' (maz’, race’) could be undefined throughout I’. Hence there is nothing in the truth conditions of
BECOME; that bars the model M" from being admissible.
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explain that the state of affairs depicted in figure 5 is inconsistent. Hence one cannot modify
Dowty’s definition of BECOME in order to ensure that figure 5 is inconsistent without
undermining the Eventual Outcome Strategy.

I have argued that one cannot explain that figure 5 is inconsistent in Dowty’s theory with
his current semantics for BECOM E, and one cannot revise the semantics of BECOME
without undermining the Eventual Outcome Strategy. Therefore, figure 5 must be consis-
tent.

But this is in conflict with the argument given in section 4, that in order to give a satisfactory
specification of Inr, The Test Structure (figure 5) must be an inconsistent state of affairs.
The semantics of BECOME and the specification of Inr are both essential ingredients
to Dowty’s formulation of the Eventual Outcome Strategy. For BECOM E characterises
the culmination of an event, Inr characterises the appropriate modal notion of the current
state of affairs continuing uninterrupted, and the Eventual Outcome Strategy defines the
progressive in terms of these two things. But Dowty’s way of characterising the culmination
requires The Test Structure (figure 5) to be consistent and his way of defining the appropri-
ate notion of modality requires The Test Structure to be inconsistent. Therefore, Dowty’s
formulation of the Eventual Outcome Strategy fails.

Cooper (1985) and Hinrichs (1983) offer alternative formulations of the Eventual Outcome
Strategy, this time within the framework of .ul situation semantics. But in (Lascarides
1988), I demonstrated that the argument presented here against Dowty’s theory carries over
exactly to their formulations of the Eventual Outcome Strategy as well. That is, their ways
of characterising the culmination require The Test Structure (figure 2) to be consistent, but
their ways of defining the appropriate notion of modality require The Test Structure to be
inconsistent. Therefore, although the Eventual Outcome Strategy is intuitively appealing,
we have exposed a tension between the two tasks that must be tackled in formulating it.

One is now left with a puzzle. In this part of the paper, I have investigated whether one may
canvass in the formal semantic analysis of the progressive the intuition that the common
property among the states of affairs that make (5) true is one of eventual outcome, the
eventual outcome being the one described by Maz wins the race.

(5) Max is winning the race

This intuition is not sufficient to yield a satisfactory logical analysis of the progressive
however. The puzzle is: how else may the progressive be defined? In the next part of the
paper, we will propose an alternative strategy, and show how our new appraoch to aspect
may solve the imperfective paradox.
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Part II
A New Approach to the Imperfective Paradox

1 Introduction

We will now offer a totally new approach to solve the imperfective paradox, that will make
use of a novel semantic interpretation of the classification of aspect. The formal theory
offered will rely on two different tools. First, the theory will be expressed in an interval-
based temporal logic known as IQ (Richards et al. 1989). Second, we will capture in
this theory some of the intuitions that underly Moens and Steedman’s model of temporal
reference (Moens and Steedman 1988, Moens 1987).

1Q is a temporal logic with at least two innovations. First, like Dowty’s theory, IQ adheres
to the following principle of homogeneity: an atomic sentence is true at an interval I only if
it is true at all subintervals of I. However, unlike Dowty’s theory, IQ allows atomic formulae
to represent non-stative sentences. Second, I1Q offers a new technique whereby temporal
expressions can have representations that receive their semantic interpretation with respect
to context.

We will show how homogeneity and context in IQ can be used to characterise the semantics
of aspect, where the characterisation is based on Moens’ model. This provides a novel way
of thinking about the semantics of aspectual phenomena in general, and in particular offers
an arena in which to tackle the imperfective paradox anew. We explain the entailment
between (14) and (15), and at the same time, explain why no entailment holds between (6)
and (7).

14) Max was running

(

(15) Max ran

(6) Max was winning the race
(

7) Max won the race

Furthermore, we overcome the problems with the Eventual Outcome Strategy. Hence our
solution to the imperfective paradox is an improvement on those of Dowty, Cooper and
Hinrichs, even though, like Dowty, we offer the solution in an interval-based framework.

2 The Classification of Aspect

As we have discussed, solving the imperfective paradox consists of two tasks. The first is
to characterise the semantics of the aspectual classes and so provide distinctions between
sentences like (15) and (7), and the second is to provide a definition of the progressive that
builds on this characterisation to solve the imperfective paradox. This section is concerned
with solving the first task. We use some of the ideas behind Moens’ model of aspect to do
this.
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We will distinguish between three types of sentences; state sentences (e.g. Maz knows the
answer), process sentences (e.g. Mazx runs) and event sentences (e.g. Maz wins the race,
Maz builds a house). Our state sentences correspond exactly to Vendler’s states, and process
sentences correspond exactly to Vendler’s activities. Events, on the other hand, correspond
to Vendler’s accomplishments and achievements grouped together in one class. So all our
event sentences describe culminations, and some of them are also associated with ‘prior’
processes that lead to the culmination. The way we capture this in our formalism will
shortly be examined in detail.

Moens’ taxonomy of aspect contains five categories whereas ours contains only three. Nev-
ertheless, we will exploit some of the ideas that lie behind his classification of aspect. One of
these is the way in which an event can be analysed into stages that are identified deictically,
i.e. by extra-linguistic context. For example, the process that leads to the culmination
described by sentence (16), i.e. that the house gets completed, will be identified deictically.

(16) Max build a house

In the context where Max is spending money on building materials with the intention of
building a house, Maz is building a house is true and the process it refers to is Max spending
money on building materials. But in the context where Max is spending money on building
materials without the intention of building a house, Maz is building a house is false, and the
process it describes is not Max spending money on building materials. It is this intuition
that we aim to capture in our semantics.

Since our theory will be expressed in IQ a few remarks about this semantic framework are
in order.

3 An Informal Introduction to IQ

IQ (standing for Indexical Quantification) is an interval-based framework originally designed
to provide a formal semantic treatment of tense and temporal quantification in English
(Richards et al. 1989). Similarly to Dowty’s theory, propositions are functions from world-
interval pairs to truth values; this is why 1Q is viewed as an interval-based framework.

IQ offers a new technique for representing deictic expressions (i.e. those expressions that
are not fully interpretable independently of extra-linguistic context). This is achieved by
invoking in the object language of I1Q a set of referring expressions known as parameters,
which are used to represent deictic terms like this and that.

