
Game strategies for The Settlers of Catan

Markus Guhe, Alex Lascarides
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB

Scotland
Email: m.guhe@ed.ac.uk, alex@inf.ed.ac.uk

Abstract—We present an empirical framework for testing
game strategies in The Settlers of Catan, a complex win–lose
game that lacks any analytic solution. This framework provides
the means to change different components of an autonomous
agent’s strategy, and to test them in suitably controlled ways via
performance metrics in game simulations and via comparisons of
the agent’s behaviours with those exhibited in a corpus of humans
playing the game. We provide changes to the game strategy that
not only improve the agent’s strength, but corpus analysis shows
that they also bring the agent closer to a model of human players.

I. INTRODUCTION

Rational action, according to Savage, is typically defined
as that which maximises the agent’s expected utilities—an op-
timal trade-off between what he prefers (typically defined by a
utility function) and what he believes he can achieve (typically
defined via a dynamic Bayesian network; [1]). Solving a game
problem involves finding equilibrium strategies: an optimal
action for each player in that it maximises his expected utility,
assuming that the other players perform their specified action
[2]. But this Savagean model is highly idealised and humans
often deviate from it [3], [4], especially in complex games.
The Settlers of Catan (or Settlers, [5]; http://catan.com)
is one such game. Even if Settlers had an analytic solution, it
wouldn’t necessarily match what humans do. Further, its game
tree isn’t surveyable—e.g., the options for negotiating trades
in natural language aren’t bounded [6]—and so algorithms
like backwards induction for computing expected utilities don’t
work on their own.

One response to this is to develop a symbolic model con-
sisting of heuristic strategies for playing the game. Developing
such models potentially has two advantages. First, a symbolic
model can in principle lead to an interpretable model of human
expert play, but this requires a means for comparing and
evaluating the performance of the model with that of human
experts, and using evaluation to guide further developments
and improvements. Second, a symbolic model can provide
a prior distribution over which next move is likely to be
optimal, and this is critical to the success of using current
machine learning techniques on complex games—where by
success we mean that the posterior distribution over optimal
actions acquired through training improves on the baseline
prior distribution. For instance, both reinforcement learning
(RL; [7]) and the online learning technique Monte Carlo tree
search (MCTS; [8]) have been used to train agents to play
Settlers. But in both cases, they relied on the agent having
prior to its learning phase a decent game strategy: Pfeiffer

[9], [10] and Hanna and collaborators [11] demonstrate that
RL succeeds only when they use substantial prior symbolic
heuristics and a suitable, domain-specific internal structure for
restricting search; and Roelofs [12] and Szita et al. [13] show
that deploying MCTS likewise needs a prior distribution that
already captures sophisticated and domain-specific strategies
for restricting exploration.

The purpose of this paper is to provide an empirical frame-
work for developing and improving symbolic strategies for
playing complex games that realises the above two advantages
of symbolic modelling. Like the work we just mentioned our
domain is Settlers, and our starting point is an existing open
source symbolic agent JSettlers [14]. We show here that
by using performance data gathered from game simulations
among agents and quantitative comparisons of that data with
data that is extracted from a corpus of humans playing the
game [15], one can guide the design, implementation and eval-
uation of modifications to the agent, and so achieve relatively
large improvements in the agent’s performance on the game—
the agent we have developed using this methodology wins 43%
of the games when playing 3 of the JSettlers agents that
we started with (called jsettlers agents below). Furthermore,
the behaviour of our modified agent, though still different from
the human behaviour exhibited in the corpus, is demonstrably
closer to it than the JSettlers agent is.

As part of a project on strategic negotiation as it occurs in
complex games, we are investigating Settlers as an example
domain [16], [17]. In [17] we focussed on how human errors
in beliefs—in particular forgetting—impact negotiating and
trading in Settlers, and we took the first steps towards de-
signing negotiation strategies that compensate for deficiencies
in beliefs, and in [18] we address the benefits of persuasion
during negotiation in Settlers. In this paper we report on
improvements to other parts of the game strategy: in particular,
what (and where) to build on the board.