A possibly partial function g., which is known as the indexical function and which forms
part of the model for IQ, assigns denotations to the parameters. For historical reasons, the
subscript ¢ on g, stands for extra-linguistic context, but don’t be confused: the function g,
is fized for any given model and so will not change as the natural language discourse being
considered progresses.

Instead of g. changing as the context of utterance changes, the parameters in the represen-
tations of the utterance will change, thus enabling the same sentence to refer to different
things in different contexts of utterance with respect to the same model. This technique
of using different terms for representing the same natural language expression in different
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utterances is used by Montague in his analysis of pronouns. Just as his theory makes no
claims for representing the mechanism we use in resolving pronouns, our theory will not
represent the mechanism we use in resolving deictic expressions. Nevertheless, because
the parameter used for representing a demonstrative like that will be different for different
utterances of that, one can think of parameters as deictic in nature, for we will achieve
different references for that in different contexts. Any expression in the object language will
‘inherit’ the deictic nature of the parameters it invokes, as its semantics will depend on the
denotation of these parameters, which are determined by the indexical function g.. We will
use parameters to capture in our semantics the idea that sentences may describe the stages
of a particular event where these stages are identified by extra-linguistic context.

3.1 The Syntax and Semantics

The language of IQ (henceforward referred to as Liq) is an extension of the ordinary predi-
cate calculus, which contains the usual constants, variables, n-place predicates, truth func-
tional connectives and quantifiers. The constants and variables are sorted into four domains
in the extended version of IQ that we are going to use here; they range over individuals, pos-
sible worlds, intervals of time and propositions.* I stress that this is an extended version of
the framework of 1Q, where the language has referring expressions that denote propositions.
The standard framework of IQQ does not invoke any such referring expressions.

To achieve a deictic analysis of tense, Liq has a set of referring expressions over and above
constants and variables. As I have already mentioned, these are parameters, and the index-
ical function g, assigns parameters their denotations. In fact, parameters are rigid desig-
nators. The parameters are ‘sorted’ like the constants and variables, and in the extended
version of IQ) that we are discussing here they range over the four domains of individuals,
worlds, intervals and propositions. Parameters occur in the syntax of Liq on deictic senten-
tial operators such as tense. They appear as subscripts on the operators: for example the
past tensed version of an untensed sentence A (such as win(maz,race)) is represented as
PAST, 1) (A), where v is a parameter which ranges over the domain of possible worlds, and
t is a parameter which ranges over the domain of intervals of time. PAST(, ;) (A) is true if
the following holds:

o PAST(y 1) (A) is true at the world-time index (w, ) if and only if g.(v) = w, gc(t) =i
and there exists an interval j earlier than ¢ such that A is true at (w, j).

In the above definition the function g. assigns the parameters v and ¢ the ‘place’ (i.e.
possible world) and time of speech. Thus Richards’ analysis of tense is Russellian in that
it refers essentially to speech time.® For a full discussion of the novel properties of this
definition of tense, see (Richards et al. 1989). In our theory, parameters will not only play
a central role in tense, but also in aspect.

A model for Liq is a septuple (f, W, I, F, <, g., f) where the four non-empty sets D, W, I,
and F' correspond respectively to the domains of individuals, possible worlds, intervals of

4An extended version of IQ, that includes referring expressions ranging over propositions, is used to
account for temporal connection (Richards et al. 1989).

®IQ’s tenses are deictic in a limited way; they don’t invoke definite reference to (say) past time. cf. Partee
(1973) for an alternative view of the deictic nature of tense.
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time and propositions; < is a partial ordering relation on the domain I of intervals; g. is
the function that assigns parameters their denotations; and f is the interpretation function
which assigns the non-logical constants of Liq their intensions.

The interpretation function f is designed so as to maintain a certain degree of homogeneity.
That is, the truth clauses for the expressions of Liq are such that the definition of truth
will yield the following homogeneity property for atomic formulae of Liq (which I will
subsequently define) and their boolean combinations:

e An atomic formula (e.g. win(mazx,race), run(maz)) or a boolean combination of
atomic formulae is true at an index (w,7) only if for all subintervals j of i it is true

at (w,j).

The above homogeneity principle is fundamental to the framework IQ, and the way it is
used sets IQ apart from other interval-based frameworks, such as (Dowty 1979). Dowty
represents the sentence Max win the race so that it may be true at an interval ¢ and false at
an interval j contained in ¢. This is not the case for 1Q, for Max win the race is represented
by an atomic formula (i.e. win(maz,race)®) and so is subject to the above homogeneity
restriction.

It must be stressed, however, that the homogeneity restriction will not apply to all the
sentences of the language, but only the boolean combinations of the atomic sentences.

So to summarise, there are basically two leading ideas in IQ. First, there are certain tem-
poral expressions, such as tense, whose semantic interpretations are essentially about the
context of utterance. Second, the framework of 1Q is designed so as to maintain the above
homogeneity restriction. Now that the general motivation for Liq is in place, I will give the
formal definitions of the syntax and semantics of Liq.

4.1 The Syntax

The basic expressions of Liq are defined below:

(1) Four countably infinite sets of variables: Vp, Viy, V7, and V.
(i) Four (possibly empty) sets of name constants: Cp, Cy, Cr, and Cp.
(iii) Four (possibly empty) sets of parameters: Pp, Py, Pr, and Pp.
(iv) For n > 0 a countably infinite set P™ of n-place predicate constants.
(v Quantifiers: 3, V.
We read 3 and V as some and all respectively.
(vi) The set of D-terms is Vp U Cp U Pp, the set of W-terms is Vi U Cy U Py,

the set of I-terms is V; U C7 U Pr, and the set of F-terms is V@ U Cg U Pg.
(vii) Tense operators: PRES(, 1), PAST(y 1), FUT(y ), where v € P, and t € Py.

The well formed formulas (wffs) of Liq can now be defined inductively in the familiar way.

(1) Where R, is an n-place predicate constant and di,...,d, are D-terms,
R, (dy,...,dy,) is an atomic wif.

(ii) Where A is a wif and x belongs to Vp, 3z A and Vz A are wifs.

(iii) If A is a wif and II is a tense operator, ITA is a wif.

5We will view race as a term in order to simplify the analysis for our purposes here.
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4.2 The Semantics

Although IQ is an interval-based system, points play an essential role. In effect, intervals are
connected sets over points of time, and their ordering is determined by the partial ordering
of the points of time in the intuitive way (an interval i is earlier than an interval j iff all
the points in i are earlier than all the points in j).

An IQ-structure M is defined as follows: M is a septuple (D, W, I, F, <, g., f) such that

(a) D, W and I are disjoint nonempty sets to be understood respectively as the
set of possible objects, possible worlds, and intervals of time. The non-empty
set F' is understood as the set of propositions (built from the sets W and T).
It consists of all functions from W x I to the truth values {0,1,u} (u is to
be glossed as undefined).

(b) & is the partial ordering of I induced by the ordering on the set of points
of time.

(c) gc is a function (the ‘indexical’ function) from the parameters of Liq to
corresponding denotations.

(d) f is a function which assigns to the constants of Liq the suitable (possibly

partial) intensions from W x I.

The interpretation function f is subject to the following homogeneity restrictions (these will
yield the homogeneity principle described in the previous section):

(1) For every name constant b and predicate r,, f(b)(w,) and f(r,)(w,i) are
defined for all (w,%) in W x I, where i is a singleton.

(i) For all name constants b, f(b)(w,i) = f(b)(w,j) for all j included in 7 (all
subintervals of ).

(iii) for any predicate constant r,, f(ry)(w,j) is included in f(ry,)(w,4) for all

subintervals ¢ of j.

Because of the homogeneity restrictions on f, intensions will typically be partial. However,
the appropriate valuation space for an IQ-structure is one with three truth-values: 1 (true),
0 (false) and u (undefined). A formula will have the value u whenever any of its non-logical
constants are undefined. It must be stressed that u is a third truth value rather than a
truth value gap. The truth definition for Liq proceeds in terms of the notion of an IQ-
interpretation based on an IQ-structure M.

e AnIQ-interpretation is a pair (M, g) such that M is an IQ-structure and g is a function
which assigns values to the variables of Liq.

Given an IQ-interpretation, the denotation of a well-formed expression § is defined recur-
sively in the familiar way. We let [[,6’]]<M’g>(w,i) be the denotation of § relative to the
IQ-interpretation (M, g) with respect to the pair (w,i) € W x I. [f] (M9} i5 defined recur-
sively in the following way.
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The above truth definition (d) for atomic wif together with the homogeneity restrictions

Where 3 is a variable, [[[3]]<M’g> (w,1) = g(B).

Where f is either a name constant or a predicate constant, [[ﬂ]]<M 9) (w,i) =
f(Gb)(w, 1)

Where f is a parameter, [[ﬁ]]<M’g) (w,7) = gc(B).

Where 3 is an atomic wif p™(dy,...,d,), ﬂﬁ]]w[’g) (w,7) =

1 if ([dr ]9 (w,4), .., [dn] ™9 (w,4)) belongs to [p"] ™9 (w, 1),

0 if ([d:i]M9 (w, 1), .., [dp]™9 (w, 1)) does not belong to [p"] M9 (w, ),

w if [di]"9 (w, i) is undefined for any i where 1 < i < n or [p"]™9 (w,1)
is undefined.

Where 3 is a wif VoA with the individual variable z, [8]™9 (w,1) is

1if [[A]]<M’g(w’e)>(w, i) = 1 for some e belonging to D7,

0 if [A]]<M’g(z’e)>(w, i) = 0 for all e belonging to D,

u otherwise.

Where £ is a wif Vz A with the individual variable z, [[ﬂ]]<M’g> (w,1) is

1 if [A]M9@€) (4, 5) = 1 for all e belonging to D,

0 if [A]]<M’g(z’e)>(w, i) = 0 for some e belonging to D,

u otherwise.

Where § is a wif PRES, 1(A) with v € P, and ¢ € Pr, [8]"9) (w,4) is
1if [u]™9 = w and [[t]]gM’g) =i and [A]M9) (w,i) = 1,

0 if [v]™9 and [{]™9 are defined but [v]™9 £ w or [t{]™9 +£ i or
[A]™ (w, i) =,

u otherwise.

Where § is a wif PAST, (A) with v € P,, and t € Py, [B]"9 (w,1) is
1if [o]™9 = w and [t} = i and [A]™9) (w,5) = 1 for some j < i

0 if []™9 and [{]™9 are defined but [v]™9 % w or [t} +£ i or
[A]M:9) (w, i) = 0 for all j < i

u otherwise.

Where 3 is a wif FUT{, ;y(A) with v € P, and t € P, [B]M9 (w, ) is

1if [o]™9) = w and [t]™9 =i and [A]™9 (w,k) = 1 for some k such
that + < k,

0 if [u]™9 and [{]™9 are defined but [v] ™9 % w or [t]'™9 #£ i or
[A]M:9) (w, i) = 0 for all k such that i < k,

u otherwise.

(i), (ii) and (iii) on f yield the homogeneity principle in (17).

(17)

23

An atmoic sentence or a boolean combination of atomic sentences will be true at
an index (w,i) only if for all subintervals j of 4, it is true at (w, j).

Now that the syntax and semantics of the language of IQ are in place, I will explore how
one might implement the suggestions outlined earlier: to formulate the taxonomy of aspect
in the framework I1Q.

Tg(x,e) is the same as g save that g(x,e)(x) = e
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4 Formulating the Taxonomy of Aspect in IQ

If the distinctions between the three aspectual classes of states, processes and events are to
be thought of as semantic distinctions, then the task ahead is to provide a suitable model
structure that captures this. The set F' of propositions, which corresponds to the set of all
functions from W x I to {0, 1, u}, must be divided into at least three classes corresponding
to the three aspectual categories: F' must consist of a set S of state propositions, a set Pr
of process propositions and a set E of event propositions. So a state sentence, such as Maz
know the answer, will be represented in IQ as the atomic formula know(mazx, answer), and
this formula will denote a state proposition; i.e. a member of the set S. The process sentence
Maz run will be represented by the atomic formula run(mazx), which will denote a member
of Pr. The event sentences Maz win a race and Maz build a house will be represented
respectively by the atomic formulae win(mazx,race) and build(max, house), and they will
both denote members of E.

Our task now is to provide a way of distinguishing the members of S, Pr and E. How may
this be done?