There are several empirical approaches to modelling Set-
tlers, but none of them deal with the full game since they
ignore the options of negotiating and trading with opponents.
As we mentioned earlier, the MCTS approach used in [12]
and [13] and the RL approach of Pfeiffer’s [9], [10] all show
that training must build upon what is already a complex prior
strategy that incorporates sophisticated and domain-specific
reasoning. Hanna et al. [11] get the same result for the Fungus
Eater game: the models learning best and quickest use the
most hand-coded knowledge and most refined architecture for
subdividing the task in a domain-specific way. The Fungus
Eater game has a large state space, but relatively few actions



compared to Settlers, and it is a single agent environment so
opponents’ preferences don’t count. None of these approaches
evaluate whether their prior models are cognitively plausible,
and the symbolic models are built on an ad hoc basis. Here,
we prove by demonstration that it is possible to build a
game simulation environment that supports the systematic
and controlled evaluation of symbolic models, which in turn
justifies and guides updates to them that result in improved
player performance, and our empirical method also provides
the means to compare the agents’ behaviours within game
simulations against those of people. We hope that in future
work we can show that improving the prior leads to improved
results from training (both with RL and with MCTS).

II. THE SETTLERS OF CATAN

The Settlers of Catan is a complex multiplayer board game;
the board is a map of Catan consisting of hexes of different
types: hills, mountains, meadows, fields and forests (cf. Fig. 1,
[5], and http://catan.com). Two to four players settle on
Catan by building settlements and cities connected by roads.
It is a zero-sum game: the first player to get 10 Victory Points
wins, all others lose. Players obtain Victory Points by:

• Building a settlement (1 point),

• Upgrading a settlement to a city (1 additional point),

• Drawing a Victory Point development card (1 point),

• Building the Longest Road (at least 5 consecutive
roads, 2 points),

• Assembling the Largest Army (by playing at least 3
Knight development cards, 2 points).

Performing these actions needs resources—clay, wood, rock,
ore and sheep—in different combinations. A different number
of resources is needed for different pieces (e.g., 2 for a road,
5 for a city), but some types of resources are more frequent
than others: for instance, there are 4 hexes for sheep but only
3 for ore, and building a city requires one to build a settlement
first. So calculating the most likely time it will take to build a
given piece on the board given one’s beliefs about the current
game state is very complex, and human calculations will be
error-prone.

The game starts with a setup phase where each player in
turn places two settlements and two roads. Players then take
turns and attempt to obtain resources and to build pieces. A
turn starts with the roll of dice. So, future game states are non-
deterministic and players must calculate the risks of moves.
Each player potentially obtains or loses resources through dice
rolls. A player with a settlement or city touching a hex with the
number rolled, cf. Fig. 1, receives the corresponding resource
(1 for a settlement, 2 for a city): hills produce clay, mountains
ore, meadows sheep, fields wheat and forests wood. The desert
hex produces no resource.

Losing resources occurs when the dice roll is 7; this
activates the robber. (Because 2 six-sided dice are used, results
of dice rolls are not distributed evenly, and 7 is the most
frequent result.) The player whose turn it is moves the robber
to a new hex and ‘robs’ one of the players with a settlement
or city adjacent to this hex—he gets one (random) resource

Fig. 1. A game of Settlers in JSettlers.

from the player he chooses to rob. This hex then produces
no resources until the robber is moved elsewhere. Any player
with more than 7 resources must discard half of them. The
robber can also be moved by playing a Knight card (a type of
development card). The robber starts the game on the desert
hex. What gets robbed is hidden to the unaffected players. Thus
Settlers yields partially observable game states: not only are
the preferences of opponents hidden, but so are their resources.

The player whose turn it is can additionally trade resources
with the bank at a rate of 4:1, ports at a rate of 3:1 or 2:1
(depending on the port), or with other players (in any way
they agree to, except for simply giving resources away).

In addition to the 5 Victory Point development cards and
the 14 Knight cards, there are 6 Progress development cards:

• Road Building: immediately build 2 roads

• Year of Plenty: get 2 freely chosen resources from the
bank

• Monopoly: get all of the chosen resources of one type
from the other players

III. PLANNING IN JSETTLERS

We use an open source implementation called JSettlers
(http://jsettlers2.sourceforge.net, [14]; we
branched off version 1.1.12). JSettlers is a client–server
system: a server maintains the game state and passes messages
between each of the players’ clients. Clients can be human
players or computer agents.

The core idea of the game strategy used by the
JSettlers computer agent is conceptualising the game as
a race between the players to be the first to gain 10 Victory
Points [14]. Consequently, the valuation functions that deter-
mine the relative merit of a particular game move calculate



how much the move reduces the estimated time needed to get
10 Victory Points.

The JSettlers agent comes with two inbuilt game
strategies: a fast strategy and a smart strategy. The fast strategy
solely relies on minimising the Estimated Time to Build (ETB),
i.e. on finding the game action that enables the player to build
the next piece in order to get the next Victory Point. In contrast,
the smart game strategy evaluates actions beyond obtaining
the next Victory Point. Below, we will provide results via
game simulations which measure the relative merits of both
approaches.

The JSettlers agent goes through multiple phases after
the dice roll that starts his turn:

1) Deal with game events: e.g. placing the robber;
acquiring or discarding resources.

2) Determine legal and potential places to build pieces.
3) Compute the Estimated Time to Build pieces on legal

places (ETB) and the Estimated Speedup (ES), i.e.
by how much building a piece, e.g. a settlement, in a
particular location reduces the Estimated Time to Win
(ETW) the game.

4) Compute the Best Build Plan (BBP), a (sequence of)
build actions that best advances the agent’s position
in the game.

5) Try to execute the BBP, including negotiating and
trading with other players and/or the bank or a port.

A detailed description of all steps is given in [14]; for our
purposes here it suffices to point out that the main factor in
choosing the BBP is the ETB, and the fast strategy considers
only the ETB of the next piece, with ES (Estimated Speedup)
used as a tiebreaker (so it aims to minimise ETB and maximise
ES). These values are calculated on the average number of
resources a player can expect to receive from the hexes through
dice rolls: e.g. if a player wants to build a road (costing one
wood and one clay) and he already has wood, then the ETB
is the estimated time to get clay via dice rolls or trades with
the bank or a port.

The JSettlers agent generates 5 different types of build
plans: Settlement (including roads needed), City, Development
Card, Longest Road and Largest Army. So, there is no Road
build plan as such, and Development Card and Largest Army
both map to the action buy a development card.

In [17] and [18] we focus on negotiating strategies; i.e.,
a subset of step 5. In this paper, we investigate and improve
the strategies in steps 3 (estimates of the relative preferences
over build plans) and 4 (identifying an optimal sequence of
build actions for achieving a win). But our changes also
substantially improve step 5, and critical to these successes is
our ability to perform game simulations where we can control
arbitrary aspects of the agent’s policies so as to perform sound
evaluations of specific hypotheses about optimal play.

IV. MEASURING AGENT PERFORMANCE

We employ multiple measures to assess an agent’s perfor-
mance. First, the win rate reflects an agent’s overall success:
after all, planning, building, negotiating and trading are just
means to win the game. A simulation consists of 10,000
games, each with 4 agents, where we pit 1 modified agent

against 3 baseline agents (benchmark or ranking, see below).
Therefore, the null-hypothesis is that each agent wins 25%
of the games. We use 10,000 games to avoid the arbitrary
behaviour engendered by small numbers, given the degree
of non-determinism in the game. This number of games per
simulation roughly means that with a significance threshold of
p < 0.01, win rates between 0.24 and 0.26 are not significantly
different from the null-hypothesis. Each simulation takes about
1 hour on a current desktop computer.

The other measures fall into two categories: those con-
cerning the acquisition of resources; and those concerning
building. The null-hypotheses here are that all agents produce
the same values. We measure the quality of an agent’s strategy
for acquiring resources in several ways. First, we consider how
many resources he obtains through trading and how many via
the hexes. Obtaining a resource from a hex comes from smart
placement of pieces on the board (and so is also a measure
of the quality of one’s build plans). Smart placement also
contributes to obtaining resources via trading (via ports, and
because trades with banks require 4 resources). Obtaining a
resource via trading also stems from successful negotiating
with other players, and the more resources a player has, the
better his chances to negotiate suitable trades. Note that trading
is less desirable, because the player has to give away resources
in exchange.

We measure the quality of different build strategies by the
number of:

• Build plans (grouped by the 5 different types),

• Pieces actually built (road, settlement, city, develop-
ment card), excluding the 2 roads and 2 settlements
that are placed in the setup phase of the game,

• Resources received from hexes (see above).

The proportion of planned builds to actual builds is a rough
measure of how accurately agents assess what they can
achieve. Measuring the number of resources received from
hexes (by dice rolls) is a measure of the quality of the
build strategy for the stated reasons. Note this number does
not include resources gained from playing development cards
(Knight, Year of Plenty, Monopoly).

We use Z-tests for testing the win rate and pairwise t-
tests for the number of resources received. We will mark
significant differences to the null-hypotheses for the modified
agents in bold. We do not report differences between the 3
baseline agents that the modified agent plays against: there
were no significant differences between them. We will also
give results for the pieces the agents built, but because these
are distributions with a very small N, there is no useful
statistical significance test. We did, however, compute the
Kullback-Leibler divergence statistics for these data (all were
greater than 0.5), but because there is no generally agreed on
interpretation of how large a distance constitutes a sizeable
difference, it is open to interpretation on how different agents
are with respect to these measures. t-tests on the absolute
numbers show they are significantly different, but because
winning agents build more pieces on average, this is not a
surprising outcome.