First, let us consider what restrictions we require on the set E of event propositions. I
will claim that because of the homogeneity principle, any proposition from F must return
the value true only at minimal intervals, (these are the singleton sets in IQ). For suppose
that an atomic untensed sentence A denoting an event proposition is true at an extended
interval ¢, however small. Then by homogeneity A is true at every subinterval of 7. One
is now committed to one of two undesirable consequences. The first alternative is that the
structural representation of A is not related to the ‘goal’ or ‘conclusion’ of the event it
denotes. The second alternative is that A has a ‘goal’ or ‘conclusion’ associated with it, but
homogeneity establishes that this conclusion occurs at every interval contained in 4 (since
A is true at every interval contained in 7). Hence a homogeneous interpretation of events
is satisfactory only if they are true only at minimal intervals. Under this restriction, the
structural representation of A can entail a ‘goal’ or ‘conclusion’, which will occur at the
minimal interval at which A is true.

The analysis of event propositions that we have been forced into by homogeneity may at
first seem puzzling. According to intuitions, some events such as Max build a house do seem
to extend in time, and yet we represent events as punctual entities. The puzzle is: How
are we to formulate in this framework the intuition that some events have ‘preparatory’
processes that lead to the culmination? This puzzle will shortly be addressed in full. The
technique whereby expressions in I(Q can achieve semantic interpretation with respect to
extra-linguistic context will play a central role in answering it.

The ‘punctual’ property of event propositions is captured in the following analysis of F.
The set F is partitioned into four classes; Pr (process propositions), S (state propositions),
E (event propositions), and ® (the remaining functions in F').

The conditions placed on the members from these classes are as follows:

e Condition on E
e € E if and only if for all (w,i) € W x I such that e(w,i) = 1, 7 is a minimal interval.

If e € E, then the function e returns the value true only at minimal intervals. The fact that
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the members of E have this ‘minimal interval’ property reflects the idea that the culmination
of an event is punctual (for it happens at the minimal interval at which the event is true).

In classifying the set Pr of process propositions, we capture Moens’ idea that processes
essentially extend in time and have definite endpoints (but not culminations). The propo-
sitions in Pr satisfy the following:

o (Condition on Pr
pr € Pr if and only if for all indices (w,i) € W x I, if pr(w,i) = 1 and if for all
intervals j such that ¢ is contained in j pr(w,j) = 0, then 7 is a closed non-minimal
interval.

By the above condition, if pr € Pr, then it has what I call a closed interval structure. That
is, the proposition pr may be true on an open interval, but any such interval is surrounded by
a non-minimal closed interval at which pr is true. Similarly, any minimal interval at which
pr is true is surrounded by a non-minimal closed interval at which pr is true. Essentially,
the maximal (connected) intervals at which a process proposition returns the value true are
always non-minmal and closed. The fact that these are non-minimal reflects the intuition
that processes happen over an extended period, and the fact that they are closed reflects
the intuition that they have definite endpoints (but not culminations).

The classification of the set S of state propositions captures the idea that states essentially
extend in time but do not have definite endpoints. The propositions in S must satisfy the
following condition:

e Condition on S
s € S if and only if for all (w,7) € W x I, if s(w,i) = 1 and if for all intervals j such
that ¢ is contained in j s(w,j) = 0, then i is open.

So if s € S, then it has what I call an open interval structure. That is, the function s may be
true on a closed interval, but any such interval is surrounded by an open interval at which
s is true. So essentially the maximal (connected) intervals at which a state proposition
returns the value true are always open. The fact that they are open reflects the intuition
that states don’t have definite endpoints.

The functions that are in the set ® satisfy the following condition:

e Condition on ®
¢ € @ if and only if none of the conditions on E, Pr, or S hold.

So the largest intervals at which a function ¢ € ® returns the value true are a mixture
of open, closed and minimal. The set of functions ® does not correspond to any of the
aspectual categories, but is included as a subclass of F' since F' contains all functions from
W x I to {0,1,u}.

5 The Preparatory Process of an Event

As we have already mentioned, we intend to represent the event sentence Maz build a
house with the atomic formula build(maz, house), and this formula will denote an event
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proposition. So build(mazx, house) will be true at an interval 7 only if 4 is minimal.

Given this analysis of the event sentence Maz build a house, how can we provide a semantic
interpretation of the preparatory process of building a house, that leads to the culmination
of the house being completed? The challenge is to provide a temporal relation between this
process and the event build(mazx, house). For Dowty, the preparatory process that leads
to the culmination of an event occurs during the interval at which the event itself occurs.
Clearly, we need to provide a different temporal relation to this, for our events are true
only at minimal intervals, and so the process cannot occur at an interval contained in the
minimal intervals.

We propose to define the process that leads to the culmination of an event in terms of the
event itself: If A is an event sentence, then PR(A) is a sentence that represents the process
that leads to the culmination of A, where PR is a sentential operator. Our task now is
to define the semantics of this sentential operator PR. In so doing, we must stipulate the
temporal relation that holds between A and PR(A).

In characterising this temporal relation, the intuition we will trade on is that whenever the
event (i.e. culmination) occurs, the preparatory process that leads to the culmination must
have been going on just before. This temporal precedence relation between a preparatory
process and culmination is formulated in (R) below:

(R) If the event sentence A is true at (w,7), then there is some interval j such
that i is the final bound of j and PR(A) is true at (w, j)®

Note that (R) expresses a necessary relation between A and PR(A), since it must hold for
every world-time index.

But simply stating (R) does not supply a full semantic analysis of the sentence PR(A). The
relation (R) will not uniquely specify the proposition pr that the sentence PR(A) denotes.
So what is the proposition denoted by PR(A)?

Our proposal is that the process proposition (18) refers to, for example, is not uniquely
specified independently of its context of utterance.

(18) PR(build(max, house))

Eztra-linguistic context will determine the process that (18) refers to, but the semantics
for (18) will be such that the possible choice for this process is subject to the restriction
that it must satisfy the necessary relation (R) to build(max, house). So, as we mentioned
before, in the context where Max is spending money on building materials with the intention
of building a house, (18) will be true, and the process it refers to will be Max spending
money on building materials. But in the context where Max is spending money on building
materials without the intention of buiding a house, (18) will be false, and the process it
refers to will not be Max spending money on building materials.