Correlation between win rate and resources from hexes.

Intuitively, there should be a close correlation between the
number of resources an agent receives from hexes (i.e. via dice
rolls) and its win rate; more precisely: the more resources an
agent gets from hexes, the higher his win rate should be. Our
simulations are supporting evidence for this intuition: Figure 2
depicts the correlation between the win rate and the number of
resources the agent gained on average from the hexes on the
board. This correlation is significant (r = 0.207, p < 0.05, n =
99). Thus, the more resources an agent gets from hexes, the
better his chances to win.

0.350.1 0.15 0.2 0.25 0.3

68

52

54

56

58

60

62

64

66

wins

re
so

ur
ce

s 
fr

om
 h

ex
es

Fig. 2. Dependency between wins and resources gained from hexes.

V. BUILD STRATEGIES FOR The Settlers of Catan

We looked at the most interesting parts of the agents’ build
strategies:

• Initial placement, i.e. placing settlements and roads
during the setup phase,

• Choosing among the different types of build plans at
any given point in the game after the setup phase, and

• The potential disadvantage of the limited looka-
head of the myopic ‘fast’ strategy to the elaborate
JSettlers ‘smart’ strategy.

Since we make no changes here to the trading strategy, all
differences in resources received through trading are effects of
changes to the build plans that agents choose.

A. Improvements to initial placement

An agent that uses a more principled approach for plac-
ing settlements and roads in the setup phase (the agent we
are calling benchmark because apart from changes to initial
placements it uses the original JSettlers algorithms and is
one of our baseline agents) is a substantial improvement over
the agent that comes with the JSettlers system (the agent
we are therefore calling jsettlers), even though their strategies
are identical after the setup phase.

While the jsettlers agent’s decisions about initial placement
are dependent only on which locations on the board generate

the most resources (so that the sum of the estimated time to
build each of the 4 types of pieces – road, settlement, city,
development card – is minimised [14, pp. 87–93]), our new
algorithm uses a comprehensive weighting function that:

1) Disfavours hexes that have the same number (because
occupying hexes with different numbers enables the
player to receive resources with a more even spread,
which increases the likelihood that resources are
available in every turn and decreases the likelihood
of having to discard resources when a 7 is rolled),

2) Disfavours building both settlements on the same hex
(which is a special case of the first factor, but this is
disfavoured more strongly),

3) Uses a weighted scoring function that uses different
weights for the resource combinations needed to build
the 4 different types of pieces (effectively, the fewer
resources are needed for a piece, the more it is
favoured; this contrasts with the jsettlers agent, who
is indifferent about which of the 4 types of pieces he
will be able to build fastest while considering initial
placement).

One jsettlers agent playing against 3 of our ‘benchmark’
baseline agents only wins 15.2% of the games. This demon-
strates that decisions about the initial setup are critical, because
it opens up or limits the player’s subsequent options. (In all
result tables we give the modified agent first and the averages
for the 3 baseline agents second.)

resources
agent wins trade hex sum
jsettlers 0.152 6.0 56.5 62.5
benchmark 0.283 7.6 65.0 72.6

The benchmark agent also receives about 15% more re-
sources from the hexes (by dice rolls) than the jsettlers agent.
This means that it has not only many more opportunities to
build pieces directly but also that it has more opportunities and
options to trade. The table below gives the average number
of trade offers the agents make per game, their successful
offers and total number of trades (which include accepting
trade offers by other agents.)

trades
agent offers succ. offers total trades
jsettlers 6.2 1.5 5.2
benchmark 13.8 3.8 6.8

Because after the setup phase the agents use the same build
strategy, they do not differ with respect to the pieces they build.

B. Ranking build plans

A particular weakness of the planning algorithm that com-
putes the BBP used in the jsettlers and benchmark agents is
that they use a nested sequence of heuristics that, by design,
incorporates a global default preference for certain types of
build plans over others: City � Settlement � Largest Army �
Longest Road � Development Card. The algorithm selects the
highest build plan in this list that has an ETB lower than the
next build plan in the list. Additionally, the agent sometimes
(though not always) does not search the whole list and skips



over build plans lower in the list, even though their ETB may
be lowest and indeed may contribute more, relatively speaking,
towards an overall plan to win. This is particularly true for
development cards.