To formulate this idea in our theory, we will replace the sentential operator PR with a
complex sentential operator PR,,, where p is a referring expression that will refer to a process
proposition which is identified by extra-linguistic context. So the preparatory process of

8The minimal interval i is the final bound of j if and only if 4 = {t} and t is the supremum of the set of
points that make up j.
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building a house is now represented with (19),
(19) PRy (build(maz, house))

and the semantics of PR,(A) will define a relation between the event proposition denoted by
A and the process proposition denoted by p, whose value is determined by extra-linguistic
context.

But how can the logical analysis of PR,,(A) be defined so as to refer to a proposition denoted
by p whose value is determined by extra-linguistic context?

The preceding discussion indicates that the relation between the sentence PR,(A) and
context is a matter of logical form. IQ provides us with just the technique we need to
capture this idea. We make the referring expression p in the sentence PR,(A) a parameter
that denotes a proposition. It will thus achieve denotation with respect to extra-linguistic
context via the indexical function g. that is part of the model. In the truth conditions of
PR,(A), the parameter p is to be thought of as describing the preparatory process of A
whose value is determined by context. So, in the building a house example that we have been
considering, g.(p) could be [spend(maz, money, building — materials)], where the formula
spend(max, money, building — materials) represents the process of Max spending money
on building materials.

5.1 The Truth Conditions of PR,(A)

We have already mentioned two conditions that must hold for PR, (A) to be true. First, p
must denote a process proposition and A must denote an event proposition. This ensures
that the semantics of PR,(A) relates a process to an event. Second, there must be a
temporal precedence relation between the preparatory process of A and A itself. Since the
parameter p is to be thought of as describing the preparatory process of A, whose value
is identified by context, this entails that the truth of PR,(A) enforces the condition that
whenever A is true, the proposition denoted by p must have been true just before. So
although the denotation of p is chosen according to extra-linguistic contezt, the possible
choices will be semantically restricted by this temporal precedence relation with A.

The above requirements on the semantics of Pr), are captured in its following truth condi-
tions:

PR,(A) is true with respect to (M, g) at (w,4) if

(a) the proposition denoted by A (which we refer to as [A]*9)) is a member
of E, and ¢.(p) is a member of Pr, and

(b) for all indices (w',i') € W x I, if [[A]]<M’g) (w',i') = 1 then there is an
interval 5 whose final bound is ¢ and g.(p)(w',j') = 1, and

(©) ge(p)(w, i) = 1;

it is false if either conditions (a), (b) or (¢) do not hold;
and otherwise it is undefined.

Let us discuss the semantic roles of the conditions (a), (b) and (c) in the above definition.
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Condition (a) requires A to denote an event proposition and p to denote a process proposi-
tion. Hence the operator PR, operates on an event sentence, and it also invokes reference
to a process proposition whose value is determined by context, which is as required.

Condition (b) states that the process proposition g.(p) and the event proposition denoted
by A stand in a necessary temporal precedence relation; whenever A occurs, p occurs just
before. The result of condition (b) is effectively to semantically restrict our possible choices
for g.(p). It captures the intuition that the truth of A must be the result of the process
gc(p) that was going on just beforehand. Condition (b) also ensures that PR,(A) and A
will stand in the temporal precedence relation (R) mentioned earlier.

According to condition (c), PRy(A) is true at (w, %) only if g.(p)(w,?) = 1. It is important
to note that PR,(A) is defined in terms of, among other things, the sentence A, but the
truth of PR,(A) at (w,¢) does not entail the truth of A at any time. This reflects the
intuition that the preparatory process of A may go on without the culmination ever being
reached. Our ability to formulate this intuition in IQ will prove important when it comes
to solving the imperfective paradox.

Furthermore, by conditions (a), (b) and (c), we can show that the sentence PRj,(A) denotes
a proposition from Pr. For suppose that PRj,(A) is true at the index (w,¢). Then by
condition (a) g.(p) € Pr and by condition (c) g.(p) is true at (w,i). So by the properties
of propositions in Pr, either ¢ is a non-minimal closed interval, or 7 is contained in a non-
minimal closed interval j such that g.(p) is true at (w,j). Suppose i is contained in a
non-minimal closed interval j such that g.(p) is true at (w,j). Then given that PR,(A)
is true at (w,%), conditions (a) and (b) are satisfied for the evaluation of PR,(A) at (w, j)
(because these conditions are independent of the index of evaluation). So since g.(p) is
true at (w,j), then by condition (c) so is PR,(A). Hence if PR,(A) is true at (w,) then
either ¢ is a non-minimal closed interval or ¢ is contained in a non-minimal closed interval
j such that PRy(A) is true at (w,j). Hence the proposition denoted by PR,(A) satisfies
the condition on the set Pr, and so it must be a process. This is just as required: we want
PR,(A) to denote a process proposition since it represents the preparatory process of the
event A.

Also note that as long as PR, (A) is possibly true with respect to a model M, then it satisfies
the temporal precedence relation (R) with A. For if PR,(A) is true at some index, then by
condition (a) g.(p) is defined (remember that g. is partial) and by condition (b), whenever
A is true, g.(p) is true just before. Therefore by condition (c), whenever A is true PR,(A)
is true just before. In essence, this captures in our semantics the idea that the event is the
result of a preparatory process which is chosen in a suitable way from context.

Finally, note that although the formula PR,(A) and the referring expression p may denote
the same proposition, the definition of PR,(A) is not circular even though it is given in
terms of p. This is because g.(p) is not defined in terms of PR,(A). g. is simply a one-place
function that assigns the term p a proposition as its denotation. Context will determine
whether the proposition denoted by p in PR, (build(maz, house)) will be true when the
plans for the house are being determined, or whether p is true only when the action of
building is going on, for example.

Let us consider sentence (3).

(3) Max was building a house
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The analysis of (3) will have embedded in it the sentence (19) (the full analysis of (3) that
incorporates the representation of the progressive will be given shortly).

(19) PRy (build(maz, house))

The value of p, i.e. g.(p), is some proposition that is picked out deictically; as we have men-
tioned it could be the proposition denoted by [spend(mazx, money, building — materials)].”
The choice of g.(p) determines which process is said to be in progress when we utter (3).
Note that sentence (19) is true at (w, ) only if g.(p) is true at (w,?), but it does not assert
that build(mazx, house) is ever true.

6 Our Approach Compared with Previous Interval-Based Ap-
proaches

We have now completed the first task connected with the imperfective paradox: we have
formulated the classification of aspect in an interval-based framework, and in so doing have
provided semantic distinctions between process sentences like Maz run and event sentences
like Maz build a house. Let us see how our analysis of the classification of aspect compares
with previous interval-based accounts.

Dowty’s interval based formulation of the classification of aspect features a heterogeneous
semantics for accomplishments such as Maz build a house where this sentence may be true
at an interval ¢ and false at a subinterval of 4.

Our interpretation of the classification of aspect takes on a wholly different approach from
Dowty’s. We do not give a heterogeneous analysis of the untensed sentence Mazx build a
house. Indeed, such truth conditions for Maz build a house would not even be express-
ible in the framework IQ because of the homogeneity principle (17), which entails that if
build(mazx, house) is true at (w,i), then it is true at (w, j) for all subintervals j of i.

(17) An atomic sentence or a boolean combination of atomic sentences is true at the
index (w,1) only if for all subintervals j of 4, it is true at (w, j).

Thus one important original feature of our theory is that it is the first formulation of the
classification of aspect where the various aspectual classes are assigned a homogeneous
analysis. And yet even though our analysis of aspect is homogeneous, we can capture all
the important intuitions that are captured in Dowty’s heterogeneous analysis; for example
the intuition that events can have preparatory processes.

Dowty characterises the process of Max building a house purely in terms of the eventual
outcome of the current state of affairs, but we use something else. Instead of the semantics of
PR, (build(maz, house)) being in terms of the eventual outcome, the eztra-linguistic context
of utterance plays a crucial part, for its semantics is dependent on the value of g.(p). Hence
our strategy is distinct from the Eventual Outcome Strategy.

9How g. assigns this reference to p is not a matter we shall discuss here.
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It is shown in (Lascarides 1988) that in using our strategy of identifying parts of an event
via extra-linguistic context, one can account for the fact that sentence (20) is acceptable in
certain contexts but not in others.

(20) Max ran in four minutes (this morning)

(20) is acceptable in the context where Max runs a fixed distance every morning. For
example, in the context where Max runs a mile every morning, the culmination is Max
reaching the distance of one mile, and (20) means it took four minutes for Max to run
a mile. In the context where Max runs two miles every morning, the culmination in the
semantics of the event Maz run is identified as Max reaching the distance of two miles, and
(20) means it took four minutes for Max to run two miles. In (Lascarides 1988) we show
how to characterise the semantics of the event sense of Maz run as it appears in (20), where
the culmination is identified by context. Our formal theory is able to account for this by
invoking a parameter in the representation of the event Maxz run which will identify the
appropriate culmination (if there is one) given the context. Because deixis does not play
a central role in Dowty’s theory on aspect, he is unable to account for the fact that the
acceptability of (20) is dependent on the context in which it was uttered.

So to conclude, I have offered a formal interpretation of the taxonomy of aspect in the
framework IQ. The theory offered a new approach to formalising the taxonomy of aspect
because it contained essentially two original features; the aspectual classes are assigned a
homogeneous interval-based analysis, and context plays a central role in describing their
semantics. Thus this formulation of the taxonomy of aspect provides an arena in which to
tackle the imperfective paradox anew. Can our theory yield a solution to the imperfective
paradox, in a way that overcomes the problems encountered in previous attempts?

7 A Solution to the Imperfective Paradox

Our objective now is to deal with the second task connected with the imperfective paradox;
to build on the classification of aspect we have proposed by defining the semantics of the
progressive that solves the imperfective paradox.

A satisfactory solution to the imperfective paradox must explain the entailment from sen-
tence (14) to (15), and at the same time explain why there is no entailment from (6) to

14) Max was running

(

(15) Max ran

(6) Max was winning the race
(

7) Max won the race

One would also like an explanation of the entailments from (15) to (14), and (7) to (6).
This section is concerned with providing an analysis of the progressive that accounts for
these intuitions.
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Moens claims that the progressive requires a process as input, and it outputs a state which
describes the process as being in progress. To reflect this idea in our semantics, we will
represent the progressive as an operator PROG, that will operate on the process sentence
A, so that PROG(A) denotes a state proposition which describes the process A as being in
progress. That is, PROG(A) will assert that the process A began at some earlier time and
has not yet stopped. The truth definition of PROG is given below:

e PROG(A) is true with respect to (M,g) at (w,i) if and only if [[A]]U\/I’g> € Pr and
there exists a closed interval j such that ¢ is a proper subinterval of j and A is true
at (w,7); it is false at (w, ) if either [[A]]<M’g) is not a member of Pr, or there is no
closed interval j such that ¢ is a proper subinterval of j and A is true at (w,j); and
otherwise it is undefined

The sentence PROG(A) is false where A does not denote a process proposition. Further-
more, the sentence PROG(A) must denote a state proposition, since the largest connected
intervals at which PROG(A) is true are the open interiors of the largest connected intervals
at which A is true, and so PROG(A) satisfies the condition on the members of S that we
have stipulated. Since PROG(A) is true at the open interior of the interval where A is
true, our definition of PROG(A) reflects the idea that it is true if the process A started at
some earlier time and has not yet stopped.

7.1 The Entailments from the Progressive to the Non-Progressive
At first glance, the operator PROG does not seem to offer anything interesting towards a

solution to the imperfective paradox. However, the combination of the operators PROG
and PR, provide us with the desired analysis of sentence (6); (6) does not entail (7).

(6) Max was winning the race

(7) Max won the race

The formula (21) is not a possible representation of (6) because the formula win(maz, race)
denotes a proposition from F and not a proposition from Pr, and so by the definition of
PROG, (21) is always false.

(21) PAST, ) [PROG(win(max,race))]
In fact, the only possible representation of (6) in our formalism is (6a).
(6a) PAST, 1) [PROG[PRpy(win(maz, race))]

I will now show that our theory blocks the entailment from (6) to (7). I will do this by
constructing a model M such that (6a) is true in M at (w,7) and (7a), which is the logical
form of (7), is false.