We replaced this global default preference ordering with a
simple ranking function that decides among the plans solely by
ETB (and ES as a tiebreaker for plans with the same ETB).
In other words, preferences over all options are conditioned
on some aspects of the current game state. The conjecture
is that this makes decisions about optimal build plans more
context sensitive, removing certain default assumptions about
the desirability of certain build plan types. Our ranking agent
adopts this ranking function to approximate the expected utility
of a build plan; the functions for computing ETB and ES were
left unchanged.

Apart from the win rate, the main difference between the
ranking agent and its benchmark opponents is the types of
build plans they choose. While the benchmark agent hardly
ever chooses to buy a development card (thanks to its default
global dispreference), the ranking agent uses an almost even
split between this and building settlements and cities. (Note
that these numbers show the proportion of build plan types,
not the absolute counts.)

build plans (proportion)
agent wins settlm. city card LA LR
ranking 0.299 0.35 0.30 0.29 0.04 0.02
benchmark 0.234 0.43 0.44 0.00 0.08 0.05

This distribution in the chosen plans is reflected in the types
of pieces that the agents actually build: the ranking agent buys
development cards in 35% of the cases.

pieces built (proportion)
agent wins roads settlm. city card
ranking 0.299 0.27 0.18 0.20 0.35
benchmark 0.234 0.44 0.24 0.28 0.05

As already mentioned, there is no statistical method to
test whether these differences are significant, but the KL
divergence for the distributions of build plans for the ranking
agent vs. its benchmark opponents is 6.22 and for the pieces
built it is 0.63.

C. (Dis-)favouring types of build plans

Because buying development cards is the main difference
between the benchmark and the ranking agent and because this
gave the ranking agent a substantial advantage, we explored
whether we can further improve on the build strategy by
favouring or disfavouring one of the possible 5 build plan
types, i.e. reducing or increasing the number of times the agent
chooses a particular type of build plan.

We therefore manipulated the ETB with a favouring factor
(fav ) according to the following formula:

etbscaled = etborig − (fav ∗ etborig)

with etborig as the original estimated time to build and
etbscaled the estimated time to build scaled with the favouring
factor fav . Note that:

• Positive values for fav favour the corresponding build
plan type, because they reduce the ETB.

• fav ≤ 1, because the ETB cannot be a negative value.

• If etborig = 0, then it etbscaled remains 0, so ETBs
for build plans that the agent can execute immediately
are not affected.

1) Development Cards.: Using this formula to favour buy-
ing development cards indeed changes the agent’s perfor-
mance. Fig. 3 shows how win rate, Development Card chosen
as BBP per game and development cards actually bought per
game change with the favouring factor when playing this agent
against 3 unmodified ranking agents. The grey area indicates
when win rates are not significantly different from the null-
hypothesis (i.e., to win 25% of the games). Since the win rate
rises to 0.293 by disfavouring development cards, a strategy
solely relying on the ranking agent’s ETB now overestimates
their usefulness.

1-6 -5 -4 -3 -2 -1 0

0.6

0

0.1

0.2

0.3

0.4

0.5

Development Card BP favouring factor (fav)

cards bought

wins

card BBPs

Fig. 3. Effects of favouring Development Cards build plans. The grey area
indicates win rates that do not differ significantly from the null-hypothesis.

While the total number of resources gained per game does
not change much across the different agents, ranking agents
that disfavour development cards have an advantage because
they receive more resources from hexes directly, for which
they don’t have to give away resources in exchange (whereas
for traded resources they do).

resources
fav wins trade hex sum
–5.0 0.293 15.11 66.57 81.68
(ranking) 0.236 16.81 61.54 78.35
–0.5 0.268 16.45 64.10 80.55
(ranking) 0.244 17.57 62.32 79.89
0.0 (ranking) 0.250 16.55 63.17 79.72
0.5 0.201 19.54 60.62 80.16
(ranking) 0.266 19.04 64.23 83.27

So, the agent using favcards = −5 is our best-performing
agent overall. If we run this agent against the jsettlers agent that
originally comes with the JSettlers system, he achieves a
win rate of 0.430. We will be calling this agent favDC in the
following.



1-6 -5 -4 -3 -2 -1 0

0.6

0

0.1

0.2

0.3

0.4

0.5

Settlement BP favouring factor (fav)

wins

se
tt

le
m

en
t B

BP
s

settlements built

1-6 -5 -4 -3 -2 -1 0

0.6

0

0.1

0.2

0.3

0.4

0.5

City BP favouring factor (fav)

wins

ci
ty

 B
BP

s

cities built

Fig. 4. Effects of favouring Settlement or City build plans. The grey area indicates win rates that do not differ significantly from the null-hypothesis.

1-6 -5 -4 -3 -2 -1 0

0.6

0

0.1

0.2

0.3

0.4

0.5

Longest Road BP favouring factor (fav)

roads built
wins

Longest Road BBPs

1-6 -5 -4 -3 -2 -1 0

0.6

0

0.1

0.2

0.3

0.4

0.5

Largest Army BP favouring factor (fav)

cards bought

wins

Largest Army BBPs

Fig. 5. Effects of favouring Largest Army and Longest Road build plans. The grey area indicates win rates that do not differ significantly from the null-hypothesis.

2) Settlements and Cities.: Applying the favouring factor
to settlements and cities, cf. Fig. 4, shows that they cannot be
improved to the same extent. The only (slight) improvement
in win rate occurs when favouring Settlement build plans with
fav = 0.5 (win rate is 0.266). This suggests that the agents’
estimation of the utilities for these build plans is more accurate
than that for development cards.

3) Longest Road and Largest Army.: Positive favouring
factors for Longest Road build plans and negative ones for
Largest Army build plans lead to some improvements, cf.
Fig 5. The biggest improvement here is favouring Longest
Road with a factor of 0.5, which increases the win rate to
0.282. While this agent does not actually build many more
roads overall (0.269 vs. 0.250), he chooses Longest Road build
plans about twice as often as the ranking agent (0.026 vs.
0.057).

The biggest improvement for favouring Largest Army build
plans occurs with the favouring factor –1 (win rate: 0.266).
Because the build action for the Largest Army build plan
is identical to the Development Card build plan (buying a

development card) and because the change in win rate for
disfavouring development cards is very large, the change is
most likely due to the different number of attempts the agent
makes to buy development cards.

D. Fast vs. smart

Unlike the fast agent who just plans how quickly it can
build the next piece (by minimising the ETB), the smart agent
plans ahead until the end of the game by creating the best
sequence of build plans that will get it to 10 Victory Points in
the shortest Estimated Time to Win (ETW). Computationally,
this is very costly (the smart agent is slower by a factor of
approximately 30). So, we tested whether an agent actually
profits from this additional cost.

When running 1 smart benchmark agent—i.e. an agent that
uses improved initial placement and the smart game strategy—
against 3 (fast) benchmark agents, the smart agent has a win
rate of 0.338. Looking at the types of pieces they build, the
main difference between the agents is, again, that the fast agent
is buying almost no development cards.



pieces built (proportion)
agent wins roads settlm. city card
smart benchmark 0.338 0.33 0.14 0.14 0.39
(fast) benchmark 0.221 0.46 0.25 0.28 0.01

An unexpected result in this simulation is that while the
fast benchmark agent receives 66.5 resources from hexes per
game, the smart agent receives only 53.5 per game. The smart
agent’s higher win rate suggests he uses his resources more
effectively than a fast agent does.

So far, we have seen that both the smart and the ranking
agents buy more development cards than the benchmark agent.
Further, playing 1 smart benchmark agent against 3 ranking
agents has the smart agent lose quite decisively; his win rate
is only 0.196.

pieces built (proportion)
agent wins roads settlm. city card
smart benchmark 0.196 0.36 0.16 0.15 0.32
ranking 0.268 0.22 0.13 0.12 0.53

Furthermore, the smart benchmark agent, again, gets fewer
resources overall, but this time the difference is mainly due to
the difference in number of resources received by trade:

resources
agent trade hex sum
smart benchmark 12.2 62.6 74.8
ranking 15.7 62.7 78.4

There are two further features of these simulations that are
worth noting. Firstly, the ranking agent has only 1/30th of the
smart agent’s computational cost, and yet his win rate in the 1
vs. 3 configuration is significantly higher. If we use different
configurations (3 smart vs. 1 ranking or 2 vs. 2), the win
rates do not differ significantly from the null hypothesis, but
again the smart agent does not profit from his time-consuming
deliberations either.

The second feature is that in all the above simulations, the
smart agent profits from our improved JSettlers protocol
for negotiation, where the agent making a trade offer waits
until he has received a response from all agents he made the
offer to before deciding which agent to make the trade with
(if multiple agents accept his offer). If we use the original
JSettlers trading interaction, the first agent accepting a
trade offer gets to make the trade, which in this context means
it will always be one of the (fast) ranking agents. Here, the
ranking agent has a win rate of 0.272 in our usual 1 (smart) vs.
3 (ranking) configuration, but now the ranking agent also has
an advantage in the other configuration: in a 3 vs. 1 setting
it is 0.273 for the ranking agent and even 0.289 a 2 vs. 2
configuration.