(7a) PAST, ) (win(maz, race))
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Suppose that sentence (6a) is true in a model M at an index (w,%). This is the case if and
only if g.(v) = w and g.(t) = ¢, and there exists an interval j < ¢ such that (6a’) is true at

(w, ).
(6a') PROG[PR,(win(maz,race))]

This is the case if and only if (6a”) denotes a process proposition, and there exists a closed
interval k such that j is a proper subinterval of k£ and (6a”) is true at (w, k).

(6a”)  PRp(win(maz,race))

This is the case if and only if (a) [[win(maw,race)]]<M’g> € E and g.(p) € Pr and (b) for all
indices (w',i") € W x I, if win(maz, race) is true at (w', '), then there is an interval j' such
that ' is the final bound of 5’ and g.(p) is true at (w',j'), and (c) g.(p) is true at (w, k).

Now the truth of g.(p) with respect to (M,g) at (w,k) is consistent with the formula
win(mazx, race) being false at all times in w. So suppose win(maz,race) is false at all
times in w. Then sentence (7a) is false in M at (w, 7).

(7a) PAST, ) (win(maz, race))

But this is the logical form of (7). Hence (6) does not entail (7).

The semantics of PROG provides an explanation of the entailment from (14) to (15).

(14) Max was running

(15) Max ran
The logical form of (14) is (14a), and the logical form of (15) is (15a).

(14a) PAST, 1) [PROG(run(max))]
(15a) PASTy 1) (run(maz))

We can show that the truth of (14a) in a model M at an index (w, ) entails the truth of (15a)
at (w,7). For suppose that (14a) is true in a model M at (w,?). Then g.(v) = w, g.(t) = 1,
and [PROG (run(max))] is true at an index (w, j) where j < i; so [run(max)]]<M’g) € Pr,
and there exists a closed interval k such that j is a proper subinterval of k¥ and run(maz)
is true at (w, k). By the homogeneity principle satisfied by the framework 1Q, if run(max)
is true at (w, k), then it is also true at (w, j) since j is a proper subinterval of k. But j < ¢
and so (15a) is true in the model M at (w,7). Hence (14) entails (15), as required.

7.2 The Entailments from the Non-Progressive to the Progressive

Let us investigate in this section the entailments from (15) to (14), and (7) to (6). First
consider sentence (7), whose formal representation is (7a).
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(7) Max won the race

(7a) PAST(y ) [win(maz, race)]

Suppose (7a) is true in the model M at (w,i). Then g.(v) = w, g.(t) = 7 and there is an
interval j < i such that win(maz,race) is true at (w,j). Suppose that (non-linguistic)
context provides a suitable process to win(max, race) at (w, j), so this process satisfies the
necessary temporal precedence relation with the denotation of win(maz,race). Let g.(p)
be this process in (6a), the logical form of (6).

(6) Max was winning the race

(6a) PAST, 1) [PROG[P Ry(win(maz, race))]]

gc(p) is a suitable process to win(maz,race) at (w,j), and so (by the temporal precedence
relation) since win(mazx,race) is true at (w, j) there exists an interval £ whose final bound
is j such that g.(p) is true at (w, k). Hence by the definition of PR,, PR, (win(mazx,race)
is true at (w, k), and by the definition of PROG, (6a’) is true in w at the open interior of
k.

(6a) PROG[PR,(win(maz,race))]

But j < i and j is the final bound of k, so k¥ < ¢ and the open interior of k is earlier
than 7. Hence (6a) is true at (w, 7). Hence (7) entails (6) as long as extra-linguistic context
provides a suitable prior process to Max becoming the winner of the race (i.e. g.(p) is
defined appropriately), as required.

Problems appear to arise when one investigates whether sentence (15) entails sentence (14).

(15) Max ran

(14) Max was running

One can show that the current analysis does not account for a logical entailment from (15)
to (14). I will show this by constructing a model M where (15) is true at an index (w,1)
but (14) is false at (w,7). Let run(maz) be true in the model M only at the index (w, j)
and at subintervals of j. Then let int(j) be the open interior of j. Since run(mazx) denotes
a proposition from Pr, j must be closed, and so the initial bound & of the interval j is not
contained in int(j) and so k is earlier than int(j). Furthermore by homogeneity, run(maz)
is true at (w, k) (since k is contained in j). Now let us evaluate the truth value of (15a),
which is the representation of (15), at (w,int(j)).

(15a) PAST, 4 (run(mar))

(15a) is true in the model M at (w,int(j)) if g.(v) = w and g.(t) = int(j) and there is an
interval [ earlier than int(j) such that run(mazx) is true at (w,!). Assuming that g.(v) = w
and g.(t) = int(j), (15a) is true at (w,int(j)) since k is earlier than int(j) and run(max)
is true at (w, k).

However, we can show that (14a), the representation of (14), is false in the model M at
(w, int(5))-
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(14a) PASTy 1) [PROG(run(max))]

(14a) is true at (w,int(j)) if g.(v) = w and g.(t) = int(j) (these assignments hold by our
assumption), and there is an interval [ earlier than int(j) such that PROG(run(maz)) is
true at (w,!). We will now show that there is no such interval [. Since run(mazx) is true in
M only at (w,j) and the subintervals of j, by the definition of PROG, PROG (run(maz))
is true in M only at (w,int(j)) (int(j) is the open interior of j) and subintervals of int(j).
Hence there is no interval [ earlier than int(j) such that PROG (run(maz)) is true at (w,l)
and so (14a) is false at (w,int(j)). Thus we have constructed a model M where (15a) is
true at (w,int(j)) and (14a) is false at (w, int(j)), and so there is no logical entailment from
(15a) to (14a). We are able to construct such a model as a direct result of the fact that
PROG (run(max)) is true only at the open interiors of the interval j at which A is true,
and it is not necessarily true at j itself.

In view of the apparent inability to explain why (15) entails (14), the analysis seems to
be flawed. However, following Taylor (1977, 1985), one could explain away this flaw by
appealing to the distinction between truth and assertability. We appeal to the hypothesis
that even though in the above model M (15) is true at the open interval int(j) in virtue
of run(maz) being true at the initial bound of int(j), one is not in a position to assert
at the open interval int(j) that run(maz) was true at the initial bound of int(j). This
hypothesis is motivated by the intuition that an action must go on for an extended period
of time before one can recognise the action and so assert that it is going on. For example,
one cannot tell from a snap shot taken of Max at some singleton {t} (i.e. minimal interval)
whether Max was running at {t}, and so one cannot assert that run(mazx) is true at {t}
even if run(mazx) is true at {t}. If one accepts this, then one explains that the assertion of
(15) entails the assertion of (14).