When we run our best-performing agent (favDC, the one
disfavouring Development Card build plans with a factor of
–5; again using our improved trade interaction), this effect
becomes even stronger, and the agent substantially outperforms
the smart agent (we only give the results for the 1 smart
benchmark vs. 3 (fast) disfavouring development cards, and
the 3 vs. 1 setup respectively in the table below).

pieces built (proportion)
agent wins roads stm. city card
smart benchmark 0.191 0.33 0.14 0.14 0.39
favDC 0.270 0.30 0.16 0.13 0.42
favDC 0.323 0.28 0.16 0.13 0.44
smart benchmark 0.226 0.32 0.14 0.15 0.39

resources
agent trade hex sum
smart benchmark 11.4 57.9 69.3
favDC 12.9 62.3 75.2
favDC 11.8 64.0 75.8
smart benchmark 14.1 59.6 73.7

So, summing up, the smart benchmark agent performs
better than the fast benchmark agent, but the ranking agent
performs better than both of them, and with the additional
disfavouring of buying development cards, the ranking agent’s
performance becomes even better. So, our best performing
agent is beating all other agents. This means that while there is
some benefit to being smart (at the cost of speed), that benefit
is outweighed by the benefits of the ranking and our best-
performing agent without the cost of losing speed.

VI. COMPARISON WITH HUMAN DATA

In the following table, the row corpus shows the results
from 38 games between human players collected as described
in [15]. To obtain comparisons with the human corpus, we
make an idealised assumption that the human players are of
the same type, and so compare the human play against game
simulations where 4 identical agents play one another.

pieces built (proportion, except num)
agent roads settlm. city card num
corpus 0.49 0.17 0.10 0.25 12.9
favDC 0.30 0.18 0.15 0.36 12.3
ranking 0.25 0.14 0.12 0.49 12.5
smart benchmark 0.33 0.14 0.14 0.39 11.3
(fast) benchmark 0.46 0.24 0.28 0.01 10.2

According to the L1 distance metric, measured on both the
number of pieces built and their proportions over the different
types, our strongest agent (favDC, i.e., the one favouring
development cards with a factor of –5) matches the human
behaviour closest. Both this agent and the smart benchmark
agent exhibit a similar KL divergence to human performance,
with the KL measure for the smart benchmark being slightly
smaller (though without a test to compare different KL mea-
sures we cannot know if this is significant). But KL divergence
compares only the proportion of pieces built and ignores the
absolute number of pieces built. Since the number of pieces is a
critical aspect of one’s behaviour—it reflects how efficiently an
agent’s pieces accrue points towards winning—the L1 metric
is our preferred measure for comparing behaviours in this
case, making favDC our best match. Thus, our manipulations
generally improve the match between agents and corpus. This
is proof by demonstration that by designing an agent whose
strategies can be easily modified it is possible to rapidly
converge to a model that closely matches observed human
behaviour.



VII. CONCLUSIONS

We have demonstrated the feasibility of using a rigorous
experimental setup, where performance data gained via game
simulations and their comparison to data on human behaviour
can be used to guide improvements to an already sophisti-
cated symbolic model of a complex game. More precisely,
our method consists of changing one aspect of an agent’s
strategy, running extensive simulations against other agents
whose strategies control for other factors, and collecting com-
prehensive performance measures from these simulations so
that these metrics can guide further development. We showed
that in the domain of The Settlers of Catan at least, adapting the
symbolic model to increase win rates correlates with getting
closer to the performance profiles exhibited by human play.

We do not have an adequate model of a human player of
Settlers yet. But we have identified the ingredients we need for
this and produced an environment to pursue the issue by (1)
running agent-only simulations, (2) observing people play and
(3) playing mixed games between human players and agents
as future work. This makes it possible to pursue our goal of
creating a good model of human players, as well as building a
very strong automated player, which (like for many complex
games like the AI favourites chess or Go) offers us many new
insights into intelligent behaviour.