Our strategy for defining the semantics of the progressive is distinct from the Eventual
Outcome Strategy because the semantic definition of PROG does not place conditions on
the outcome of the current state of affairs. We do not appeal to constructs such as inertia
worlds. In place of these constructs we have the temporal precedence relation between p
and A in the definition of the formula PR,(A). This temporal precedence relation captures
the intuition that if the event A occurs the process p must have been going on just before.
So instead of defining the effects or eventual outcome of the process p, as the Eventual
Outcome Strategy does in terms of inertia worlds, we define what must have happened
before A. As a result of our departure from the Eventual Outcome Strategy, our solu-
tion to the imperfective paradox does not suffer that strategy’s problems. We are able
to account for the possibility that while Max is running in the race, Maz is winning the
race is true, and then false, and then true, and then Max wins the race: for there is an
admissable model M where PROG[PR,(win(maz,race))] is true at (w, i), false at (w, j)
and true at (w, k), and win(maz,race) is true at (w,l) where i € j < k < [. Fur-
thermore, by our analysis of PROG, PR, and win(max,race), the situation in figure 2
is inconsistent. This is because win(maz,race) is only true at minimal intervals, and so
PROG[PR,(win(maz,race))] cannot be true and then false and then true at an interval
contained in one where win(maz,race) is true.

One may look upon our analysis of aspect as replacing Dowty’s primitive function Inr in
the model with another primitive function; g.. Thus it appears that the explanatory power
of our theory is no more than that of Dowty’s. However, our theory is an improvement on
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Dowty’s in two very important respects. Firstly, the function g, is motivated independently
from the analysis of aspect, unlike Dowty’s function Inr, because parameters are used to
analyse all indexical expressions. Secondly, our function g, is well-defined, and we showed
that Inr cannot be well-defined without reducing the analysis of aspect to circularity. So
our theory overcomes the problems encountered in Dowty’s approach to aspect.

8 Conclusion

Solving the imperfective paradox consists of two tasks. The first is to represent a semantic
distinction between sentences like (15) and sentences like (7).

(15) Max ran

(7) Max won the race

The second is to provide a definition of the progressive that is sensitive to this distinction
and so results in a solution to the imperfective paradox. I presented an account of the
semantic distinction between (15) and (7) by formulating a classification of aspect in the
framework of 1Q, and provided a suitable definition of the progressive that builds on this.

Two properties of IQ play a central role in the analysis of aspect. The first is the homogeneity
condition which is fundamental to the framework I1Q. Homogeneity plays a crucial role in
explaining the entailment between (14) and (15), for example.

(14) Max was running

(15) Max ran

The second important feature of the analysis is the role played by parameters. In using
parameters we capture the intuition that extra-linguistic context determines exactly what
process an utterance like Maz was building a house denotes.

I offered an account of the entailment from (14) to (15), and at the same time showed why
no such entailment holds between (6) and (7).

(6) Max was winning the race

(7) Max won the race

I also offered an account for why (15) entails (14) and (7) entails (6), and thus I solved the
imperfective paradox.

In the first part of this paper, I exposed irresolvable problems in attempting to solve the
imperfective paradox with the Eventual Outcome Strategy, but our definition of the pro-
gressive is not subject to these problems; it is wholly distinct from the Eventual Outcome
Strategy. So our solution to the imperfective paradox transcends the problems encountered
in previous theories.



36 The Progressive and the Imperfective Paradoz

References

Barwise, J. and Perry, J. [1983] Situations and Attitudes. Cambridge, Mass.: MIT
Press.

Bennett, M. and Partee, B. [1972] Toward the Logic of Tense and Aspect in English.
Bloomington, Indiana: Indiana University Linguistics Club.

Bennett, M. [1981] Of tense and aspect: one analysis. In Tedeschi, P. and Zaenen, A.
(eds.) Syntaz and Semantics, Volume 14: Tense and Aspect, pp13-29. New York: Academic
Press.

Cooper, R. [1985] Aspectual classes in Situation Semantics. Report No. CSLI-84-14C,
Center for the Study of Language and Information, 1985.

Dowty, D. [1977] Towards a Semantic Analysis of Verb Aspect and the English ”Imper-
fective Progressive”. Linguistics and Philosophy, 1, 45-78.

Dowty, D. [1979] Word Meaning and Montague Grammar. Dordrecht: D. Reidel.

Dowty, D. R., Wall, R. E. and Peters, S. [1981] Introduction to Montague Semantics.
Dordrecht: D. Reidel.

Hinrichs, E. [1983] The semantics of the English progressive: a study in Situation Seman-
tics. In Chukerman, A., Marks, M. and Richardson, J. F. (eds.) Papers from the Nineteenth
Regional Meeting of the Chicago Linguistics Society, Chicago, April 21-22, 1983, pp171-182.

Moens, M. [1987] Tense, Aspect and Temporal Reference. PhD Thesis, Centre for Cog-
nitive Science, University of Edinburgh.

Moens, M & Steedman, M [1988] Temporal Ontology and Temporal Reference Journal
of Computational Linguistics, volume 14 number 2, pp 15-28.

Parsons, T. [1989] The Progressive in English: Events, States and Processes. Linguistics
and Philosophy, 12, 213 - 241.

Partee, B. [1973] Some structural analogies between tenses and pronouns in English.
Journal of Philosophy, 70, 601-609.

Richards, B., Bethke, I., van der Does, J. and Oberlander, J. [1989] Temporal
Representation and Inference. London: Academic Press.

Taylor, B. [1977] Tense and continuity. Linguistics and Philosophy, 1, 199-220.

Taylor, B. [1985] Modes of Occurrence: Verbs, Adverbs and Events, Aristotlean Society
Series, Blackwell.

Vendler, Z. [1967] Verbs and times. Chapter 4 in Linguistics in Philosophy, pp97-121.
Ithaca, N.Y.: Cornell University Press.

Vlach, F. [1981] The semantics of the progressive. In Tedeschi, P. and Zaenen, A. (eds.)
Syntaz and Semantics, Volume 14: Tense and Aspect, pp271-292. New York: Academic
Press.