With our work we have also shown that there is a danger
when deploying a decision tree approach to decision making
that fixes (default) preferences in a way that abstracts too
much away from the specific context of the move. This is
a natural risk with these approaches because their strength
(to overcome the complexity in reasoning by making default
assumptions) is also their weakness (default assumptions run
the risk of ignoring properties of the current state that are
critical to an effective decision). Through a comparison of
our original model with human behaviour, we found that a
more flexible method was needed for evaluating the relative
preferences of each action: specifically, a comparison with
human data exposed the fact that the benchmark agent was
deliberating about optimal action in a way that under-estimates
the benefit for development cards and over-estimates that of
other pieces. Thus we achieved one major improvement to
the agent’s performance by relaxing its default preference and
instead comparing all options via a reward function that draws
on quantitative values via features of the current game state
(in effect, this is what ETB and ES do).

In future work, we plan to explore other aspects of the
game strategy, e.g., negotiating and robbing, and we will
address one limitation of the agent’s current (fast) approach
to determine BBPs, viz. that it doesn’t adequately balance
a higher ES against a longer ETB—simulations show that
frequently switching the high-level strategy is problematic (cf.
also [11]). Once these enhancements are complete, we will
release the various agents and game simulation environment in
an open source repository. We also plan to investigate whether
an improved prior symbolic model enhances the learning
process in systems that learn optimal play via both RL and
MCTS.

ACKNOWLEDGMENT

This work is supported by ERC grant 269427 (STAC). We
would like to thank Kevin O’Connor for implementing the
setup protocol for the original agent.

REFERENCES

[1] L. Savage, The Foundations of Statistics. John Wiley, 1954.
[2] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,

Game-Theoretic and Logical Foundations. Cambridge University
Press, 2009.

[3] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision
under risk,” Econometrica, vol. 47, no. 2, pp. 263–291, 1979.

[4] D. Ariely, Predictably Irrational: The Hidden Forces That Shape Our
Decisions. HarperCollins, 2008.

[5] K. Teuber, Die Siedler von Catan: Regelheft. Stuttgart, Germany:
Kosmos Verlag, 1995.

[6] A. Cadilhac, N. Asher, A. Lascarides, and F. Benamara, “Preference
change,” 2013, submitted.

[7] R. Sutton and A. Barto, Reinforcement learning: An introduction. MIT
Press, 1998.

[8] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Computers and Games: Volume 4630 of Lecture Notes
in Computer Science (LNCS), 2007, pp. 72–83.

[9] M. Pfeiffer, “Machine learning applications in computer games,” Mas-
ter’s thesis, Technical University of Graz, 2003.

[10] ——, “Reinforcement learning of strategies for Settlers of Catan,”
in Proceedings of the International Conference on Computer Games:
Artificial Intelligence, Design and Education, Reading, UK, 2004.

[11] C. J. Hanna, R. J. Hickey, D. K. Charles, and M. M. Black, “Modular
reinforcement learning architectures for artificially intelligent agents
in complex game environments,” in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on, 2010, pp. 380–387.

[12] G. Roelofs, “Monte carlo tree search in a modern board game frame-
work,” 2012, research paper available at umimaas.nl.

[13] I. Szita, G. Chaslot, and P. Spronck, “Monte-carlo tree search in Settlers
of Catan,” in Advances in Computer Games, H. van den Herik and
P. Spronck, Eds. Springer, 2010, pp. 21–32.

[14] R. S. Thomas, “Real-time decision making for adversarial environments
using a plan-based heuristic,” Ph.D. dissertation, Northwestern Univer-
sity, 2003.

[15] S. Afantenos, N. Asher, F. Benamara, A. Cadilhac, C. Dégremont,
P. Denis, M. Guhe, S. Keizer, A. Lascarides, O. Lemon, P. Muller,
S. Paul, V. Popescu, V. Rieser, and L. Vieu, “Modelling strategic
conversation: model, annotation design and corpus,” in Proceedings
of the 16th Workshop on the Semantics and Pragmatics of Dialogue
(Seinedial), Paris, 2012.

[16] M. Guhe and A. Lascarides, “Trading in a multiplayer board game:
Towards an analysis of non-cooperative dialogue,” in Proceedings of
the 34th Annual Conference of the Cognitive Science Society. Austin,
TX: Cognitive Science Society, 2012, pp. 1626–1631.

[17] M. Guhe, A. Lascarides, K. O’Connor, and V. Rieser, “Effects of belief
and memory on strategic negotiation,” in Proceedings of SEMDIAL
2013 – The 17th Workshop on the Semantics and Pragmatics of
Dialogue, Amsterdam, 16–18 December 2013, 2013, pp. 82–91.

[18] M. Guhe and A. Lascarides, “The effectiveness of persuasion in The
Settlers of Catan,” in Proceedings of IEEE Conference on Computa-
tional Intelligence and Games – CIG 2014, 2014.


